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Abstract

Peer reviews are intended to give authors
constructive and informative feedback. It
is expected that the reviewers will make
constructive suggestions over certain aspects,
e.g., novelty, clarity, empirical and theoretical
soundness, etc., and sections, e.g., problem
definition/idea, datasets, methodology, experi-
ments, results, etc., of the paper in a detailed
manner. With this objective, we analyze the
reviewer’s attitude toward the work. Aspects
of the review are essential to determine how
much weight the editor/chair should place
on the review in making a decision. In this
paper, we used a publicly available Peer
Review Analyze dataset of peer review texts
manually annotated at the sentence level (13.22
k sentences) across two layers: Paper Section
Correspondence and Paper Aspect Category.
We transform these categorical annotations
to derive an informativeness score of the
review based on the review’s coverage across
section correspondence, aspects of the paper,
and reviewer-centric uncertainty associated
with the review. We hope that our proposed
methods, which are motivated towards auto-
matically estimating the quality of peer reviews
in the form of informativeness scores, will
give editors an additional layer of confidence
for the automatic judgment of review quality.
We make our codes available at https:

//github.com/PrabhatkrBharti/

informativeness.git.

1 Introduction

The peer review process is the central mechanism
for validating scientific research (Siler et al., 2015).
A good review typically provides feedback on one
or more sections and aspects while reviewing the
manuscript/paper 1, rather than just one section,
say the Introduction (Kühne et al., 2010). There-
fore, reviews covering more sections and aspects

1In this manuscript, manuscript/paper are used interchange-
ably.

are more likely helpful to the author. Furthermore,
the more sections and aspects the review covers,
the higher the expected coverage score. It may give
the author a confidence that the reviewer has read
through and paid attention to the different sections
and aspects in their submission. In addition, the
reviewers are expected to provide constructive com-
ments and suggestions regarding certain aspects
and sections of the manuscript. To determining
whether the reviewer was informative or construc-
tive in their review and covered significant sections
of the manuscript. It would be appropriate to men-
tion the data from Peer Review Analyze (Ghosal
et al., 2022a). They analyze and understand the
reviewers’ thrust over specific sections and aspects
of the manuscript. We use those insights in our
proposed method. This particular motivation led
us to incorporate the general sections, and aspects
of the paper defined by the Peer Review Analyze
(Ghosal et al., 2022a) into this paper to calculate
the informativeness score. We attempt here to gen-
erate an informativeness score for a given review
directly by analyzing the review’s coverage across
section correspondence, aspects of the paper, and
reviewer-centric uncertainty associated with the re-
view.
We summarize the key contributions of this
work as follows.

• We propose a seed idea for the automatic judg-
ment of review quality.

• We introduce a novel method for measuring
the informativeness score based on sections,
aspects coverage, and reviewer-centric uncer-
tainty encapsulated in the review.

• In addition, we establish statistical-driven
baselines to evaluate Mean absolute error
(MAE), Root Mean Square Error (RMSE) and
coefficient of determination (R2).

The novelty of our work lies in utilizing the Peer
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Review Analyze dataset for measuring the infor-
mativeness score. Although we use the reviews of
a premier machine learning conference (ICLR) as
our dataset, our proposed method would represent
a generic aspect of peer review in Science, Technol-
ogy, Engineering and Mathematics (STEM). It will
assist the editors in which review they should pay
more attention to when crafting a meta-review. In
addition, it may give the author confidence that if
the review has high informativeness score, it means
the reviewer has reviewed thoroughly their submis-
sion.

