
Proceedings of the 19th International Conference on Natural Language Processing (ICON), pages 290 - 299
December 15-18, 2022 ©2022 Association for Computational Linguistics

Spellchecker for Sanskrit: The Road Less Taken
Prasanna Venkatesh T S

Ph.D. Research Scholar
Department of Sanskrit
Ramakrishna Mission

Vivekananda College (Autonomous),
Chennai - 600004.

vipranarayan14@gmail.com

Abstract
A spellchecker is essential for any language
for producing error-free content. While
there exist advanced computational tools
for Sanskrit, such as word segmenter, mor-
phological analyser, sentential parser, and
machine translation, a fully functional
spellchecker is not available. This pa-
per presents a Sanskrit spellchecking dic-
tionary for Hunspell, thereby creating a
spellchecker that works across the numer-
ous platforms Hunspell supports. The
spellchecking rules are created based on the
Paninian grammar, and the dictionary de-
sign follows the word-and-paradigm model,
thus, making it easily extendible for future
improvements. The paper also presents an
online spellchecking interface for Sanskrit
developed mainly for the platforms where
Hunspell integration is not available yet.

1 Introduction
A spellchecker is a program that checks for mis-
spellings in a text and suggests correct alterna-
tives (Lawaye and Purkayastha, 2016). It is
an essential tool for word processing and doc-
ument preparation.
In the recent decade, digitization of San-

skrit manuscripts and using digital technolo-
gies for editing and publishing new content in
Sanskrit have seen a tremendous increase. On-
line Sanskrit communities and many individu-
als are actively using Sanskrit in writing blogs,
emails and chat messages, while some are de-
signing posters in Sanskrit. A spellchecker can
help them to communicate clearly and produce
error-free content.
After the digitization of a manuscript

through an OCR (optical character recogni-
tion), often there might be errors in the text
due to the visual similarity in certain letters
such as बव and यथ (Schnober et al., 2016).
These can be corrected using a spellchecker

manually or through a pipeline that performs
the OCR post-correction automatically. Also,
advanced tools like morphological analyser
(Kulkarni and Shukl, 2009; Huet, 2005) and
sentential parser (Kulkarni, 2019) might pro-
duce incorrect results or no results at all, if
the input contains spelling errors (Murthy
et al., 2012). In such cases, the input can
be pipelined through a spellchecker for pre-
checking and pre-processing.
A spellchecker can also sometimes help new

learners of Sanskrit in learning the correct
spellings of words, especially, of those having
phonetically similar letters such as शष in “शषे”,
एय े in “एक”, नण in “बाणने”, etc.
This paper presents a Sanskrit spellcheck-

ing dictionary for Hunspell based on the word-
and-paradigm model and describes its design
and implementation. It discusses the suitabil-
ity of Hunspell for a highly inflectional lan-
guage like Sanskrit (Section 3) and the format
of a Hunspell dictionary (Section 4). It also
describes the framing of spellchecking rules
based on Paninian grammar (Section 5). The
paper also presents a web interface for San-
skrit spellchecking (Section 6). Later, it dis-
cusses the evaluation of both the spellchecking
dictionary and the web interface (Section 7).
The paper also records the challenges unique
to Sanskrit in creating a spellchecking dictio-
nary (section 8).

2 Related Works and Previous
Attempts

While there exist advanced computational
tools for Sanskrit such as word segmenter
(Hellwig and Nehrdich, 2018), morphological
analyser (Kulkarni and Shukl, 2009), senten-
tial parser (Kulkarni, 2019), machine transla-
tion (Kulkarni, 2009), automatic speech recog-
nition (Adiga et al., 2021), etc., a fully func-

290



tional spellchecker is not available. Spellcheck-
ers and grammar checkers are fundamental
tools that users need and expect nowadays
with the increase in the use of digital technolo-
gies for both creating new content as well as
digitising existing texts.

Significant work has been done on
spellcheckers for other Indian languages
like Hindi (Kaur and Singh, 2015; Pathan
et al., 2019; Kanwar et al., 2017; Jain et al.,
2018), Marathi (Dixit et al., 2016), Odia
(Pradhan and Dalai, 2020), Punjabi (Lehal,
2007), Kashmiri (Lawaye and Purkayastha,
2016), Telugu (Uma Maheshwar Rao G. et al.,
2012), Tamil (Segar and Kengatharaiyer,
2015) and Kannada (Murthy et al., 2012,
2017).

Though there is not much research work
available on spellchecker for Sanskrit, there
were a few attempts in the past to develop
one. Tapaswi et al. (2012) proposed and devel-
oped a spellchecker based on the morphologi-
cal rules of Sanskrit. It was a standalone ap-
plication implemented in Java. Samsādhanī1
developed and hosted a spellchecker web appli-
cation where their morphological analyser runs
on the text provided by a user and highlights
incorrect words. The application, however, is
no longer maintained2. Patel (2016) built a
Sanskrit spellchecker that works based on dif-
ferent vowel and consonant patterns. But it
was specific to the Cologne Sanskrit dictionar-
ies, and not for general spellchecking (Patel,
2021). Gasuns (2013) and Kumar (2017) in-
dependently created Sanskrit dictionaries for
Hunspell. But, as of now, both the dictionar-
ies are not complete and are not maintained.
Quintanilha and Líbera (2018) developed a
dictionary add-on for Mozilla Firefox which
contains a Sanskrit Hunspell dictionary. How-
ever, it is also far from complete.

