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Abstract
Visual Question Answering (VQA) is a challenge problem that can advance AI by integrating several important sub-disciplines
including natural language understanding and computer vision. Large VQA datasets that are publicly available for training
and evaluation have driven the growth of VQA models that have obtained increasingly larger accuracy scores. However, it is
also important to understand how much a model understands the details that are provided in a question. For example, studies
in psychology have shown that syntactic complexity places a larger cognitive load on humans. Analogously, we want to
understand if models have the perceptual capability to handle modifications to questions. Therefore, we develop a new dataset
using Amazon Mechanical Turk where we asked workers to add modifiers to questions based on object properties and spatial
relationships. We evaluate this data on LXMERT which is a state-of-the-art model in VQA that focuses more extensively on
language processing. Our conclusions indicate that there is a significant negative impact on the performance of the model
when the questions are modified to include more detailed information.
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1. Introduction

Visual Question Answering (VQA) is a highly chal-
lenging multi-disciplinary task that requires integration
of several key disciplines including natural language
understanding, computer vision and knowledge repre-
sentation. Specifically, in VQA, a system is required
to answer questions (that may be open-ended) that are
based on a specific image. Due to its multi-disciplinary
nature, it can be argued that advances made in this task
can potentially be a significant step forward for AI in
general.
Based on the VQA benchmark dataset (Antol et al.,
2015), several new models for VQA have been devel-
oped over the past few years (Goyal et al., 2017; Sel-
varaju et al., 2020; Tan and Bansal, 2019). While the
goal is to enhance both visual and language understand-
ing, it was observed in some cases that due to the type
of questions, some priors based on language can signif-
icantly improve accuracy. For example, as pointed out
in (Goyal et al., 2017), a simple prior such as assign-
ing the answer “yes” a high probability for a question
that begins with “do you see” can often achieve very
high scores. However, the use of such priors do not re-
flect true understanding and are unlikely to generalize
to real-world settings. To address this, in (Goyal et
al., 2017), a balanced VQA dataset was developed to
evaluate systems. Here, a large dataset was collected
using Amazon Mechanical Turk where, the same ques-
tion has different answers for different images. Fur-
ther, the images with complementary answers are se-
lected such that they are similar to each other. Thus,
a model needs to recognize subtle visual characteris-
tics in the image to answer get both the complementary
answers correct. This shared benchmark dataset com-
monly known as VQA2.0 forces models to pay more
attention to visual understanding in question answer-
ing. Using this dataset, a more explainable VQA model

Figure 1: Example Question: Where is the child sit-
ting? More detailed questions: Where is the child who
is holding a bottle sitting? Where is the child drinking
from a bottle? All three questions have the same an-
swer but the model needs to understand the details that
are provided in the question.

was developed in (Goyal et al., 2017) through the use
of counterexamples. That is, the model answers the
question and at the same time chooses counterexample
images. Thus, a system that truly understands the im-
age must also be able to come up with examples that
are meaningful but ones that do not answer the ques-
tion. For example, for a question about a red flower, a
white flower image may be a suitable counterexample.
In this paper, our goal is to evaluate the sensitivity of
a VQA model to details specified within a question.
Typically, when the question adds modifiers, the model
needs to reason about more information to arrive at the
correct answer. In general, from studies in psychol-
ogy, it is known that executive function (ie, working
memory, inhibition, planning) contributes to decoding
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and reading comprehension (Nouwens et al., 2021),
and that syntactic complexity increases neural compu-
tational demand (Just et al., 1996). At the same time,
additional modifiers in a question could also resolve
ambiguity which in turn can help the VQA model. For
instance, in the example shown in Fig. 1, the child hold-
ing the bottle and the child sitting are likely to be the
key visual details that can be extracted (i.e., the parts of
the image with more attention if we consider attention-
mechanisms (Lu et al., 2016)). For a question such as
where is the child sitting? that does not specify that the
child is holding a bottle, a model can easily ignore the
visual attention on this. However, when the question
specifies this detail, as in where is the child who is hold-
ing the bottle sitting or where is the child drinking from
a bottle, the model should be more selective and choose
the correct visual details to answer the question. Fur-
ther, a question such as Is the child drinking milk? may
be ambiguous, however a more detailed question such
as Is the child drinking milk from a bottle? can help
the model since the visual representation can focus on
the bottle. Further, modifiers could also help identify
cases where a model is using incorrect reasoning even
if it produces the right answers. For instance, suppose
a model answers “yes” for is there a child wearing red
sitting? correctly but also answers “yes” for is there a
child wearing blue sitting? incorrectly, this means that
it may be using incorrect reasoning to answer the ques-
tion. That is, once a child and the activity of sitting is
detected, the model defaults to answering “yes” with-
out evaluating additional details in the question. While
pragmatically, Gricean maxims (Grice, 1975) would
dictate that typically human questions would not con-
tain superfluous information such as ”holding the bot-
tle” when there is only one child, the purpose of this
work is to test the sensitivity of a model to specific
types of modifiers. Therefore, although many of these
modified questions may contain more information than
simply necessary to answer them, this additional infor-
mation allows for the testing of the model’s ability to
handle new concepts added to a question (which would
be necessary in discerning between two similar objects
in a scene with different properties or relations).