2 Related Work

In the Meta Science community and Peer Review
Congress2 (Brezis and Birukou, 2020), peer review
quality has been a major research topic since 1989.
There are a few relevant ones that we discuss in
this article. The authors (Justice et al., 1998) stud-
ied a randomized control trial to see how mask-
ing author identity improves peer review quality.
The study in(Jefferson et al., 2002) presented ap-
proaches for assessing the quality of editorial peer
reviews. To assess peer reviews of manuscripts,
the authors of (Van Rooyen et al., 1999) developed
the Review Quality Instrument (RQI). In this pa-
per, the authors (Shattell et al., 2010) examined the
perspectives of authors and editors on the quality
of peer review in three scholarly nursing journals.
Peer review quality is evaluated in (Van Rooyen,
2001). A systematic review and meta-analysis on
the impact of interventions to improve the qual-
ity of peer reviews of biomedical journals were
conducted in (Bruce et al., 2016). In this paper,
authors (Enserink, 2001) explored the dubious con-
nection between the peer review and quality. Au-
thors (D’Andrea and O’Dwyer, 2017) argued if the
editors can save peer reviews from peer review-
ers. (Rennie, 2016) advocates scientific guidelines
for peer review. The purpose of this (Callaham
et al., 1998) study was to evaluate the reliability
of the editor’s opinion subjective quality ratings
of peer review of manuscripts. This paper pro-
vides an overview of how peer-review reports of
scientific articles can be assessed by the authors
(Sizo et al., 2019). For peer reviews, some rele-
vant NLP/ML works are worth exploring from an
NLP/ML perspective (Kumar et al., 2021; Ghosal
et al., 2019; Ghosal, 2019; Kumar et al., 2022;
Ghosal et al., 2022b; Bharti et al., 2022a,b, 2021;

2https://peerreviewcongress.org/

Gao et al., 2019). It should be noted, however, that
none of these works attempted to determine the
quality of peer reviews based on linguistic aspects.
Here, the goal is to derive a justifiable informative-
ness score and then use those insights to investigate
further, enabling editors to automatically identify
the quality of peer reviews.

3 Dataset

The dataset used in this study is from Peer Review
Analyze (Ghosal et al., 2022a), which is publicly
available. In Peer Review Analyze, peer review
texts are manually annotated at the sentence level
(13.22k sentences) across two layers: Paper Section
Correspondence and Paper Aspect Category. The
detailed dataset statistics are presented in Table 1,
and the reader is referred to the original paper for
further information.

3.1 Proposed Method

As we review the standard guidelines 3,4,5,6 for
peer-reviewing in machine learning (ML) and nat-
ural language processing (NLP) conferences, we
learn that the community expects a good review
that covers more sections and aspects of the re-
viewed manuscript (Gregory and Denniss, 2019;
Kühne et al., 2010). Having this motivation led us
to develop a justifiable informativeness score which
enables editors to automatically identify good re-
views and isolate those that are less thorough. In
our view, a good peer review should comment on
key sections and highlight the reviewer’s perspec-
tive while focusing on the essential aspects of the
manuscript.

Peer Review Analyze dataset is used to generate
an informativeness score based on the coverage of
section correspondence, aspects of the paper, and
the reviewer-centric uncertainty inherent in the re-
view.
Paper Section Correspondence: The paper sec-
tion correspondence identifies the section of the
paper on which the review statement is comment-
ing. E.g, Abstract (ABS), Introduction (INT),
Related Works (RWK), Problem Definition/Idea
(PDI), Data/Datasets (DAT), Methodology (MET),
Experiments (EXP), Results (RES), Tables & Fig-
ures (TNF), Analysis (ANA), Future Work (FWK),

3https://iclr.cc/Conferences/2022/MetareviewGuide
4https://acl2020.org/reviewers/
5https://neurips.cc/Conferences/2022/ReviewerGuidelines
6https://icml.cc/Conferences/2022/ReviewerTutorial
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Dataset # Purpose # Review
Avg. length of review

(terms of words)
Avg. length of review
(terms of sentences)

# Annotated
sentences

ICLR 2018 For proposed 1322 345.878 17.511 23150

Table 1: Dataset statistics

Overall (OAL), Bibliography (BIB) and External
(EXT).
Paper Aspect Category: The paper aspect cat-
egory identifies the aspect of the paper that the
review-statement addresses. E.g, Appropriateness
(APR), Originality or Novelty (NOV), Significance
or Impact (IMP), Meaningful Comparison (CMP),
Presentation & Formatting (PNF), Recommenda-
tion (REC), Empirical & Theoretical Soundness
(EMP), Substance (SUB) and Clarity (CLA).
Reviewer - Centric Uncertainty: In peer review,
reviewers sometimes make superficial, speculative
comments, which are not very helpful, and ulti-
mately affect the outcome (Ghosal et al., 2022b;
Özgür and Radev, 2009). For example, some re-
viewers use vague or hedge words (e.g., maybe,
seems, might, etc.) when uncertain about their re-
view. There could be discrepancies between how
reviewers comment on themselves and how readers
see their preview text. This intuition suggests that
a good review will have less reviewer-centric un-
certainty (low hedge score). Therefore, we incorpo-
rate reviewer-centric uncertainty into our proposed
method.

