@inproceedings{yong-etal-2022-frame,
title = "Frame Shift Prediction",
author = "Yong, Zheng Xin and
Watson, Patrick D. and
Timponi Torrent, Tiago and
Czulo, Oliver and
Baker, Collin",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.103",
pages = "976--986",
abstract = "Frame shift is a cross-linguistic phenomenon in translation which results in corresponding pairs of linguistic material evoking different frames. The ability to predict frame shifts would enable (semi-)automatic creation of multilingual frame annotations and thus speeding up FrameNet creation through annotation projection. Here, we first characterize how frame shifts result from other linguistic divergences such as translational divergences and construal differences. Our analysis also shows that many pairs of frames in frame shifts are multi-hop away from each other in Berkeley FrameNet{'}s net-like configuration. Then, we propose the Frame Shift Prediction task and demonstrate that our graph attention networks, combined with auxiliary training, can learn cross-linguistic frame-to-frame correspondence and predict frame shifts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yong-etal-2022-frame">
<titleInfo>
<title>Frame Shift Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="given">Xin</namePart>
<namePart type="family">Yong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Watson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiago</namePart>
<namePart type="family">Timponi Torrent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Czulo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Collin</namePart>
<namePart type="family">Baker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Frame shift is a cross-linguistic phenomenon in translation which results in corresponding pairs of linguistic material evoking different frames. The ability to predict frame shifts would enable (semi-)automatic creation of multilingual frame annotations and thus speeding up FrameNet creation through annotation projection. Here, we first characterize how frame shifts result from other linguistic divergences such as translational divergences and construal differences. Our analysis also shows that many pairs of frames in frame shifts are multi-hop away from each other in Berkeley FrameNet’s net-like configuration. Then, we propose the Frame Shift Prediction task and demonstrate that our graph attention networks, combined with auxiliary training, can learn cross-linguistic frame-to-frame correspondence and predict frame shifts.</abstract>
<identifier type="citekey">yong-etal-2022-frame</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.103</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>976</start>
<end>986</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Frame Shift Prediction
%A Yong, Zheng Xin
%A Watson, Patrick D.
%A Timponi Torrent, Tiago
%A Czulo, Oliver
%A Baker, Collin
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F yong-etal-2022-frame
%X Frame shift is a cross-linguistic phenomenon in translation which results in corresponding pairs of linguistic material evoking different frames. The ability to predict frame shifts would enable (semi-)automatic creation of multilingual frame annotations and thus speeding up FrameNet creation through annotation projection. Here, we first characterize how frame shifts result from other linguistic divergences such as translational divergences and construal differences. Our analysis also shows that many pairs of frames in frame shifts are multi-hop away from each other in Berkeley FrameNet’s net-like configuration. Then, we propose the Frame Shift Prediction task and demonstrate that our graph attention networks, combined with auxiliary training, can learn cross-linguistic frame-to-frame correspondence and predict frame shifts.
%U https://aclanthology.org/2022.lrec-1.103
%P 976-986
Markdown (Informal)
[Frame Shift Prediction](https://aclanthology.org/2022.lrec-1.103) (Yong et al., LREC 2022)
ACL
- Zheng Xin Yong, Patrick D. Watson, Tiago Timponi Torrent, Oliver Czulo, and Collin Baker. 2022. Frame Shift Prediction. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 976–986, Marseille, France. European Language Resources Association.