In this work, we develop a dataset where a question
is rephrased with modifications added to the question.
The modifiers are added to generate question pairs,
where one question in the pair is answer-preserving and
the other changes the original answer to the question.
To generate these modified questions, we use Ama-
zon Mechanical Turk (AMT) workers. We ask them
to add different types of modifiers, namely, modifiers
w.r.t properties of objects or modifiers w.r.t object re-
lationships in the image. Using this dataset, we evalu-
ate the well-known LXMERT (Tan and Bansal, 2019)
model for VQA. Our evaluation indicates that there is a
significant difference between the model performance
with and without modifiers added to the questions. Fur-
ther, for questions that require a yes/no answer, adding

modifiers shows a smaller degradation of performance
as compared to non-binary answers.

2. Related Work

The original VQA dataset (Antol et al., 2015) was
the first large dataset for open-ended answers with
over 200K images. To overcome some of the bi-
ases, where simple language priors could artificially
yield very high accuracy, the balanced VQA dataset
or the VQA2.0 dataset (Goyal et al., 2017) was de-
veloped subsequently. Both these datasets were col-
lected from AMT and consist of both natural and ab-
stract scenes. The model developed for the original
VQA dataset combined LSTMs to process the text
with CNNs to process the image specified in the ques-
tion. On VQA2.0 this model along with other mod-
els such as those using hierarchical co-attention (Lu
et al., 2016) for the questions and images, and bilin-
ear pooling (Fukui et al., 2016) (which was the win-
ner for the 2016 VQA dataset challenge) gave signifi-
cantly worse results. LXMERT (Tan and Bansal, 2019)
that is based on the BERT architecture that popular-
ized attention-mechanisms for language understanding
is one of the state-of-the-art systems for VQA. It uses
cross-modality training to capture interaction between
the language and visual elements. The evaluation pro-
posed in (Selvaraju et al., 2020) is related to our ap-
proach in principle, i.e., sub-questions are generated to
augment questions. Specifically, in this work, reason-
ing and perception sub-questions are generated through
AMT. The model is therefor evaluated on its ability to
perform higher-level reasoning consistently. Another
type of approach that has been used is to annotate at-
tentions in the data (Das et al., 2016). Specifically, us-
ing human workers, the important aspects required to
answer questions is annotated in the data. The model
is therefore evaluated on whether it is using the right
reasons to arrive at its answer. Yet another approach
in (Park et al., 2018) annotated the natural language
explanations for an answer. However, this is harder to
use since for most neural network based models (which
are the ones that give state-of-the-art performance),it is
hard to convert the reasoning used by the model to nat-
ural language. Our work is also related to studies in
image specificity (Jas and Parikh, 2015) where the goal
is to know and predict if descriptions of an image are
likely to be specific or not. In our case, we use a re-
lated idea, however, our goal is to understand if models
are indeed capable of processing specific information
which is one way of assessing if they are understanding
the information that is provided to them. Finally, our
work is also related the study of perturbations in ques-
tions (Khashabi et al., 2020) that has been used to an-
alyze robustness in question answering. Here, the per-
turbations for questions are related to modifiers that are
related to perception in VQA (Selvaraju et al., 2020).
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Figure 2: Samples from the dataset. The question in orange (placed above an image) is the original question and
the questions in green (below an image) are the modified questions. The first modified question has the same
answer as the original while the second one has a different answer.