Informativeness Score: Reviews that cover the
complete work are more likely helpful to the au-
thor (Kühne et al., 2010). It can be an indication
of how detailed and significant the judgment was
with this intuition. We identify the study corre-
sponding to the paper section and aspects within
reviews. The main idea is to arrive at a justifiable
informativeness score; if a review is good, it will
cover as many sections and important aspects as
possible. With this objective, we encoded the an-
notation label into a numerical score based on the
review’s coverage across section correspondence,
aspect category and reviewer-centric uncertainty of
the review by measuring the informativeness score
towards the automatic judgment of review quality.
We have calculated the informativeness score by
considering following three parameters.

3.1.1 i) Section Score (Rsec ):
A good review should comment on the important
sections of the paper, which may help us identify
whether the reviewer’s comments are semantically

related to the submission’s main contents. With this
intuition, we calculate the section score by given
formula.

Rsec =

∑
x̄i +

∑
µiWxi∑

xi
(1)

Where Σx̄i = no. of unique sections covered by
review, µi = no. of repeating sentences containing
ith section, Wxi = weight of ith section and

∑
xi =

total no. of sections.
3.1.2 ii) Aspect Score (Rasp ):
As per the rubrics defined (Yuan et al., 2021;
Ghosal et al., 2022a) in Peer Review Analyze pa-
per, we expect the review to evaluate the work for
indicators like novelty, theoretical and empirical
soundness of the research methodology, writing,
and clarity of the work, impact of the work in a
broader academic context, etc. We call these in-
dicators review-level aspects. We calculate aspect
score using the following formula.

Rasp =

∑
x̄i +

∑
µiwxi∑

xi
(2)

Where Σx̄i = no. of unique aspects covered, µi

= no. of repeating sentences containing ith aspect,
wxi = weight of ith aspect

∑
xi = total no. of

aspects.
3.1.3 Assigning the Weights Wxi :

Figure 1 shows the label distribution for each re-
view across the datset for sections and aspects layer.
And we assign the weight to respective sections and
aspects in our informativeness formula accordingly.

Wxi =
Freq xi

100 * Total Freq
(3)

Freq xi = number of sentences talking about a spe-
cific section/aspect, Total freq: total number of
sentences talking about sections/aspects.

3.1.4 iii) Reviewer-Centric Uncertainty
(Hedge Score (H)):

In a review, uncertainty refers to speculation made
by the reviewer. The words the reviewer uses to in-
dicate speculating are called hedge words (Lakoff,
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(a) Sections distribution (b) Aspect distribution

Figure 1: Sections and aspects distribution across paper section correspondence and paper aspect category in Peer
Review Analyze annotated dataset.

1970; Tang et al., 2010; Velldal et al., 2012). Count-
ing uncertain terms in a review is normalized with
the number of words in a review to calculate hedge
scores. To calculate the hedge score, we use the
method proposed by Khandelwal A. et al. (Britto
and Khandelwal, 2020; Khandelwal and Sawant,
2019), and we use the XLNet (Yang et al., 2019)
version since it outperforms BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019).

Hedge Score =
Σ( hedge words )

Σ( words )
(4)

The score ranges from 0 to 1. If a reviewer is
uncertain the hedge score will be higher and vice
versa.
Based on the above discussion and using Equations
1, 2, 3 and 4, we derive an informativeness score
for a review, which is given below.

Informativeness score(Rinfo ) =
Rsec

eH ∗ e1−Rasp

(5)
Where Rinfo = Informativeness score, Rsec = Sec-
tion score, Rasp = Aspect score and H = Hedge
score.

3.1.5 Intuition about the informativeness
score:

We plot the graph between the informativeness
score (Rinfo ) and the other three parameters (
in the best and worst case). We consider this
observation in the informativeness score formula
accordingly.

