@inproceedings{wein-etal-2022-effect,
title = "Effect of Source Language on {AMR} Structure",
author = "Wein, Shira and
Leung, Wai Ching and
Mu, Yifu and
Schneider, Nathan",
editor = "Pradhan, Sameer and
Kuebler, Sandra",
booktitle = "Proceedings of the 16th Linguistic Annotation Workshop (LAW-XVI) within LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.law-1.12",
pages = "97--102",
abstract = "The Abstract Meaning Representation (AMR) annotation schema was originally designed for English. But the formalism has since been adapted for annotation in a variety of languages. Meanwhile, cross-lingual parsers have been developed to derive English AMR representations for sentences from other languages{---}implicitly assuming that English AMR can approximate an interlingua. In this work, we investigate the similarity of AMR annotations in parallel data and how much the language matters in terms of the graph structure. We set out to quantify the effect of sentence language on the structure of the parsed AMR. As a case study, we take parallel AMR annotations from Mandarin Chinese and English AMRs, and replace all Chinese concepts with equivalent English tokens. We then compare the two graphs via the Smatch metric as a measure of structural similarity. We find that source language has a dramatic impact on AMR structure, with Smatch scores below 50{\%} between English and Chinese graphs in our sample{---}an important reference point for interpreting Smatch scores in cross-lingual AMR parsing.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wein-etal-2022-effect">
<titleInfo>
<title>Effect of Source Language on AMR Structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shira</namePart>
<namePart type="family">Wein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai</namePart>
<namePart type="given">Ching</namePart>
<namePart type="family">Leung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifu</namePart>
<namePart type="family">Mu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Linguistic Annotation Workshop (LAW-XVI) within LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Pradhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandra</namePart>
<namePart type="family">Kuebler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Abstract Meaning Representation (AMR) annotation schema was originally designed for English. But the formalism has since been adapted for annotation in a variety of languages. Meanwhile, cross-lingual parsers have been developed to derive English AMR representations for sentences from other languages—implicitly assuming that English AMR can approximate an interlingua. In this work, we investigate the similarity of AMR annotations in parallel data and how much the language matters in terms of the graph structure. We set out to quantify the effect of sentence language on the structure of the parsed AMR. As a case study, we take parallel AMR annotations from Mandarin Chinese and English AMRs, and replace all Chinese concepts with equivalent English tokens. We then compare the two graphs via the Smatch metric as a measure of structural similarity. We find that source language has a dramatic impact on AMR structure, with Smatch scores below 50% between English and Chinese graphs in our sample—an important reference point for interpreting Smatch scores in cross-lingual AMR parsing.</abstract>
<identifier type="citekey">wein-etal-2022-effect</identifier>
<location>
<url>https://aclanthology.org/2022.law-1.12</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>97</start>
<end>102</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Effect of Source Language on AMR Structure
%A Wein, Shira
%A Leung, Wai Ching
%A Mu, Yifu
%A Schneider, Nathan
%Y Pradhan, Sameer
%Y Kuebler, Sandra
%S Proceedings of the 16th Linguistic Annotation Workshop (LAW-XVI) within LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F wein-etal-2022-effect
%X The Abstract Meaning Representation (AMR) annotation schema was originally designed for English. But the formalism has since been adapted for annotation in a variety of languages. Meanwhile, cross-lingual parsers have been developed to derive English AMR representations for sentences from other languages—implicitly assuming that English AMR can approximate an interlingua. In this work, we investigate the similarity of AMR annotations in parallel data and how much the language matters in terms of the graph structure. We set out to quantify the effect of sentence language on the structure of the parsed AMR. As a case study, we take parallel AMR annotations from Mandarin Chinese and English AMRs, and replace all Chinese concepts with equivalent English tokens. We then compare the two graphs via the Smatch metric as a measure of structural similarity. We find that source language has a dramatic impact on AMR structure, with Smatch scores below 50% between English and Chinese graphs in our sample—an important reference point for interpreting Smatch scores in cross-lingual AMR parsing.
%U https://aclanthology.org/2022.law-1.12
%P 97-102
Markdown (Informal)
[Effect of Source Language on AMR Structure](https://aclanthology.org/2022.law-1.12) (Wein et al., LAW 2022)
ACL
- Shira Wein, Wai Ching Leung, Yifu Mu, and Nathan Schneider. 2022. Effect of Source Language on AMR Structure. In Proceedings of the 16th Linguistic Annotation Workshop (LAW-XVI) within LREC2022, pages 97–102, Marseille, France. European Language Resources Association.