Other than these, to the best of our knowl-
edge, there has been no significant progress
in the development of a Sanskrit spellcheck-
ing dictionary for Hunspell or any other
spellchecker for Sanskrit.

1https://scl.samsaadhanii.in/scl/
2Dr. Amba Kulkarni, personal communication.

3 Why Hunspell?

Hunspell is a free open-source spellchecker
and morphological analyser library and also
a command-line tool3. It is the most pop-
ular spellchecker that is used in many ap-
plications like LibreOffice4, Mozilla Firefox5,
Google Chrome6 and Adobe InDesign7 and
has bindings in numerous popular program-
ming languages (Németh, 2019). In Linux
and macOS, after installing the dictionaries
the users can enjoy system-wide spellcheck-
ing. Such tight integration helps correct mis-
spellings even as the user is writing instead
of having them copy and paste the text into
an external program just for spellchecking.
Therefore, designing a dictionary for Hunspell
means we can have Sanskrit spellchecking on
almost all the platforms.
Sanskrit is a highly inflectional language

and highly productive in derivative morphol-
ogy such as Samāsa, Kṛdanta and Taddhita
(Adiga et al., 2018). A simple list of all the cor-
rect forms would be extremely huge in terms of
computer storage. Hunspell format allows us
to define the base forms and affixes separately
which hugely reduces the dictionary size. This
division also makes it easier to add new words
to the dictionary.

4 Format of Hunspell Dictionary
Files

Before going into the design and preparation
of the Hunspell dictionary, the format of the
dictionary files is briefly discussed here. Hun-
spell requires two files to define how it should
spellcheck for a language and suggest correct
alternatives8 – a dictionary file and an af-
fix file. The first line of the dictionary file
contains the (approximate) count of the num-
ber of entries in the file (Németh, 2018). From

3https://github.com/hunspell/hunspell/
4https://extensions.libreoffice.org/?q=

dictionary
5https://addons.mozilla.org/en-US/firefox/

language-tools/
6https://chromium.googlesource.com/chromium/

deps/hunspell_dictionaries/
7https://helpx.adobe.com/indesign/kb/add_cs_

dictionaries.html
8The dictionary and affix file format is discussed

here only briefly to understand the design of the cur-
rent dictionary. For more information refer (Németh,
2018) and (Shepelev, 2021).

291

https://scl.samsaadhanii.in/scl/
https://github.com/hunspell/hunspell/
https://extensions.libreoffice.org/?q=dictionary
https://extensions.libreoffice.org/?q=dictionary
https://addons.mozilla.org/en-US/firefox/language-tools/
https://addons.mozilla.org/en-US/firefox/language-tools/
https://chromium.googlesource.com/chromium/deps/hunspell_dictionaries/
https://chromium.googlesource.com/chromium/deps/hunspell_dictionaries/
https://helpx.adobe.com/indesign/kb/add_cs_dictionaries.html
https://helpx.adobe.com/indesign/kb/add_cs_dictionaries.html


sa_IN.dic
37058
...
आिशस/्1001
अिचस/्1001
भिुवस/्1001
...

sa_IN.aff
SFX 1001 Y 17
SFX 1001 ि◌स ् ◌ीः .
SFX 1001 स ् षौ .
SFX 1001 स ् षः .
SFX 1001 स ् षम ् .
...

Table 1: Samples from the final dictionary
(sa_IN.dic) and affix (sa_IN.aff) files.

the second line onwards, we have the entries,
one per line. An entry can be a morpheme or
lexeme or can even be a pair of words, and it
can be optionally followed by a forward slash
(“/”) and one or more “flags” which represent
its attributes such as suffix, prefix, etc. Ta-
ble 1 (sa_IN.dic) is a sample from the final
dictionary file showing the entries’ count, some
entries and their flags.
The definitions of these flags are given in

the affix file. Table 1 (sa_IN.aff) is a sam-
ple from the affix file showing the affix class
corresponding to the flag “1001”, used in the
dictionary. An affix class definition consists
of a header (the first line) followed by a num-
ber of affix rules, each separated by a new
line. The affix header consists of four fields
describing:

• Whether the class is for a suffix or prefix.

• The paradigm type of the affix.

• Whether the words of this class can take
both suffix and prefix or only one of them.

• The number of rules in this class.

Here, `SFX 1001 Y 17` states that this is a
suffix class with paradigm type “1001” which
has 17 rules, and these rules can be used even
if the entry has prefixes.
The fields in the affix rules give the informa-

tion on the characters to strip from the word,
the affix to add to the word and the condi-
tion. For example, the first affix rule in Ta-
ble 1 says, in the words with this flag (“1001”),
strip ि◌स ् from the end and add the suffix
◌ीः to form a valid word. The condition
field is a regex-like expression that is checked
from the end of a word for a suffix rule
and from the start for a prefix rule (Németh,

2018). If there is nothing to be stripped
from the word, the stripping is written as “0”
(i.e. SFX <flag> 0 <suffix> <condition>).
And if no suffix is to be added to
the word, it is represented with “0” (i.e.
SFX <flag> <stripping> 0 <condition>).
In the dictionary file, the affix flag “1001”

is assigned to the word “आिशस”् (Table 1). So,
the first affix rule strips ि◌स ् from the end of
“आिशस”् to form “आश” (note that it does not
have a virama). Then, the rule adds ◌ीः to the
end of “आश” to form “आशीः” which is the nom-
inative singular form of “आिशस”् and therefore,
a valid word.
The affix file is not only for defining affix

rules. It is also used for containing a lot of op-
tions that help improve Hunspell’s spellcheck-
ing process for the language which would be
discussed later (Sections 5.2 and 5.3). In the
following section, we describe the preparation
of the dictionary and affix files.