Section Score (Rsec): From Figure 2, we can
see the reason to keep the section score in the nu-
merator.

• Informativeness score is directly proportional
to section score Rinfo ∝ Rsec and hence,
higher the Rsec, higher will be the Rinfo .

• The section score has the highest contribution
in determining the informativeness score; as
when section score = 0, irrespective of the
other two parameters, informativeness score
will always be = 0 (see Figure 2.)

Aspect Score (Rasp ): Figure 3 illustrates the re-
lation between informativeness score and aspect
score.

• From Figure 3, we can see that higher the as-
pect score, lower is the (1−Rasp), and hence
and value of e∧ (1−Rasp) is lower, higher
will be the informativeness score. Aspect
score has a lower contribution to the infor-
mativeness score, as even when aspect score
= 0, informativeness score still can be upto
0.3679, depending on the other two parame-
ters (section and hedge score).

• We intend that the informativeness score in-
creases exponentially with increasing aspect
score hence, Rinfo ∝ e∧Rasp . However, to
limit the max. Rinfo to 1 at Rasp = 1 (Best
condition when section score = 1, hedge score
= 0) and max. aspect score = 1, we divide
the informativeness score by a factor of e.
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(a) Best condition (when aspect score = 1 and hedge score = 0) (b) Worst condition (when aspect score = 0 and hedge score = 1)

Figure 2: Informativeness Score Vs. Section Score.

Therefore, Rinfo ∝ (e∧Rasp) /e, which im-
plies that Rinfo ∝ e∧ (Rasp − 1). Hence
Rinfo ∝ 1/e∧ (1− Rasp).

Hedge Score (H): Figure 4 illustrates the reason
to keep hedge score in the denominator, as a power
of e, such that Rinfo ∝ 1/e∧H.

• So, higher the hedge score, higher the e∧H,
and hence lower will be the informativeness
score.

• we can see from Figure 4 hedge score has
a lower contribution to the informativeness
score; as even when hedge score = 1, informa-
tiveness score can reach 0.3679, depending on
the other two parameters (section and aspect
score).

• We intend that the informativeness score de-
creases exponentially with increasing hedge
score, and at H = 0, Rinfo = 1. Hence,
Rinfo ∝ e∧(−H) which implies that Rinfo ∝
1/e∧H.

4 Benchmarking Experiments

In addition, we provide baselines for natural
language processing (NLP) on the experimental
dataset (both annotated and unannotated). More-
over, we train nine methods based on data, includ-
ing Multiple Linear Regressions (MLR), Robust
Regressions (RANSAC), Random Forest Regres-
sions (RF), Long Short-Term Memory (LSTM),
Extreme Learning Machines (ELM), Bidirectional
Long Short-Term Memory (BiLSTM), Masked and
Permuted Pre-training for Language Understanding
(MPNet) (Song et al., 2020), Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2018), as well as Transformer variants
of SciBERT (Beltagy et al., 2019).

4.1 Features for Peer Review Analyze
(annotated dataset)

We use a set of features that includes:

• Sentence and word count : We have used
the five features sentence count, word count,
average sentence length, average word length,
and vocab length. The informativeness score
is directly proportional to the length of review
sentence count and word count, as well as the
size of vocabulary vocab length. This gives us
a feature matrix of dimension 5.

• Hedge features: For review uncertainty, we
use the hedge feature hedgescore, which is the
average hedge words per sentence, where the
hedge words are determined by the method
proposed by Khandelwal A. et al. (Britto and
Khandelwal, 2020; Khandelwal and Sawant,
2019). This gives us a feature matrix of di-
mension 1.

• PoS features: PoS (Parts of Speech) includes
nouns, adjectives, verbs, and adverbs.

• Sentiment features: We use VADER (Va-
lence Aware Dictionary for Sentiment Rea-
soning) (Hutto and Gilbert, 2014) compound
sentiment score as the sentiment feature. It
ranges from -1 to 1 and gives a feature matrix
of dimension 1.

• Keyword count: We take the 50 most ap-
pearing terms from the papers with top 20%
informativeness score as keywords, hence ob-
taining a feature matrix of 50.

