@inproceedings{field-etal-2022-sentiment,
title = "Sentiment Analysis and Topic Modeling for Public Perceptions of Air Travel: {COVID} Issues and Policy Amendments",
author = "Field, Avery and
Varde, Aparna and
Lal, Pankaj",
editor = "Siegert, Ingo and
Rigault, Mickael and
Arranz, Victoria",
booktitle = "Proceedings of the Workshop on Ethical and Legal Issues in Human Language Technologies and Multilingual De-Identification of Sensitive Data In Language Resources within the 13th Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.legal-1.2",
pages = "2--8",
abstract = "Among many industries, air travel is impacted by the COVID pandemic. Airlines and airports rely on public sector information to enforce guidelines for ensuring health and safety of travelers. Such guidelines can be policy amendments or laws during the pandemic. In response to the inception of COVID preventive policies, travelers have exercised freedom of expression via the avenue of online reviews. This avenue facilitates voicing public concern while anonymizing / concealing user identity as needed. It is important to assess opinions on policy amendments to ensure transparency and openness, while also preserving confidentiality and ethics. Hence, this study leverages data science to analyze, with identity protection, the online reviews of airlines and airports since 2017, considering impacts of COVID issues and relevant policy amendments since 2020. Supervised learning with VADER sentiment analysis is deployed to predict changes in opinion from 2017 to date. Unsupervised learning with LDA topic modeling is employed to discover air travelers{'} major areas of concern before and after the pandemic. This study reveals that COVID policies have worsened public perceptions of air travel and aroused notable new concerns, affecting economics, environment and health.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="field-etal-2022-sentiment">
<titleInfo>
<title>Sentiment Analysis and Topic Modeling for Public Perceptions of Air Travel: COVID Issues and Policy Amendments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Avery</namePart>
<namePart type="family">Field</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aparna</namePart>
<namePart type="family">Varde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pankaj</namePart>
<namePart type="family">Lal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Ethical and Legal Issues in Human Language Technologies and Multilingual De-Identification of Sensitive Data In Language Resources within the 13th Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ingo</namePart>
<namePart type="family">Siegert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mickael</namePart>
<namePart type="family">Rigault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Arranz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Among many industries, air travel is impacted by the COVID pandemic. Airlines and airports rely on public sector information to enforce guidelines for ensuring health and safety of travelers. Such guidelines can be policy amendments or laws during the pandemic. In response to the inception of COVID preventive policies, travelers have exercised freedom of expression via the avenue of online reviews. This avenue facilitates voicing public concern while anonymizing / concealing user identity as needed. It is important to assess opinions on policy amendments to ensure transparency and openness, while also preserving confidentiality and ethics. Hence, this study leverages data science to analyze, with identity protection, the online reviews of airlines and airports since 2017, considering impacts of COVID issues and relevant policy amendments since 2020. Supervised learning with VADER sentiment analysis is deployed to predict changes in opinion from 2017 to date. Unsupervised learning with LDA topic modeling is employed to discover air travelers’ major areas of concern before and after the pandemic. This study reveals that COVID policies have worsened public perceptions of air travel and aroused notable new concerns, affecting economics, environment and health.</abstract>
<identifier type="citekey">field-etal-2022-sentiment</identifier>
<location>
<url>https://aclanthology.org/2022.legal-1.2</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>2</start>
<end>8</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Analysis and Topic Modeling for Public Perceptions of Air Travel: COVID Issues and Policy Amendments
%A Field, Avery
%A Varde, Aparna
%A Lal, Pankaj
%Y Siegert, Ingo
%Y Rigault, Mickael
%Y Arranz, Victoria
%S Proceedings of the Workshop on Ethical and Legal Issues in Human Language Technologies and Multilingual De-Identification of Sensitive Data In Language Resources within the 13th Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F field-etal-2022-sentiment
%X Among many industries, air travel is impacted by the COVID pandemic. Airlines and airports rely on public sector information to enforce guidelines for ensuring health and safety of travelers. Such guidelines can be policy amendments or laws during the pandemic. In response to the inception of COVID preventive policies, travelers have exercised freedom of expression via the avenue of online reviews. This avenue facilitates voicing public concern while anonymizing / concealing user identity as needed. It is important to assess opinions on policy amendments to ensure transparency and openness, while also preserving confidentiality and ethics. Hence, this study leverages data science to analyze, with identity protection, the online reviews of airlines and airports since 2017, considering impacts of COVID issues and relevant policy amendments since 2020. Supervised learning with VADER sentiment analysis is deployed to predict changes in opinion from 2017 to date. Unsupervised learning with LDA topic modeling is employed to discover air travelers’ major areas of concern before and after the pandemic. This study reveals that COVID policies have worsened public perceptions of air travel and aroused notable new concerns, affecting economics, environment and health.
%U https://aclanthology.org/2022.legal-1.2
%P 2-8
Markdown (Informal)
[Sentiment Analysis and Topic Modeling for Public Perceptions of Air Travel: COVID Issues and Policy Amendments](https://aclanthology.org/2022.legal-1.2) (Field et al., LEGAL 2022)
ACL