(a) (b) (c)

Figure 3: The MTurk Interface.
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|Q| |Qb| |Qw| |Qr| |Qo|
3065 1968 1564 1105 2427

Table 1: Summary of data collected from MTurk. Q
denotes the set of all questions that remain after qual-
ity validation, where each element of Q is a triple
(q0, q1, q2), q0 is the original question, q1 the modified
question that preserves the answer of q0 and q2 is the
modified question that changes the answer. Qb ⊂ Q is
the set of questions with binary answers (yes/no), Qw

⊂ Q is the set of questions with non-binary answers,
Qr ⊂ Q is the set of questions with relational modi-
fiers and Qo ⊂ Q is the set of questions with object
modifiers.

3. Question-Modification Evaluation

3.1. Dataset Creation
For every question q, we generated a pair of ques-
tions with modifiers added to q, one which preserved
the same answer as q and the other which changed the
answer. We consider two types of modification. The
first one in which we specify a property for an ob-
ject in the image and the other where we specify a
relationship in the image. Object property modifiers
identify additional details about an object in the im-
age/question such as color, material, shape, size, ex-
pression, or behavior. Relational modifiers identify rel-
ative spatial relationships between an object and an-
other object or its surroundings. These typically re-
sult in prepositional phrases such as on, in, around,
above, below, next to, in front of, behind, etc. plus their
object. Object properties and spatial relationships are
well known to be highly significant for perception and
thus are fundamental for VQA (Selvaraju et al., 2020;
Bansal et al., 2020). Furthermore, questions can be
modified based on object properties and spatial rela-
tionships by human workers without requiring signif-
icant expertise and therefore, we are likely to have a
high quality dataset using AMT. Sample images and
questions from the dataset are shown in Fig. 2. We used
AMT to generate 3065 question pairs (6130 total ques-
tions) [Tab. 1] where the ratios of questions of each of
the 21 types specified in (Goyal et al., 2017) (e.g., ”Is
there”, ”How many”, ”What is”, ”What color”) is ap-
proximately equal to their ratios in the original data.
We selected questions from the training partition of the
VQA data due to the fact that ground truth answers are
not available for the test set. As with the VQA dataset,
all generated questions are open-ended in that answer
choices are not provided. For simplicity and to reduce
confounding factors, only questions that had one word
answers (83.5% of questions in the VQA data) were
selected as sample candidates and AMT workers were
instructed to provide one word answers. As the new
rephrased questions are not the same as the training
set questions, the model did not have answers to the

Original (q0) Modified (q1) Modified (q2) δ(q0, q2)
0.647 0.61 0.442 0.453

Table 2: Evaluating influence of question modifiers.
Accuracy for LXMERT is computed for the original
questions (q0) and both the answer preserving (q1)
and non answer preserving (q2) rephrased questions.
δ(q0, q2) is a measure of the percentage of instances
for which the answer predicted for q0 is different from
that predicted for q2. Larger values of δ(q0, q2) are bet-
ter since they indicate that the model understands that
it needs to change its prediction for the modified ques-
tion q2.

Qr Qo Qb Qw

0.497 0.540 0.628 0.398

Table 3: Evaluating accuracy for modifiers and answer
types.

rephrased questions available. The interface we used
for AMT is shown in Fig. 3. The dataset with the ques-
tions is available here 1 If we let q0 be the original
question from the training set, q1 be the modified ques-
tion yielding the same answer as q0, q2 be the modified
question yielding a different answer than q0, (a0,a1,a2)
be the answers to (q0,q1,q2), and Tq be the question
type for some q, the quality validation performed on
the modified questions from AMT discarded all sam-
ples that met the following criteria:

1. (Tq0 ̸=Tq1 ) ∨ (Tq0 ̸=Tq2 ) ∨ (Tq1 ̸=Tq2 )
2. a0 ̸=a1
3. a0=a2
4. q0=q1 ∨ q1=q2.

Due to the complexity of the images and the specific
modification task asked of workers, many q2 asked for
information not available in the image resulting in an
answer of “unknown”. Since these questions differ
fundamentally from questions that have answers deter-
minable from the image, each “unknown” q2 and its
corresponding q1 were removed from the main analy-
sis for a separate analysis resulting in set Qu. There
are, however, implications for these “unknown” ques-
tions which will be discussed. In total, 1299 q2 had
“unknown” answers resulting in 1766 question pairs
(3532 total questions) for the main analysis. Unless
otherwise stated, all analysis will be for the dataset with
“unknown” q2 and their corresponding q1 removed.