5 Design and Preparation of the
Dictionary

For designing the dictionary, we follow the
word and paradigm model, which is compu-
tationally easy to work with. We prepare the
dictionary entries and affix rules for nouns and
verbs using two different methods, as we would
describe in the next section (Section 5.1). Sec-
tions 5.2 and 5.3 discuss the use of some of
Hunspell’s options for improving the sugges-
tions and handling optional characters.

5.1 Preparation of Words and Affix
Rules

5.1.1 Nouns
Sanskrit has only two morphological classes at
the inflectional level viz. noun and verb. In
almost all the nouns, only the last few letters
of the nominal base change when it combines
with a nominal suffix. For example, the base,
नदी, when it combines with the nominative
dual suffix औ its final vowel ई is replaced by य ्
and becomes नयौ. Similarly, when भगवत ्com-
bines with instrumental dual suffix याम ्, the
final त ् is replaced by द ् and becomes भगवाम ्.
For such forms, the affix rules are written with
the letters needed to be removed from the
base, in the stripping field, and the suffix to
be added, in the suffix field (Table 2). But

292



Form Stripping Suffix Affix Rule
नदी ◌ी ◌ौ SFX 1 ◌ी यौ .

भगवाम ् त ् ाम ् SFX 2 त ्ाम ्.
रामय 0 य SFX 3 0 य .
हिरः 0 ◌ः SFX 4 0 ◌ः .

सीतायाः 0 याः SFX 5 0 याः .

Table 2: Affix rules for different subanta forms

in some cases, the base remains unchanged in
its declined form, such as रामय, हिरः, गरुुयाम ्,
सीतायाः, भगवतस्,ु etc. For such forms, the af-
fix rules are written with “0” in the strip-
ping field (Table 2).
The affix rules cannot be framed for some

of the noun forms that completely differ from
their bases (irregular forms). For example, दुह ्
becomes धकु ् in nominative singular9 and अमद ्
becomes मम in genitive singular. These be-
ing exceptional cases, the corresponding forms
are directly added to the dictionary. Similarly,
the indeclinables, which do not have any suf-
fixes, are also directly added to the dictionary
without any affix flags.

5.1.2 Verbs
The verb morphology is much more complex
than the noun morphology. The verbs in cer-
tain tenses or moods have both prefix as well
as suffix. Further, in a certain tense (liṭ lakāra)
there is a reduplication of the verbal stem.
We do not discuss the morphological details
at length here due to the constraints in the
page size. However, the general morphological
structure of the finite verb forms is:

UPASARGA (prefix) + A/Ā10

(prefix) + DHĀTU (root) +
VIKARAṆA (tense marker) +
TIṄ (verbal suffix)

We have here two prefixes and two suffixes.
But Hunspell supports11 only one prefix and
two suffixes for a word (Németh, 2018). Hence,

9दादधेा र्तोघ र्ः Aṣṭādhyāyi 8/2/32 and एकाचो बशो भष ्
झषतय स्वोः Aṣṭādhyāyi 8/2/37.

10Only in some tenses/moods (laṅ, luṅ and lṛṅ
lakāras).

11Hunspell also supports two prefixes and one suffix
when the COMPLEXPREFIXES option is set. But it
is mainly used by languages with a right-to-left writing
system.

we merge A/Ā-prefix with the UPASARGA-
prefix to form a single prefix. Also, we merge
the root with the tense marker to form the
stem thereby reducing the suffix to one.
Due to this limitation of the Hunspell to use

at the most a single prefix and at the most a
single suffix, we have to transfer the load of
base formation under different environments
to the dictionary, thereby resulting in more
than one stem corresponding to each verb. For
example, the root, पध ्र् has two entries in the
dictionary corresponding to it – पधर् and पपध र्.
With regard to the affix rules for the finite verb
forms, they are almost same for a given tense
or mood.

5.2 Improving Suggestions

For Hunspell to accurately suggest correct al-
ternatives for an incorrect word, it needs a list
of characters used in the script and a list of
common misspellings. We provide these lists
using the `TRY` and `REP` options, respec-
tively, in the affix file.

5.2.1 Try Characters
Using the `TRY` characters, Hunspell can sug-
gest the correct words when the misspelled
words differ from them by a single charac-
ter (Németh, 2018). Hunspell adds, deletes,
or replaces one of these characters to suggest
the closest valid dictionary word for the mis-
spelled word (Shepelev, 2021).

