@inproceedings{bai-stede-2022-argument,
title = "Argument Similarity Assessment in {G}erman for Intelligent Tutoring: Crowdsourced Dataset and First Experiments",
author = "Bai, Xiaoyu and
Stede, Manfred",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.234",
pages = "2177--2187",
abstract = "NLP technologies such as text similarity assessment, question answering and text classification are increasingly being used to develop intelligent educational applications. The long-term goal of our work is an intelligent tutoring system for German secondary schools, which will support students in a school exercise that requires them to identify arguments in an argumentative source text. The present paper presents our work on a central subtask, viz. the automatic assessment of similarity between a pair of argumentative text snippets in German. In the designated use case, students write out key arguments from a given source text; the tutoring system then evaluates them against a target reference, assessing the similarity level between student work and the reference. We collect a dataset for our similarity assessment task through crowdsourcing as authentic German student data are scarce; we label the collected text pairs with similarity scores on a 5-point scale and run first experiments on the task. We see that a model based on BERT shows promising results, while we also discuss some challenges that we observe.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bai-stede-2022-argument">
<titleInfo>
<title>Argument Similarity Assessment in German for Intelligent Tutoring: Crowdsourced Dataset and First Experiments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoyu</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>NLP technologies such as text similarity assessment, question answering and text classification are increasingly being used to develop intelligent educational applications. The long-term goal of our work is an intelligent tutoring system for German secondary schools, which will support students in a school exercise that requires them to identify arguments in an argumentative source text. The present paper presents our work on a central subtask, viz. the automatic assessment of similarity between a pair of argumentative text snippets in German. In the designated use case, students write out key arguments from a given source text; the tutoring system then evaluates them against a target reference, assessing the similarity level between student work and the reference. We collect a dataset for our similarity assessment task through crowdsourcing as authentic German student data are scarce; we label the collected text pairs with similarity scores on a 5-point scale and run first experiments on the task. We see that a model based on BERT shows promising results, while we also discuss some challenges that we observe.</abstract>
<identifier type="citekey">bai-stede-2022-argument</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.234</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>2177</start>
<end>2187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Argument Similarity Assessment in German for Intelligent Tutoring: Crowdsourced Dataset and First Experiments
%A Bai, Xiaoyu
%A Stede, Manfred
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F bai-stede-2022-argument
%X NLP technologies such as text similarity assessment, question answering and text classification are increasingly being used to develop intelligent educational applications. The long-term goal of our work is an intelligent tutoring system for German secondary schools, which will support students in a school exercise that requires them to identify arguments in an argumentative source text. The present paper presents our work on a central subtask, viz. the automatic assessment of similarity between a pair of argumentative text snippets in German. In the designated use case, students write out key arguments from a given source text; the tutoring system then evaluates them against a target reference, assessing the similarity level between student work and the reference. We collect a dataset for our similarity assessment task through crowdsourcing as authentic German student data are scarce; we label the collected text pairs with similarity scores on a 5-point scale and run first experiments on the task. We see that a model based on BERT shows promising results, while we also discuss some challenges that we observe.
%U https://aclanthology.org/2022.lrec-1.234
%P 2177-2187
Markdown (Informal)
[Argument Similarity Assessment in German for Intelligent Tutoring: Crowdsourced Dataset and First Experiments](https://aclanthology.org/2022.lrec-1.234) (Bai & Stede, LREC 2022)
ACL