3.2. Evaluation
For our evaluation, we used LXMERT which yields
state-of-the-art results for the VQA task. We used
the pre-trained model for LXMERT. In order to set a
baseline and assure the sample retained accuracy from

1https://drive.google.com/file/d/
11plw7P82ew9AkuJ2q9zDorVjlzhyg_iP/view?
usp=sharing

https://drive.google.com/file/d/11plw7P82ew9AkuJ2q9zDorVjlzhyg_iP/view?usp=sharing
https://drive.google.com/file/d/11plw7P82ew9AkuJ2q9zDorVjlzhyg_iP/view?usp=sharing
https://drive.google.com/file/d/11plw7P82ew9AkuJ2q9zDorVjlzhyg_iP/view?usp=sharing
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the original dataset, the LXMERT pre-trained model
was run for the full one word answer dataset yield-
ing 65.0% accuracy. The pre-trained model was then
run for the 3065 original q0 from our sample and ob-
tained 64.7% accuracy. Finally, the pre-trained model
was run for all q1 and q2. Model performance was
measured for predictions of all q1 against the original
q0, and accuracy is reported for all q2. Additionally,
performance was measured in 2x2 dimensions: modi-
fication type (relational vs object property) and answer
type (yes/no vs other). It should be noted that while
“answer type” is used to refer to these two categories,
each refer to a subset of question types (eg. “Is there”
questions yield “yes/no” answers), therefore, this is a
meaningful dimension on which to measure modified
questions. McNemar’s exact test (Fagerland et al.,
2013) is commonly used in evaluating paired binomial
data in medicine, but also sees use in machine learn-
ing when evaluating if classification algorithms per-
form differently from each other (Dietterich, 1998).
McNemar’s exact test measures marginal homogene-
ity between paired samples. That is, whether success
or failure is more likely in one condition or another.
Therefore, for all q1, significance of accuracy change
from the original q0 was measured using McNemar’s
exact test. Accuracy differences, that is, overall perfor-
mance on between categories in each dimension, such
as between the object property and relational modifica-
tion types and between “yes/no” answer types (binary
questions) and “other” answer types (non-binary ques-
tions) were measured using independent samples t-test.

3.2.1. Overview
For all q ∈ Q, the model performed with an accuracy
of 52.6%. For q1, that is, rephrased questions resulting
in the same answer as q0, model accuracy dropped to
61.0% from the original 64.7% (McNemar p=0.0003),
while for q2 accuracy was 44.2% [Tab. 2]. That is,
adding modifiers to the questions resulted in a signif-
icant accuracy drop. Additionally, question modifica-
tion caused 22.7% of all predicted answers to q1 to
change. Looking at whether adding modifiers to the
questions helped (changed incorrect q0 prediction to
correct q1) or hurt (changed correct q0 prediction to in-
correct q1 prediction), 11.4% of correct answers (7.0%
of all q1 predictions) were changed from an incorrect
prediction for q0 to a correct prediction for q1, while
27.3% of incorrect answers (10.6% of all q1 predic-
tions) were changed from an originally correct predic-
tion for q0 to an incorrect prediction for q1. Next, mod-
ifying questions by adding details to yield a different
answer than the original (q2) caused 45.4% of answers
to change from the original prediction for q0. That is,
over half the predicted answers to q2 stayed the same
as the original prediction for q0.

3.2.2. Modification Type
In this section, we discuss how modification type af-
fects model performance. In general, 553 question

Figure 4: Evaluating the significance of question mod-
ifiers. The McNemar statistic and p-value is computed
to compare the original predictions with the predic-
tions made when modifiers are added. Qr indicates
that the significance of adding relational modifiers is
measured and Qo indicates that significance of adding
object modifiers are measured. Similarly, for answer
types, Qb indicates that the significance adding modi-
fiers to yes/no answer questions is measured and Qw

indicates the same measure for non-binary answers.
The p-values are shown in brackets.