`TRY` characters are more effective if they
are in the order of their frequency in the litera-
ture (Németh, 2018; Shepelev, 2021). For this,
we use the Amarakośa of Amarasiṃha which
contains the frequently used words in classi-
cal Sanskrit and calculate the frequency of the
characters12. We, then, add the characters to
the `TRY` option in the descending order of
their frequency as shown below:

TRY ◌् ◌ा र त ि◌ क स न व य म प ◌ु ◌ः द ◌ो
◌े ल ◌ं ◌ी श ष ग च ण ध ह ज भ ◌ौ ◌ृ ◌ू थ ऽ
ब ट ङ ड ◌ै अ ख ञ घ ठ छआ उ फ इ ऋ ढ ए झ
ऊ ओ ई ऐ औ13

12The algorithm and the results are avail-
able at: https://github.com/vipranarayan14/
sanskrit-char-frequency

13Space-separated for readability

293

https://github.com/vipranarayan14/sanskrit-char-frequency
https://github.com/vipranarayan14/sanskrit-char-frequency


5.2.2 Replacement Definitions
Replacement definitions are provided for han-
dling typical spelling mistakes (Németh, 2018).
Based on these replacement definitions, Hun-
spell makes some replacements in the mis-
spelled word to find the valid forms from the
dictionary and suggests the same. Let us see
an example. Consider the word “रामह”. It is
not a morphologically valid word. We know
that the closest valid alternative is “रामः”. But,
using only the `TRY` characters, Hunspell will
suggest many correct alternatives of which
“रामः” is not even among the first three (Fig-
ure 1). This is where the `REP` (replacement)
definitions become very helpful.

Figure 1: Correct suggestion in the 5th position.

Figure 2: Correct suggestion in the 1st position.

When the replacement definitions shown in
the Table 3 are added to the affix file we
can see in Figure 2 that “रामः” becomes the
first suggestion for the misspelled word “रामह”.
This is also because Hunspell gives `REP` sug-
gestions the highest priority in the suggestion
list (Németh, 2018; Shepelev, 2021).
First line in the replacement table (Table 3)

is the header. It tells that there are 125
`REP` (replacement) definitions in the table.
The rest of the table consists of the replace-
ment definitions. We use the replacement def-
initions for suggesting closer valid alternatives

REP 125
REP ह ◌ः
REP म ◌्ं
REP ऒओ
REP ि◌ ◌ी
REP अआ
REP आअ
REP क ख
REP श ष
...

REP व ब
REP ब व
REP य थ
REP थ य
REP ध घ
REP घ ध
...

Table 3: Some of the replacement definitions used
in the dictionary.

for words that are misspelled due to phonetic
similarity or visual similarity.
The reasons for adding replacement defini-

tions for phonetically similar characters are:

• Beginners in Sanskrit would not be famil-
iar with the spellings, especially, of words
that have some of the phonetically similar
characters, such as शष in शषे, कख in कर,
नण in बाणने. Sanskrit has a lot of such
words.

• People who are not trained with the IN-
SCRIPT keyboard layout would tend to
use the phonetic keyboard layouts for
writing Sanskrit. So, their typing errors,
for the most part, would also be phonetic.

• Phonetic typing errors also occur if
the writer is not familiar with the in-
put schemes such as ITRANS, Velthuis,
Harvard-Kyoto, etc. since these popu-
lar schemes are themselves based on the
Sanskrit phonemes. In Figure 2, the
user, intending to write “रामः” using an
ITRANS phonetic keyboard layout, has
typed “raamaha” which resulted in “रामह”
(since the key for visarga in ITRANS
scheme is “H”; not “ha”). Now, the
spellchecker using the replacement defini-
tions, correctly suggests the right alterna-
tive “रामः”.

The reasons for adding replacement defini-
tions for visually similar characters are:

• They can help in correcting spelling er-
rors found in post-OCR documents. For
example, an OCR incorrectly recognises

294



the word “िमया” as “िमया” due to the vi-
sual similarity between “थ” and “य”. The
spellchecker using the replacement defini-
tions can help the user to correct it to
“िमया”.

• Users using Devanagari keyboards such as
the INSCRIPT keyboard make spelling er-
rors more due to the visual similarity of
characters than their phonetic similarity.

5.3 Handling Optional Characters
There are many other options in Hunspell
for improving the overall working of the
spellchecker. One such option is `IGNORE`
which can be used to make Hunspell ignore
certain characters when spellchecking. Using
this option, we ignore the character “ऽ” (ava-
graha) for allowing words such as “काऽिप” and
“इतोऽिप” to be written without it as “कािप” and
“इतोिप”. Because both forms are considered cor-
rect and both are in vogue.
In this section, we described the preparation

of the spellchecking dictionary. The following
section briefly describes the development of a
web interface for Sanskrit spellchecking.

6 Web Interface

A web interface14 is developed using the
spellchecking dictionary and Hunspell, mainly,
for supporting platforms such as Android and
iPhone where Hunspell integration is currently
not available. However, it can be used in desk-
top browsers also. Sanskrit text in Devana-
gari script can be typed in or pasted into the
editor. The editor marks the incorrect words
with a red underline. If an underlined word
is clicked, a pop-up window opens next to the
word showing a list of correct suggestions (Fig-
ure 3). When a suggestion is clicked, the incor-
rect word is replaced with the suggested word
and the pop-up closes.

7 Evaluation

After the Hunspell dictionary was prepared,
all the forms of the word paradigms were
tested against it with the help of Nodehun15,
a Node.js binding for the Hunspell library,

14It can be accessed at: https://
sanskrit-spellchecker.netlify.app

15https://www.npmjs.com/package/nodehun

and Mocha16, an automated JavaScript test-
ing framework. In the test, all the forms were
recognised as correct spellings.
To evaluate the spellchecking dictionary, a

test corpus was prepared from three random
OCR-ed pages of Śrīmad Vālmīki Rāmāyaṇa
from the Sanskrit Wikipedia17. The sandhis
and samāsas in the corpus were manually split
since the dictionary does not support such
words. The corpus consisted of 751 unique
words.