• Section and aspect coverage: We use the
number of sections covered (out of 14) and
the number of aspects covered (out of 9), by
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(a) Best condition (when section score = 1 and hedge score = 0)
(b) Worst condition (when section score = 0 and hedge score =
1)

Figure 3: Informativeness Score Vs. Aspect Score

(a) Best condition (when aspect score = 1 and aspect score = 1) (b) Worst condition (when aspect score = 0 and aspect score = 0)

Figure 4: Informativeness Score Vs. Hedge Score.

the review as features, with feature matrix
dimension 2.

• Section and aspect distribution: We take
the counts of the number of sentences in the
review that talks about each section/aspect as
features. This gives us a feature of dimension
23.

4.2 Features for unannotated dataset
We use a set of features, which includes sentence
and word counts, sentiment features, PoS (Part of
Speech), i.e., nouns, adjectives, verbs, and adverbs,
hedge features, and keyword counts. Kindly refer
to our GitHub repository for the definition and im-
plementation of our full feature set.
Thus, we use feature matrices of dimension 86
for annotated reviews and dimension 61 for unan-
notated review text (for both, we use Peer Re-
view Analyze dataset) to predict informativeness
scores. In addition, word embeddings of their spe-
cific dimensions to deep learning models with the
Bidirectional Long Short-Term Memory (BiLSTM)
pipeline, we use a standard implementation of ma-
chine learning models from sci-kit python library,
(Pedregosa et al., 2011) keeping the default param-
eters fixed for a fair comparison across variations

in models and embeddings.
Implementation Details: We use Keras on top of
TensorFlow-2.4.1 to build the model. Moreover, we
train the model with batch size 32, and Adam opti-
mizer with a weight_decay = {1e−3} to avoid over-
fitting, and kept each batch balanced while training.
We use fixed set {1e− 1, 1e− 2, 1e− 3, 3e− 3} to
tune the learning rate, and find {1e−3} works best
in our experimental setup. Please see our repository
link in the abstract for further information.

4.3 Experimental Setup

In terms of our experimental setup, we use more
than one evaluation metrics to avoid any confusion.
Because different metrics with the same data can
produce different values. It is always better to have
a combination of metrics-like MAE (Mean abso-
lute error), Root mean square error (RMSE) and
coefficient of determination (R2) to use together
and apply the same metric on a different model to
see which one produces the best performance.

5 Evaluation Results & Analysis

We report the evaluation results for annotated and
unannotated datasets in Table 2 and Table 3. We
kept 80% of the data for training and 20% for eval-
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Model Types MAE RMSE (R2)
MLR 0.0205 0.0305 0.9061

RANSAC 0.0201 0.0295 0.9167
RF 0.0181 0.1924 0.9297

LSTM 0.0178 0.0286 0.9331
ELM 0.0171 0.0267 0.9435

BiLSTM 0.0191 0.0219 0.9619
MPNet 0.0162 0.0184 0.9730
BERT 0.0197 0.0229 0.9583

SciBERT 0.0152 0.0171 0.9871

Table 2: Performance comparision for qualitative analy-
sis on annotated dataset in terms of MAE, RMSE and
R-squared (R2).

Model Types MAE RMSE (R2)
MLR 0.0596 0.0787 0.3212

RANSAC 0.0666 0.0864 0.3276
RF 0.0682 0.0894 0.3656

LSTM 0.0646 0.0935 0.3051
ELM 0.0636 0.0810 0.3787

BiLSTM 0.0659 0.0878 0.3875
MPNet 0.0657 0.0954 0.2767
BERT 0.0711 0.0931 0.3115

SciBERT 0.0621 0.0735 0.4155

Table 3: Performance comparison for qualitative analy-
sis on unannotated dataset in terms of MAE, RMSE and
R-squared (R2).

uation of the models. We experiment with nine
data-driven methods: Multiple Linear Regression
(MLR), Robust Regression (RANSAC), Random
Forest Regression (RF), Long Short-Term Memory
(LSTM), Extreme Learning Machines (ELM), Bidi-
rectional Long Short-Term Memory (BiLSTM),
Masked and Permuted Pre-training for Language
Understanding (MPNet), Bidirectional Long-Short
Term Memory (BiLSTM) on Bidirectional Encoder
Representations from Transformers (BERT), and
a Bidirectional Long-Short Term Memory (BiL-
STM) on Transformer variant of SciBERT, to test
the proposed proposition. As shown in Table 2
and Table 3, the deep neural model based on SciB-
ERT representations outperforms both annotated
and unannotated datasets.
Qualitative Analysis on Baseline Models: Table
4 shows informativeness score calculate by pro-
posed method and automatically generated infor-
mativeness score by nine different techniques on
a given Neural Information Processing Systems

