@inproceedings{furniturewala-etal-2022-bits,
title = "{BITS} Pilani at {H}inglish{E}val: Quality Evaluation for Code-Mixed {H}inglish Text Using Transformers",
author = "Furniturewala, Shaz and
Kumari, Vijay and
Dash, Amulya Ratna and
Kedia, Hriday and
Sharma, Yashvardhan",
editor = "Shaikh, Samira and
Ferreira, Thiago and
Stent, Amanda",
booktitle = "Proceedings of the 15th International Conference on Natural Language Generation: Generation Challenges",
month = jul,
year = "2022",
address = "Waterville, Maine, USA and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.inlg-genchal.6",
pages = "35--38",
abstract = "Code-Mixed text data consists of sentences having words or phrases from more than one language. Most multi-lingual communities worldwide communicate using multiple languages, with English usually one of them. Hinglish is a Code-Mixed text composed of Hindi and English but written in Roman script. This paper aims to determine the factors influencing the quality of Code-Mixed text data generated by the system. For the HinglishEval task, the proposed model uses multilingual BERT to find the similarity between synthetically generated and human-generated sentences to predict the quality of synthetically generated Hinglish sentences.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="furniturewala-etal-2022-bits">
<titleInfo>
<title>BITS Pilani at HinglishEval: Quality Evaluation for Code-Mixed Hinglish Text Using Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shaz</namePart>
<namePart type="family">Furniturewala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijay</namePart>
<namePart type="family">Kumari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amulya</namePart>
<namePart type="given">Ratna</namePart>
<namePart type="family">Dash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hriday</namePart>
<namePart type="family">Kedia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yashvardhan</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Natural Language Generation: Generation Challenges</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samira</namePart>
<namePart type="family">Shaikh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thiago</namePart>
<namePart type="family">Ferreira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Waterville, Maine, USA and virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code-Mixed text data consists of sentences having words or phrases from more than one language. Most multi-lingual communities worldwide communicate using multiple languages, with English usually one of them. Hinglish is a Code-Mixed text composed of Hindi and English but written in Roman script. This paper aims to determine the factors influencing the quality of Code-Mixed text data generated by the system. For the HinglishEval task, the proposed model uses multilingual BERT to find the similarity between synthetically generated and human-generated sentences to predict the quality of synthetically generated Hinglish sentences.</abstract>
<identifier type="citekey">furniturewala-etal-2022-bits</identifier>
<location>
<url>https://aclanthology.org/2022.inlg-genchal.6</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>35</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BITS Pilani at HinglishEval: Quality Evaluation for Code-Mixed Hinglish Text Using Transformers
%A Furniturewala, Shaz
%A Kumari, Vijay
%A Dash, Amulya Ratna
%A Kedia, Hriday
%A Sharma, Yashvardhan
%Y Shaikh, Samira
%Y Ferreira, Thiago
%Y Stent, Amanda
%S Proceedings of the 15th International Conference on Natural Language Generation: Generation Challenges
%D 2022
%8 July
%I Association for Computational Linguistics
%C Waterville, Maine, USA and virtual meeting
%F furniturewala-etal-2022-bits
%X Code-Mixed text data consists of sentences having words or phrases from more than one language. Most multi-lingual communities worldwide communicate using multiple languages, with English usually one of them. Hinglish is a Code-Mixed text composed of Hindi and English but written in Roman script. This paper aims to determine the factors influencing the quality of Code-Mixed text data generated by the system. For the HinglishEval task, the proposed model uses multilingual BERT to find the similarity between synthetically generated and human-generated sentences to predict the quality of synthetically generated Hinglish sentences.
%U https://aclanthology.org/2022.inlg-genchal.6
%P 35-38
Markdown (Informal)
[BITS Pilani at HinglishEval: Quality Evaluation for Code-Mixed Hinglish Text Using Transformers](https://aclanthology.org/2022.inlg-genchal.6) (Furniturewala et al., INLG 2022)
ACL