The dictionary was added to Hunspell and,
using a script written in Python, each word
in the corpus was tested with the Hun-
spell spellchecking interface. The Hunspell
dictionaries prepared by Kumar (2017) and
Líbera (2018) were also tested in a similar
manner for comparison. The results were then
manually analysed.

Dictionary Words AC AI RC RI
A 751 720 31 501 250
B 751 720 31 27 724
C 751 720 31 5 746

Table 4: Comparison of results of dictionaries A,
B and C. AC = Actual correct words, AI = Actual
incorrect words, RC = Words recognised by the
dictionary as correct, and RI = Words recognised
by the dictionary as incorrect.

Table 4, shows the comparison of results
of the three dictionaries, viz. dictionary (A)
proposed in this paper, (B) the one prepared
by Kumar and (C) which was developed by
Líbera. (A) performed very well compared to
(B) and (C). The main reason for the poor
performance of (B) and (C) was their limited
vocabulary. (B) has only 3228 words in the dic-
tionary file while (C) has only 838 Devanagari
words. Though (B) uses affix rules, not many
forms are supported by them. These affix rules
were generated by the affixcompress tool18

provided by Hunspell and are not grammar-
based19.
In the case of (A), all the words declared as

correct were also actually correct implying a
16https://mochajs.org/
17https://sa.wikisource.org/s/2idh
18The tool is used for creating a spellchecking dic-

tionary for Hunspell out of a list of words – https:
//github.com/hunspell/hunspell/.

19https://github.com/Shreeshrii/
hindi-hunspell/issues/1#issuecomment-282244359

295

https://sanskrit-spellchecker.netlify.app
https://sanskrit-spellchecker.netlify.app
https://www.npmjs.com/package/nodehun
https://mochajs.org/
https://sa.wikisource.org/s/2idh
https://github.com/hunspell/hunspell/
https://github.com/hunspell/hunspell/
https://github.com/Shreeshrii/hindi-hunspell/issues/1#issuecomment-282244359
https://github.com/Shreeshrii/hindi-hunspell/issues/1#issuecomment-282244359


Figure 3: A screenshot of the web interface. All
the words marked with * are incorrect. The editor
correctly marks them with a red underline. For the
incorrect word “सीतायः”, the correct form “सीतायाः”
is suggested.

100% precision. A few real-word errors were
observed but they were not considered for this
evaluation as Hunspell cannot handle such er-
rors. Of the words reported as incorrect, a
large percentage were wrongly considered in-
correct (false negatives). The reasons were
mainly traced to incomplete vocabulary and
incorrect split of sandhi and samāsa. Since
the dictionary is still in development false neg-
atives due to out-of-vocabulary words are ex-
pected. Moreover, for better evaluation and
for increasing the accuracy of suggestions, we
are in the process of creating a larger test cor-
pus.
The web interface was also manually tested

using random words and sentences. The edi-
tor correctly marked the misspellings and also
suggested correct and proper alternatives for
them (Figure 3).

8 Observations

Some of the observations noted while prepar-
ing and evaluating the spellchecking dictionary
are discussed here.

• Use of Devanagari: Though Unicode
Devanagari is neither fully alphabetic nor
syllabic in nature, but a combination of
the two, and Pāṇini’s word formation and
euphonic rules operate at the alphabetic
level, we decided to write the rules for
Devanagari rather than other more suit-
able transliteration schemes such as WX
or SLP1, that provide a one-to-one map-
ping between the Sanskrit phonemes and

its romanised representation. The reason
for this is, by doing so, we can avoid an
intermediary step of converting the input
into roman transliteration and then, con-
verting the suggestions back into Devana-
gari which would require close interaction
with the Hunspell APIs. But this would
also mean, developing an altogether fresh
set of rules if somebody uses IAST for San-
skrit.

• Word-and-paradigm model: The
paradigm-based approach is advanta-
geous for the preparation of the Hun-
spell dictionary for Sanskrit as it reduces
the number of dictionary entries. Even
though Sanskrit is a highly inflectional
language, Pāṇini’s grammar helps to re-
duce the forms of most of its words to
a few hundred paradigms. We need to
make affix rules only for these few hun-
dred paradigms. For all other words hav-
ing similar forms we just have to add the
affix flag associated with the paradigm.
This reduces the dictionary’s size and at
the same time, makes it easy to maintain.
This approach also simplifies the process
of adding new words. For example, if a
new word, “कामदवे” is to be added, we add
it to the dictionary file along with the flag
associated with its paradigm, “दवे”. This
way, we are able to add support for not
only कामदवे but also all its declined forms
without much effort.

• Handling compounds: The
spellchecker’s performance drops when
there are compounds in the text. Though
there are options for writing compound
rules in Hunspell, it would not be possi-
ble to support all the compounds since
Sanskrit is highly productive in terms
of compound generation. Therefore, it
is better to pipeline the user input into
an existing sandhi-samāsa splitter like
that of Hellwig’s (2018) or Huet’s (2005)
before spellchecking it. This would again
require close integration with the Hun-
spell APIs. Further, there are some words
which cannot be handled even if the text
is preprocessed with a sandhi-samāsa
splitter. For example, the ending of

296



some words changes in their compounded
forms – राजा becomes राज in महाराज and
आमा becomes आम in आमदुचिरतः. These
forms are valid only within the compound
and not otherwise. To overcome this
problem, such compounded words have
to be directly added to the dictionary.

