@inproceedings{voskarides-etal-2022-news,
title = "News Article Retrieval in Context for Event-centric Narrative Creation",
author = "Voskarides, Nikos and
Meij, Edgar and
Sauer, Sabrina and
de Rijke, Maarten",
editor = "Huang, Ting-Hao 'Kenneth' and
Raheja, Vipul and
Kang, Dongyeop and
Chung, John Joon Young and
Gissin, Daniel and
Lee, Mina and
Gero, Katy Ilonka",
booktitle = "Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.in2writing-1.10",
doi = "10.18653/v1/2022.in2writing-1.10",
pages = "72--73",
abstract = "Writers such as journalists often use automatic tools to find relevant content to include in their narratives. In this paper, we focus on supporting writers in the news domain to develop event-centric narratives. Given an incomplete narrative that specifies a main event and a context, we aim to retrieve news articles that discuss relevant events that would enable the continuation of the narrative. We formally define this task and propose a retrieval dataset construction procedure that relies on existing news articles to simulate incomplete narratives and relevant articles. Experiments on two datasets derived from this procedure show that state-of-the-art lexical and semantic rankers are not sufficient for this task. We show that combining those with a ranker that ranks articles by reverse chronological order outperforms those rankers alone. We also perform an in-depth quantitative and qualitative analysis of the results that sheds light on the characteristics of this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="voskarides-etal-2022-news">
<titleInfo>
<title>News Article Retrieval in Context for Event-centric Narrative Creation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikos</namePart>
<namePart type="family">Voskarides</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edgar</namePart>
<namePart type="family">Meij</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabrina</namePart>
<namePart type="family">Sauer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarten</namePart>
<namePart type="family">de Rijke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ting-Hao</namePart>
<namePart type="given">’Kenneth’</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vipul</namePart>
<namePart type="family">Raheja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongyeop</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">Joon</namePart>
<namePart type="given">Young</namePart>
<namePart type="family">Chung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Gissin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mina</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katy</namePart>
<namePart type="given">Ilonka</namePart>
<namePart type="family">Gero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Writers such as journalists often use automatic tools to find relevant content to include in their narratives. In this paper, we focus on supporting writers in the news domain to develop event-centric narratives. Given an incomplete narrative that specifies a main event and a context, we aim to retrieve news articles that discuss relevant events that would enable the continuation of the narrative. We formally define this task and propose a retrieval dataset construction procedure that relies on existing news articles to simulate incomplete narratives and relevant articles. Experiments on two datasets derived from this procedure show that state-of-the-art lexical and semantic rankers are not sufficient for this task. We show that combining those with a ranker that ranks articles by reverse chronological order outperforms those rankers alone. We also perform an in-depth quantitative and qualitative analysis of the results that sheds light on the characteristics of this task.</abstract>
<identifier type="citekey">voskarides-etal-2022-news</identifier>
<identifier type="doi">10.18653/v1/2022.in2writing-1.10</identifier>
<location>
<url>https://aclanthology.org/2022.in2writing-1.10</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>72</start>
<end>73</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T News Article Retrieval in Context for Event-centric Narrative Creation
%A Voskarides, Nikos
%A Meij, Edgar
%A Sauer, Sabrina
%A de Rijke, Maarten
%Y Huang, Ting-Hao ’Kenneth’
%Y Raheja, Vipul
%Y Kang, Dongyeop
%Y Chung, John Joon Young
%Y Gissin, Daniel
%Y Lee, Mina
%Y Gero, Katy Ilonka
%S Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F voskarides-etal-2022-news
%X Writers such as journalists often use automatic tools to find relevant content to include in their narratives. In this paper, we focus on supporting writers in the news domain to develop event-centric narratives. Given an incomplete narrative that specifies a main event and a context, we aim to retrieve news articles that discuss relevant events that would enable the continuation of the narrative. We formally define this task and propose a retrieval dataset construction procedure that relies on existing news articles to simulate incomplete narratives and relevant articles. Experiments on two datasets derived from this procedure show that state-of-the-art lexical and semantic rankers are not sufficient for this task. We show that combining those with a ranker that ranks articles by reverse chronological order outperforms those rankers alone. We also perform an in-depth quantitative and qualitative analysis of the results that sheds light on the characteristics of this task.
%R 10.18653/v1/2022.in2writing-1.10
%U https://aclanthology.org/2022.in2writing-1.10
%U https://doi.org/10.18653/v1/2022.in2writing-1.10
%P 72-73
Markdown (Informal)
[News Article Retrieval in Context for Event-centric Narrative Creation](https://aclanthology.org/2022.in2writing-1.10) (Voskarides et al., In2Writing 2022)
ACL