(NeurIPS) reviews. For qualitative analysis, we
take our trained models and predict the score on
Neural Information Processing Systems (NeurIPS)
sample reviews dataset from the open-access plat-
form OpenReview platform7. Table 4 shows some
examples of them.

5.1 Case Study:
We analyzed the two ICLR reviews qualita-
tively to support our proposed method. In the
review https : //openreview.net/forum?id =
B1EA − M − 0Z. We can see that out of 14
sections, the review has covered 8 unique sections,
out of 9 aspects, it covers 4 unique aspects, and
this review also has a reviewer-centric uncertainty
calculated by hedge score. We can see from Figure
5 (a) the following observations.

• If the review has higher coverage in sections
and aspects, the higher will be the section and
aspect score. It leads to a higher informative-
ness score.

• If the reviewer-centric uncertainty (hedge
score) is high, then informativeness should
be low.

https : //openreview.net/forum?id =
ByuP8yZRb, we can see that out of 14 sections,
the review has covered only 6 unique sections, and
out of 9 aspects, it covers 3 unique aspects, and this
review has high reviewer-centric uncertainty calcu-
lated by hedge score. The following observations
can be seen in Figure 5 (b).

• This review has low coverage in terms of sec-
tions and aspects. Due to this, it has a low
informativeness score.

• This review has a high reviewer-centric uncer-
tainty in terms of hedge score, leading to a
low informativeness score.

In summary, from this case study shown in Figure
5, we can see the efficiency and suitability of the
proposed informativeness method.

6 Conclusion and future work

In this paper, we provide an effective solution to
automatically estimate the informativeness score

7https://openreview.net/
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Review Id (Informativeness score calculate by
proposed method)

Informativeness Score Predicted by Baseline Models
MLR RANSA RF LSTM BiLSTM ELM MPNet BERT SciBERT

URL: https://proceedings.neurips.cc/paper/2018/file/9246444d94f081e3549803b928260f56-Reviews.html
NIPS_2018_1006__R1 0.1596 0.1108 0.1176 0.1292 0.1316 0.1381 0.1328 0.1398 0.1347 0.1443
NIPS_2018_1006__R2 0.2713 0.1849 0.1989 0.1998 0.2189 0.2191 0.2212 0.2351 0.2479 0.2569
NIPS_2018_1006__R3 0.5053 0.3992 0.4087 0.4097 0.4162 0.4194 0.4276 0.4459 0.4639 0.4752

URL: https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Reviews.html
NIPS_2018_443__R1 0.2822 0.1818 0.1884 0.1931 0.2245 0.2279 0.2311 0.2434 0.2496 0.2765
NIPS_2018_443__R2 0.3249 0.2067 0.2107 0.2256 0.2383 0.2338 0.2430 0.2458 0.2961 0.3006
NIPS_2018_443__R3 0.3236 0.2022 0.2308 0.2355 0.2412 0.2443 0.2536 0.2563 0.3038 0.3151

Table 4: Qualitative analysis results for predicting the Informativeness score by baseline models.

(a) Informativeness score calculated by proposed method

(b) Informativeness score calculated by proposed method

Figure 5: Qualitative analysis on annotated ICLR Reviews.

of review on the shoulder of uncertainty and review
coverage (sections and aspects of the paper). For
the proposed method, we used a publicly available
Peer Review Analyze dataset of peer review texts,
manually annotated at the sentence level (13.22k
sentences) across two layers: Paper Section Cor-

respondence and Paper Aspect Category. Next,
we transform these categorical annotations to de-
rive an informativeness score of the review based
on the review’s coverage across section correspon-
dence, aspects of the paper, and reviewer-centric
uncertainty associated with the review toward the
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automatic judgment of review quality. We believe
that these interpretations can assist the editors in
making better editorial decisions.
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