• Spelling variations: Words with
anusvāra (◌ं) such as सभंमः and असबंाधम ्
optionally undergo homo-organic nasalisa-
tion and become समः and असबाधम ्, re-
spectively. Both the forms are frequently
used alternatively in the literature. So
both forms had to be added to the dic-
tionary. Also, the letter म ्at the end of
word is replaced by anusvāra if it is fol-
lowed by a consonant20. So, for suffixes
ending with म ्, extra affix rules had to be
created with anusvāra in the place of म ्.

• Context-dependent spelling errors:
Some of the spelling variations are
context-dependent. For example, as men-
tioned above, the anusvāra at the end the
word is valid only if the next word starts
with a consonant. Similarly, verb forms
which have the a/ā-prefix in the condi-
tional mood, will drop it when they are
preceded by the word मा21. For example,
मा भषैीः and मा भवान क्ाषीत i्nstead of माअभषैीः
and मा भवान ्अकाषीत ्, respectively. Such
cases cannot be handled by the Hunspell
since it only looks at one word at a time.
Further, as is true with any spellchecker,
it is impossible to detect wrong words
in a given context that are correct oth-
erwise (Deorowicz and Ciura, 2005). For
example, use of ताम ्instead of वाम ्, where
both the words are correct spelling-wise.

9 Conclusions and Future Work
The paper proposed and described the design
and preparation of a Hunspell dictionary for
Sanskrit. It also discussed the advantages of
the paradigm-based approach which was fol-
lowed for the generation of the dictionary. The
proposed dictionary is grammar-based unlike
that of Kumar (2017) and is general-purpose,

20मोऽनुवारः Aṣṭādhyāyi 8/3/23
21न मायोग े Aṣṭādhyāyī 6/4/74 and मोतरे लङ् च Aṣṭād-

hyāyī 3/3/176

that is, it can be used for correcting both typ-
ing errors and OCR errors. The paper also
presented an online spellchecking interface for
Sanskrit.
The current limitations of the dictionary

and future improvements to be made are dis-
cussed below.

• The spellchecking dictionary is a work in
progress. Currently, it supports nouns, in-
declinables, pronouns and numbers (car-
dinals and ordinals). It also supports ac-
tive and middle verb forms. Complex
verb forms (sannantas), non-finite verb
forms (kṛdantas), participles, etc. and
secondary nominal derivatives (taddhitas)
are yet to be supported.

• Hunspell’s `KEY` option improves sugges-
tions for words misspelled due to the prox-
imity of letters on the keyboard. This can
be utilized for INSCRIPT and phonetic
keyboard layouts.

• Sanskrit is also written in many roman
transliteration schemes such as IAST,
ITRANS, etc. The current spellcheck-
ing dictionary works only for Devanagari.
Special spellchecking dictionaries have to
be made at least for the popular translit-
eration schemes of Sanskrit.

• Extensions/add-ons for more plat-
forms/softwares/operating systems have
to be developed so that users can enjoy
the benefits of the dictionary in their
favourite writing tools and environments.

Acknowledgements

I thank Dr. S. Muthu for his valuable sup-
port and encouragement. I thank Dr. Amba
Kulkarni for all the resources and guidance.
If not for Victor Shepelev’s detailed blogs on
Hunspell library (Shepelev, 2021), I could not
have understood its format and inner workings.
His detailed descriptions and clear-cut exam-
ples for the Hunspell format made it easy for
me to develop the dictionary. Finally, I would
like to thank the reviewers for their valuable
feedback and suggestions.

297



References
Devaraja Adiga, Rishabh Kumar, Amrith Kr-

ishna, Preethi Jyothi, Ganesh Ramakrishnan,
and Pawan Goyal. 2021. Automatic Speech
Recognition in Sanskrit: A New Speech Corpus
and Modelling Insights. In Findings of the As-
sociation for Computational Linguistics: ACL-
IJCNLP 2021, pages 5039–5050, Online. Associ-
ation for Computational Linguistics.

Devaraja Adiga, Rohit Saluja, Vaibhav Agrawal,
Ganesh Ramakrishnan, Parag Chaudhuri,
K. Ramasubramanian, and Malhar Kulkarni.
2018. Improving the learnability of classifiers
for Sanskrit OCR corrections. In Computa-
tional Sanskrit & Digital Humanities: Selected
Papers Presented at the 17th World Sanskrit
Conference, Vancouver, Canada.

Akshar Bharati, Vineet Chaitanya, and Rajeev
Sangal. 2002. Natural Language Processing: A
Paninian Perspective.

Sebastian Deorowicz and Marcin Ciura. 2005. Cor-
recting spelling errors by modelling their causes.
Int. J. Appl. Math. Comput. Sci, 15:275–285.

Veena Dixit, Satish Dethe, and Rushikesh K
Joshi. 2016. Design and Implementation of a
Morphology-based Spellchecker for Marathi, an
Indian Language. International Journal of Sci-
ence Technology and Engineering, 3(2):92–96.

Marcis Gasuns. 2013. Sanskrit-Hunspell. http:
//samskrtam.ru/sanskrit-hunspell/.

Oliver Hellwig and Sebastian Nehrdich. 2018. San-
skrit Word Segmentation Using Character-level
Recurrent and Convolutional Neural Networks.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2754–2763, Brussels, Belgium. Association
for Computational Linguistics.