pairs modified object property, while 1213 question
pairs used relational modification. Overall accuracy for
questions modifying object property was 54.0%. More
specifically, q1 accuracy fell to 62.6% from an origi-
nal q0 accuracy of 65.2% (McNemar p=0.037), while
q2 accuracy was 45.3%. On the other hand, overall ac-
curacy for questions using relational modification was
49.7%. Model accuracy for q1 was 57.6% compared to
an original q0 accuracy of 63.6% (McNemar p=0.006),
while accuracy for q2 was 41.8%. That is, when either
modification type was added to a question, model per-
formance fell. We also compared model performance
and behavior (such as changing answers from the q0 an-
swer) between the two modification types. In general,
the model seems to handle object property modification
(54.0%) significantly better (t-test p=0.046) than rela-
tional modification (49.7%). Lastly, when the model
had the answer correct for q1 the answer changed for q2
45.5% of the time for object property modification and
42.1% of the time for relational modification although
this difference was not significant (t-test p=0.307), sug-
gesting that the model does not tend to alter its correct
q1 answers when answering q2 more frequently for ei-
ther of the modification types. Tab. 3 summarizes the
accuracy obtained for the two modification types and
Fig. 4 shows the corresponding McNemar statistic and
significance scores.

3.2.3. Answer Type
Next, we will evaluate how well the model handles
modification in the context of answer type. For binary
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Relational Modifiers Object Modifiers
Yes/No Answers 0.655 0.697

Open-ended Answers 0.475 0.537

Table 4: Evaluating the joint influence of modifiers
and answer types. The accuracy values for LXMERT
are shown for each case.

(yes/no) questions, the model obtained an overall accu-
racy of 62.8%. While there was an observed drop in ac-
curacy of binary q1 answers (68.4%) from the original
q0 answers (70.3%), this was not significant (McNemar
p=0.202), suggesting the model is more resilient at an-
swering yes/no questions when more detailed informa-
tion is added to the original question. As with modifica-
tion type and other q2 observations in general, accuracy
for q2 did fall for binary questions (57.2%), albeit to a
lesser extent. Conversely, the model does not do as well
on non-binary questions (39.8% total) and performance
for q1 (51.8%) decreased (McNemar p<0.0001) from
q0 performance (57.7%). Additionally, non-binary q2
accuracy (27.9%) was the lowest amongst the four di-
mensions. Between answer types, the performance dif-
ference was significant (t-test p<0.0001) which does
suggest that, as expected, the model is better at an-
swering questions with binary possible answers. Tab. 3
summarizes the accuracy obtained for the two answer
types and Fig. 4 shows the corresponding McNemar
statistic and significance scores.

3.2.4. Joint Influence of Modification Type and
Answer Type

An additional evaluation of the model at the intersec-
tion of modification type and answer type was also con-
ducted. First, the intersection of object property and
binary questions was evaluated yielding 64.3% gen-
eral accuracy, 69.7% for q1 that was not a significant
drop (McNemar p=0.805) from q0 accuracy (70.3%),
and 58.8% for q2 accuracy. Not surprisingly, given the
earlier analysis, the model tended to perform best on
both questions modified with object property as well
as binary questions with no significant loss in accu-
racy. Evaluating the intersection of relational mod-
ification and binary questions, general accuracy was
59.6%, q1 accuracy (65.5%) fell significantly (McNe-
mar p=0.048) from q0 accuracy (70.3%), and q2 ac-
curacy was 53.7%. That is, even for binary ques-
tions, which the model tends to perform much better
on, questions modified according to object relation-
ships still had a negative effect on model accuracy.
For the intersection of object property and non-binary
questions, general accuracy was 41.1%, a significant
decrease (McNemar p=0.002) in q1 accuracy (53.7%)
from q0 accuracy (58.9%) was observed, and q2 accu-
racy was 28.5%. A decrease in accuracy for non-binary
questions, but not for binary questions when using ob-
ject property modifiers suggests that the model has
a harder time comprehending modifications to object
property in the context of the less concrete non-binary

(a) (b)

Figure 5: Sensitivity of model to specific details that
are absent in the image (questions written by AMT
workers for which they selected the answer as “un-
known”). Given that the model answers q1 correctly,
we compute the percentage of instances where the an-
swer to q2 is different from the answer to q1. (a) shows
these results for when q2 is not “unknown” and (b)
when the answer to q2 is “unknown”. Larger values
are better since it indicates the ability of the model to
recognize that the changed modifiers requires a change
in its prediction.

