@inproceedings{zhang-etal-2022-section,
title = "Section Classification in Clinical Notes with Multi-task Transformers",
author = "Zhang, Fan and
Laish, Itay and
Benjamini, Ayelet and
Feder, Amir",
booktitle = "Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.louhi-1.7",
doi = "10.18653/v1/2022.louhi-1.7",
pages = "54--59",
abstract = "Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2022-section">
<titleInfo>
<title>Section Classification in Clinical Notes with Multi-task Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Itay</namePart>
<namePart type="family">Laish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayelet</namePart>
<namePart type="family">Benjamini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Feder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.</abstract>
<identifier type="citekey">zhang-etal-2022-section</identifier>
<identifier type="doi">10.18653/v1/2022.louhi-1.7</identifier>
<location>
<url>https://aclanthology.org/2022.louhi-1.7</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>54</start>
<end>59</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Section Classification in Clinical Notes with Multi-task Transformers
%A Zhang, Fan
%A Laish, Itay
%A Benjamini, Ayelet
%A Feder, Amir
%S Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F zhang-etal-2022-section
%X Clinical notes are the backbone of electronic health records, often containing vital information not observed in other structured data. Unfortunately, the unstructured nature of clinical notes can lead to critical patient-related information being lost. Algorithms that organize clinical notes into distinct sections are often proposed in order to allow medical professionals to better access information in a given note. These algorithms, however, often assume a given partition over the note, and classify section types given this information. In this paper, we propose a multi-task solution for note sectioning, where a single model identifies context changes and labels each section with its medically-relevant title. Results on in-distribution (MIMIC-III) and out-of-distribution (private held-out) datasets reveal that our approach successfully identifies note sections across different hospital systems.
%R 10.18653/v1/2022.louhi-1.7
%U https://aclanthology.org/2022.louhi-1.7
%U https://doi.org/10.18653/v1/2022.louhi-1.7
%P 54-59
Markdown (Informal)
[Section Classification in Clinical Notes with Multi-task Transformers](https://aclanthology.org/2022.louhi-1.7) (Zhang et al., Louhi 2022)
ACL