Gérard Huet. 2005. A functional toolkit for mor-
phological and phonological processing, applica-
tion to a Sanskrit tagger. Journal of Functional
Programming, 15(4):573–614. Publisher: Cam-
bridge University Press.

Amita Jain, Minni Jain, Goonjan Jain, and De-
vendra K. Tayal. 2018. ”UTTAM” An Efficient
Spelling Correction System for Hindi Language
Based on Supervised Learning. ACM Transac-
tions on Asian and Low-Resource Language In-
formation Processing, 18(1):8:1–8:26.

Shailza Kanwar, Manoj Sachan, and Gurpreet
Singh. 2017. N-Grams Solution for Error Detec-
tion and Correction in Hindi Language. Inter-
national Journal of Advanced Research in Com-
puter Science, 8(7):667–670.

Baljeet Kaur and Harsharndeep Singh. 2015. De-
sign and Implementation of HINSPELL -Hindi

Spell Checker using Hybrid approach. Interna-
tional Journal of Scientific Research and Man-
agement, 3(2). Number: 2.

Amba Kulkarni. 2009. Anusaaraka: An approach
for MT taking insights from the Indian Gram-
matical Tradition. PhD, University of Hyder-
abad, Hyderabad.

Amba Kulkarni. 2019. Sanskrit Parsing: Based on
the Theories of Shabdabodha. D.K. Print World
Ltd, Shimla : New Delhi.

Amba Kulkarni and Devanand Shukl. 2009. San-
skrit Morphological analyzer: Some Issues. Bh.
K Festschrift volume by LSI.

Shreedevi Kumar. 2017. Sanskrit Hun-
spell. https://github.com/Shreeshrii/
hindi-hunspell/tree/master/Sanskrit.
Original-date: 2014-12-03.

Aadil Lawaye and Bipul Syam Purkayastha. 2016.
Design and Implementation of Spell Checker for
Kashmiri. International Journal of Scientific
Research, 5:199–200.

Gurpreet Singh Lehal. 2007. Design and Implemen-
tation of Punjabi Spell Checker. International
Journal of Systemics, Cybernetics and Informat-
ics.

S Rajashekara Murthy, A. N. Akshatha, Chan-
dana G Upadhyaya, and P. Ramakanth Kumar.
2017. Kannada spell checker with sandhi split-
ter. In 2017 International Conference on Ad-
vances in Computing, Communications and In-
formatics (ICACCI), pages 950–956.

S Rajashekara Murthy, Vadiraj Madi, Sachin D,
and Ramakanth Kumar P. 2012. A Non-Word
Kannada Spell Checker Using Morphological
Analyzer and Dictionary Lookup Method. In-
ternational Journal of Engineering Sciences &
Emerging Technologies, 2(2):43–52.

László Németh. 2018. Hunspell − Format
of Hunspell dictionaries and affix files.
https://github.com/hunspell/hunspell/
releases/download/v1.7.0/hunspell5.pdf.

László Németh. 2019. Hunspell: About. http:
//hunspell.github.io/.

Dhaval Patel. 2016. SanskritSpellCheck.
https://github.com/drdhaval2785/
SanskritSpellCheck. Original-date: 2014-
10-04.

Dhaval Patel. 2021. Hunspell for Sanskrit?
- Issue #91 - sanskrit-lexicon/COLOGNE.
https://github.com/sanskrit-lexicon/
COLOGNE/issues/91.

298

https://doi.org/10.18653/v1/2021.findings-acl.447
https://doi.org/10.18653/v1/2021.findings-acl.447
https://doi.org/10.18653/v1/2021.findings-acl.447
http://samskrtam.ru/sanskrit-hunspell/
http://samskrtam.ru/sanskrit-hunspell/
http://samskrtam.ru/sanskrit-hunspell/
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.1017/S0956796804005416
https://doi.org/10.1017/S0956796804005416
https://doi.org/10.1017/S0956796804005416
https://doi.org/10.1145/3264620
https://doi.org/10.1145/3264620
https://doi.org/10.1145/3264620
https://doi.org/10.26483/ijarcs.v8i7.4364
https://doi.org/10.26483/ijarcs.v8i7.4364
https://doi.org/10.18535/ijsrm
https://doi.org/10.18535/ijsrm
https://doi.org/10.18535/ijsrm
https://www.academia.edu/831976/Sanskrit_Morphological_analyzer_Some_Issues
https://www.academia.edu/831976/Sanskrit_Morphological_analyzer_Some_Issues
https://github.com/Shreeshrii/hindi-hunspell/tree/master/Sanskrit
https://github.com/Shreeshrii/hindi-hunspell/tree/master/Sanskrit
https://github.com/Shreeshrii/hindi-hunspell/tree/master/Sanskrit
https://github.com/Shreeshrii/hindi-hunspell/tree/master/Sanskrit
https://www.researchgate.net/publication/321906322_Design_and_Implementation_of_Spell_Checker_for_Kashmiri
https://www.researchgate.net/publication/321906322_Design_and_Implementation_of_Spell_Checker_for_Kashmiri
https://www.academia.edu/12481872/Design_and_Implementation_of_Punjabi_Spell_Checker
https://www.academia.edu/12481872/Design_and_Implementation_of_Punjabi_Spell_Checker
https://doi.org/10.1109/ICACCI.2017.8125964
https://doi.org/10.1109/ICACCI.2017.8125964
https://www.semanticscholar.org/paper/A-NON-WORD-KANNADA-SPELL-CHECKER-USING-ANALYZER-AND-RajashekaraMurthy-Madi/16e466ae1440758cac21ebb8ffb923d45c774560
https://www.semanticscholar.org/paper/A-NON-WORD-KANNADA-SPELL-CHECKER-USING-ANALYZER-AND-RajashekaraMurthy-Madi/16e466ae1440758cac21ebb8ffb923d45c774560
https://www.semanticscholar.org/paper/A-NON-WORD-KANNADA-SPELL-CHECKER-USING-ANALYZER-AND-RajashekaraMurthy-Madi/16e466ae1440758cac21ebb8ffb923d45c774560
https://github.com/hunspell/hunspell/releases/download/v1.7.0/hunspell5.pdf
https://github.com/hunspell/hunspell/releases/download/v1.7.0/hunspell5.pdf
https://github.com/hunspell/hunspell/releases/download/v1.7.0/hunspell5.pdf
https://github.com/hunspell/hunspell/releases/download/v1.7.0/hunspell5.pdf
http://hunspell.github.io/
http://hunspell.github.io/
http://hunspell.github.io/
https://github.com/drdhaval2785/SanskritSpellCheck
https://github.com/drdhaval2785/SanskritSpellCheck
https://github.com/drdhaval2785/SanskritSpellCheck
https://github.com/sanskrit-lexicon/COLOGNE/issues/91
https://github.com/sanskrit-lexicon/COLOGNE/issues/91
https://github.com/sanskrit-lexicon/COLOGNE/issues/91
https://github.com/sanskrit-lexicon/COLOGNE/issues/91