(a) (b)

Figure 6: (a) shows the results where given that the
model answers q0 correctly, we compute the percentage
of instances where the model answers q1 incorrectly.
(b) shows the results where given that the model an-
swers q0 incorrect, we compute the percentage of in-
stances where the model answers q1 correctly. Smaller
values in (a) are better since they indicate that modifier
did not force the model to answer incorrectly. Larger
values in (b) are better since they indicate that modifier
helped the model correct previous errors.

questions. Lastly, examining the intersection of rela-
tional modification and non-binary questions yielded
37.0% in general. There was a significant drop (Mc-
Nemar p=0.005) for q1 (47.5%) from q2 (55.0%), and
q2 accuracy was 26.4%. Inversely similar to the first
intersection, the intersection of the two categories that
the model had the hardest time with separately yielded
the lowest accuracy. Accuracy for q1 for the intersec-
tions are presented in Tab. 4.

3.2.5. “Unknown” questions
Finally, we analyzed question pairs that were taken out
of the main dataset due to q2 asking about details not
present or determinable from the image resulting in a
q2 of “unknown”. Overall accuracy for these questions
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Figure 7: Example predictions made by the model for (q0, q1, q2). Correct predictions are marked by blue and
wrong ones by red.

that modified q2 in such a way that the added details
were absent from the image was comparatively very
low (30.3%). Therefore, it appears that the model is
much less able to determine what it cannot know from
the image. For the main dataset Q, 44.5% of questions
where q1 was answered correctly resulted in a q2 an-
swer from the q1 prediction. On the other hand, for the
“unknown” questions in Qu only 18.3% of correctly
answered q1 answers resulted in a changed q2 answer.
As can be easily seen, this difference in changed an-
swers was significant (t-test p<0.0001), and lends sup-
port to the proposition that if the model is asked a ques-
tion not determinable from a image, it uses the con-
text of the details in the question that are present in the
image to answer, rather than reasoning that it cannot
answer affirmatively. The results are summarized in
Fig. 5.

3.2.6. Example Predictions
Some example predictions are shown in Fig. 7. As seen
here, in some cases, adding modifiers helped the model
correct its errors (the third image in the figure) while in
others, it confused the model (the second image in the
figure). Further, in other cases, while it seemed like the
model was correct, the fact that it got one of q1 or q2
wrong seems to indicate that it does not deeply perceive
the details in the question. Fig. 6 summarizes the cases
where adding modifiers helped or hurt the performance
of the model.

4. Conclusion
In summary, adding detail with respect to two cate-
gories of syntax modification to original VQA dataset
questions caused statistically significant decreases in
accuracy for the LXMERT VQA model on answering
these modified questions compared to accuracy on the
original questions. More specifically, for questions of
each type of modification, that is, object property and
spatial relational, model performance on questions with
additional syntactic modifiers corresponding to more
detailed features in the associated image fell. An impli-
cation of this observation, namely, that LXMERT is not
as sensitive to higher syntactic detail when processing

a question about a corresponding image. Interestingly,
model accuracy was observed to be different between
each modification type as well. That is, the model per-
formed better for questions that modified object prop-
erty as opposed to spatial relationships. This may be
due to the fact that the majority of object property mod-
ifiers were syntactically simpler than relational modi-
fiers since object property modifiers typically added de-
tails such as color, shape, size, etc. to an object which
tended to result in only one modifier word being added
more often than relational modifiers, which typically
require a modifier phrase such as prepositional phrases
or relative clauses. Comparing the effect of adding syn-
tactic detail for binary (yes/no) and non-binary ques-
tions, a significant change in accuracy was not observed
for binary questions, while a significant change was ob-
served for non-binary questions which suggests that the
model is able to process additional syntactic complex-
ity for binary questions better than for the non-binary
questions. This difference is important to note, how-
ever, should not be surprising due to the fact that VQA
models in general tend to perform particularly well on
binary questions when compared to less restrictive po-
tential answer sets (Goyal et al., 2017). Lastly, for
“unknown” questions, when the model predicted a cor-
rect answer to the first modified question q1 and was
presented with q2 questions which added details that
were not present in the corresponding image, it would
significantly more frequently choose to keep its answer
the same as its q1 answer rather than change its answer.
Therefore, suggesting that when the model is not able
to ground its interpretation of a question about an im-
age in that image, it will more frequently default to re-
taining its answer to q1. This could mean that the model
ignores details that it is not able to ground in an image
rather than and that in effect, the model is not sensitive
to when it cannot determine the answer to a question.

In future, we plan to use the dataset that we generated
to develop novel models that can leverage modifiers in
questions to obtain more accurate results. Further, we
also plan to develop explanations based on questions
with contrasting answers to help improve transparency
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of the model.
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