@inproceedings{rippeth-etal-2022-controlling,
title = "Controlling Translation Formality Using Pre-trained Multilingual Language Models",
author = "Rippeth, Elijah and
Agrawal, Sweta and
Carpuat, Marine",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Costa-juss{\`a}, Marta",
booktitle = "Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)",
month = may,
year = "2022",
address = "Dublin, Ireland (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.iwslt-1.30/",
doi = "10.18653/v1/2022.iwslt-1.30",
pages = "327--340",
abstract = "This paper describes the University of Maryland`s submission to the Special Task on Formality Control for Spoken Language Translation at IWSLT, which evaluates translation from English into 6 languages with diverse grammatical formality markers. We investigate to what extent this problem can be addressed with a single multilingual model, simultaneously controlling its output for target language and formality. Results show that this strategy can approach the translation quality and formality control achieved by dedicated translation models. However, the nature of the underlying pre-trained language model and of the finetuning samples greatly impact results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rippeth-etal-2022-controlling">
<titleInfo>
<title>Controlling Translation Formality Using Pre-trained Multilingual Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elijah</namePart>
<namePart type="family">Rippeth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sweta</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the University of Maryland‘s submission to the Special Task on Formality Control for Spoken Language Translation at IWSLT, which evaluates translation from English into 6 languages with diverse grammatical formality markers. We investigate to what extent this problem can be addressed with a single multilingual model, simultaneously controlling its output for target language and formality. Results show that this strategy can approach the translation quality and formality control achieved by dedicated translation models. However, the nature of the underlying pre-trained language model and of the finetuning samples greatly impact results.</abstract>
<identifier type="citekey">rippeth-etal-2022-controlling</identifier>
<identifier type="doi">10.18653/v1/2022.iwslt-1.30</identifier>
<location>
<url>https://aclanthology.org/2022.iwslt-1.30/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>327</start>
<end>340</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controlling Translation Formality Using Pre-trained Multilingual Language Models
%A Rippeth, Elijah
%A Agrawal, Sweta
%A Carpuat, Marine
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Costa-jussà, Marta
%S Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland (in-person and online)
%F rippeth-etal-2022-controlling
%X This paper describes the University of Maryland‘s submission to the Special Task on Formality Control for Spoken Language Translation at IWSLT, which evaluates translation from English into 6 languages with diverse grammatical formality markers. We investigate to what extent this problem can be addressed with a single multilingual model, simultaneously controlling its output for target language and formality. Results show that this strategy can approach the translation quality and formality control achieved by dedicated translation models. However, the nature of the underlying pre-trained language model and of the finetuning samples greatly impact results.
%R 10.18653/v1/2022.iwslt-1.30
%U https://aclanthology.org/2022.iwslt-1.30/
%U https://doi.org/10.18653/v1/2022.iwslt-1.30
%P 327-340
Markdown (Informal)
[Controlling Translation Formality Using Pre-trained Multilingual Language Models](https://aclanthology.org/2022.iwslt-1.30/) (Rippeth et al., IWSLT 2022)
ACL