@inproceedings{ishii-etal-2022-question,
title = "Can Question Rewriting Help Conversational Question Answering?",
author = "Ishii, Etsuko and
Xu, Yan and
Cahyawijaya, Samuel and
Wilie, Bryan",
editor = "Tafreshi, Shabnam and
Sedoc, Jo{\~a}o and
Rogers, Anna and
Drozd, Aleksandr and
Rumshisky, Anna and
Akula, Arjun",
booktitle = "Proceedings of the Third Workshop on Insights from Negative Results in NLP",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.insights-1.13",
doi = "10.18653/v1/2022.insights-1.13",
pages = "94--99",
abstract = "Question rewriting (QR) is a subtask of conversational question answering (CQA) aiming to ease the challenges of understanding dependencies among dialogue history by reformulating questions in a self-contained form. Despite seeming plausible, little evidence is available to justify QR as a mitigation method for CQA. To verify the effectiveness of QR in CQA, we investigate a reinforcement learning approach that integrates QR and CQA tasks and does not require corresponding QR datasets for targeted CQA.We find, however, that the RL method is on par with the end-to-end baseline. We provide an analysis of the failure and describe the difficulty of exploiting QR for CQA.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ishii-etal-2022-question">
<titleInfo>
<title>Can Question Rewriting Help Conversational Question Answering?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Etsuko</namePart>
<namePart type="family">Ishii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Cahyawijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bryan</namePart>
<namePart type="family">Wilie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Akula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Question rewriting (QR) is a subtask of conversational question answering (CQA) aiming to ease the challenges of understanding dependencies among dialogue history by reformulating questions in a self-contained form. Despite seeming plausible, little evidence is available to justify QR as a mitigation method for CQA. To verify the effectiveness of QR in CQA, we investigate a reinforcement learning approach that integrates QR and CQA tasks and does not require corresponding QR datasets for targeted CQA.We find, however, that the RL method is on par with the end-to-end baseline. We provide an analysis of the failure and describe the difficulty of exploiting QR for CQA.</abstract>
<identifier type="citekey">ishii-etal-2022-question</identifier>
<identifier type="doi">10.18653/v1/2022.insights-1.13</identifier>
<location>
<url>https://aclanthology.org/2022.insights-1.13</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>94</start>
<end>99</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Question Rewriting Help Conversational Question Answering?
%A Ishii, Etsuko
%A Xu, Yan
%A Cahyawijaya, Samuel
%A Wilie, Bryan
%Y Tafreshi, Shabnam
%Y Sedoc, João
%Y Rogers, Anna
%Y Drozd, Aleksandr
%Y Rumshisky, Anna
%Y Akula, Arjun
%S Proceedings of the Third Workshop on Insights from Negative Results in NLP
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F ishii-etal-2022-question
%X Question rewriting (QR) is a subtask of conversational question answering (CQA) aiming to ease the challenges of understanding dependencies among dialogue history by reformulating questions in a self-contained form. Despite seeming plausible, little evidence is available to justify QR as a mitigation method for CQA. To verify the effectiveness of QR in CQA, we investigate a reinforcement learning approach that integrates QR and CQA tasks and does not require corresponding QR datasets for targeted CQA.We find, however, that the RL method is on par with the end-to-end baseline. We provide an analysis of the failure and describe the difficulty of exploiting QR for CQA.
%R 10.18653/v1/2022.insights-1.13
%U https://aclanthology.org/2022.insights-1.13
%U https://doi.org/10.18653/v1/2022.insights-1.13
%P 94-99
Markdown (Informal)
[Can Question Rewriting Help Conversational Question Answering?](https://aclanthology.org/2022.insights-1.13) (Ishii et al., insights 2022)
ACL