Shabana Pathan, Nikhil Khuje, and Punam Kolhe.
2019. A Survey on Creation of Hindi-Spell
Checker to Improve the Processing of OCR. In-
ternational Journal of Research in Engineering,
Science and Management, 2(3):517–519.

Amrutanshu Pradhan and Sasanka Sekhar Dalai.
2020. Design of Odia Spell Checker with word
Prediction. International Journal of Engineer-
ing Research & Technology, 8(1). Publisher:
IJERT-International Journal of Engineering Re-
search & Technology.

Adriana Quintanilha and Vinícius Della
Líbera. 2018. Sanskrit Spell Checker.
https://addons.mozilla.org/en-US/
firefox/addon/sanskrit-spell-checker/.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh,
and Iryna Gurevych. 2016. Still not there? Com-
paring Traditional Sequence-to-Sequence Mod-
els to Encoder-Decoder Neural Networks on
Monotone String Translation Tasks. In Proceed-
ings of COLING 2016, the 26th International
Conference on Computational Linguistics: Tech-
nical Papers, pages 1703–1714, Osaka, Japan.
The COLING 2016 Organizing Committee.

Jananie Segar and Sarveswaran Kengatharaiyer.
2015. Contextual spell checking for Tamil Lan-
guage. In 14th Tamil Internet Conference, Sin-
gapore.

Victor Shepelev. 2021. Rebuilding the
spellchecker: Hunspell and the order
of edits. https://zverok.space/blog/
2021-01-28-spellchecker-5.html.

Namrata Tapaswi, Dr Suresh Jain, and
Mrs Vaishali Chourey. 2012. Morphological-
based Spellchecker for Sanskrit Sentences.
International Journal of Scientific & Technol-
ogy Research, 1(3):1–4.

Uma Maheshwar Rao G., Amba P. Kulkarni,
Christopher Mala, and Parameshwari K. 2012.
Telugu Spell-checker. Center for Applied Lin-
guistics and Translation Studies University of
Hyderabad Hyderabad, India.

299

https://www.ijresm.com/Vol.2_2019/Vol2_Iss3_March19/IJRESM_V2_I3_138.pdf
https://www.ijresm.com/Vol.2_2019/Vol2_Iss3_March19/IJRESM_V2_I3_138.pdf
https://www.ijert.org/research/design-of-odia-spell-checker-with-word-prediction-IJERTCONV8IS01014.pdf, https://www.ijert.org/design-of-odia-spell-checker-with-word-prediction
https://www.ijert.org/research/design-of-odia-spell-checker-with-word-prediction-IJERTCONV8IS01014.pdf, https://www.ijert.org/design-of-odia-spell-checker-with-word-prediction
https://addons.mozilla.org/en-US/firefox/addon/sanskrit-spell-checker/
https://addons.mozilla.org/en-US/firefox/addon/sanskrit-spell-checker/
https://addons.mozilla.org/en-US/firefox/addon/sanskrit-spell-checker/
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://www.researchgate.net/publication/280713475_Contextual_spell_checking_for_Tamil_Language
https://www.researchgate.net/publication/280713475_Contextual_spell_checking_for_Tamil_Language
https://zverok.space/blog/2021-01-28-spellchecker-5.html
https://zverok.space/blog/2021-01-28-spellchecker-5.html
https://zverok.space/blog/2021-01-28-spellchecker-5.html
https://zverok.space/blog/2021-01-28-spellchecker-5.html
https://zverok.space/blog/2021-01-28-spellchecker-5.html
https://www.ijstr.org/paper-references.php?ref=IJSTR98600
https://www.ijstr.org/paper-references.php?ref=IJSTR98600
https://www.researchgate.net/publication/259751589_Telugu_Spell_Checker

