
(a) Input ELAN format (b) Annotations with Timestamps created in Step 1

(c) Aligned Text created in Step 2

Figure 2: Data Input and Outputs in our Framework

fully performed when videos are available and cor-
rectly match participants. In this regard, we found dif-
ficulties to match videos and corresponding signers in
some of the examined corpora. Thus, automatic video-
participant matching is planned for future releases of
this framework. In the cases in which videos are clearly
identified with the corresponding participants, the files
generated in (1) are used to check the timestamps in
which signers are producing information, and those
video frames are extracted, resized (to 224 by 224 pix-
els) and stored in a subfolder called videoframes (Fig-
ure 1, Item 4). As high resolution images will be
needed in future research stages, we plan to leverage
this step to meet this requirement.
Through the presented framework, we are able to pro-
cess SL corpora in ELAN format to extract text and
visual data to train neural networks. For the former,
ELAN annotations are parsed (1), merged and aligned
to produce parallel text files to experiment with NMT
models (2). For the latter, video frames with partic-
ipants signing are extracted and labelled with times-
tamps (3). The data outputted in (1) and (3) can be used
to incorporate visual information in SL translation and
recognition models.
Through the preliminary results presented in the next
section we aim to assess the effectiveness of our frame-
work.

5. Empirical Evaluation
To showcase the effectiveness of our framework, i.e.
reducing the manual efforts to extract datasets ready
to train NLP models with, we train and evaluate two
neural models. Namely, we use the parallel data gen-
erated by our framework to train Transformer mod-
els (Vaswani et al., 2017) for gloss to text translation.

5.1. Experimental Settings

We process the NGT corpus using our framework se-
lecting the Free Translation tier as leading modality;
and GlossL, GlossR and Mouth as required modalities.
As results, we obtained four text files containing 8344
aligned utterances for these data tiers. Afterwards, the
resulting parallel segments were split in training, vali-
dation and test subsets using 20% and 10% of the data
for validation and test respectively. In this experiment,
we consider GlossL, GlossR and Mouth as inputs to the
transformer and Free translation as output. We trained
two NMT models, one including all inputs and one ex-
cluding mouthing.

The goal of our experiment is not to obtain the highest
performance from the translation models, but rather to
create a proof of concept with the data generated by our
framework. Therefore, we used a simple transformer
architecture without an extensive hyperparameter tun-
ing. The encoder and decoder have the same architec-
ture consisting of 3 transformer layers with 4 attention
heads, and a hidden dimension of 1024; the embedding
vector size used is 512. We employed Huggingface’s25

implementations for our model. To tokenize the input
sequences, we trained a Sentence Piece model (Kudo
and Richardson, 2018) on the training partitions with a
joint vocabulary size of 5000 tokens.

Finally, we use a batch size of 64 sentences and
train the model for 250 epochs using the Adam opti-
mizer (Kingma and Ba, 2015) with 10� 5 as learning
rate; we apply beam search decoding with 5 beams dur-
ing generation.

25https://huggingface.co

https://huggingface.co


2485

5.2. Results

To evaluate the translation quality, we use the BLEU
metric (Papineni et al., 2002) as implemented in the
SacreBLEU package (Post, 2018). We also analyze the
loss curves for the training and validation partitions.
Figure 3 shows the loss curves for the model includ-
ing mouthing data. We can observe that training and
validation losses decrease between 1 and 50 training
epochs, showing that the employed model is able to
learn from the annotations generated by our frame-
work. After this point, the curves follow the typical
behaviour when a model is overfitted on training data:
the training loss continues to drop, whereas the vali-
dation loss increases. Further hyperparameter tuning
could be used to reduce overfitting, but this is out of
scope for this paper. The loss curves for the model with
mouthing exhibited a similar behaviour to the plotted in
Figure 3.

Figure 3: Train and validation losses for model with
mouthing

Figure 4 plots the BLEU scores per training epoch for
the two models. As can be observed, the models can
learn from the different annotation modalities outputted
by our framework: the model including mouthing im-
proves consistently between 1 and 160 epochs reaching
its highest values around 3.35 BLEU and converging.
The model without mouthing follows a similar trend
in the beginning of the training, but the curve for this
model is generally less steep and the convergence is
not as clear as for the previous model. Interestingly, we
can note that including mouthing modality in the model
boosted the performance metric. The BLEU scores on
the test partition at the end of the training process for
both models are: 3.04 BLEU for the model including
mouthing and 2.57 for the model without mouthing.
While neither the transformer with mouthing nor the
one without mouthing reach significant quality levels,
it is important to note that these models can in fact learn
(judging by the progressively increasing performance
curves as well as the decreasing loss curves) from the
data generated by the proposed framework. Further-
more, our framework generates parallel data, i.e. data
aligned along all tiers, which is directly suitable for
sequence to sequence tasks, as shown above with our
NMT experiments.

Figure 4: BLEU scores on the validation partition for
the models with and without mouthing.

6. Conclusion and Future Work
By comparing the availability and properties of various
SL corpora and SL datasets, we outlined the challenges
which are currently limiting the advances of the fields
of SL recognition and translation. We described the dif-
ficulty in acquiring data and the divergences amongst
the various resources in terms of data and annotation
formats. The type, granularity, and amount of infor-
mation annotated in SL corpora and datasets varies
extremely. In addition, often the same or similar in-
formation is encoded following different conventions.
This fact poses limits to the compatibility of data from
different datasets and to the creation of multilingual
datasets. The only solution in this case is introducing
standardized annotation and glossing conventions.
In order to approach the challenges concerning the lack
of a common data format, we proposed a framework
that adapts ELAN files into a unified format which is
suitable for SL recognition and translation models. We
employed the annotation data outputted by our frame-
work to train an NMT model; and our preliminary re-
sults prove that neural models can indeed learn from
data in the proposed format.
Future work is needed in order to expand the poten-
tial of these preliminary findings. Firstly, the pro-
posed framework may be improved to deal with video-
participant matching and higher resolution video frame
extraction. Besides, our framework only processes
ELAN format, and can be extended to other formats
as iLex 26. Regarding the experimental side, the data
generated by our framework for different corpora will
be used to train multilingual models for SLs.
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