@inproceedings{goncalo-oliveira-2022-exploring,
title = "Exploring Transformers for Ranking {P}ortuguese Semantic Relations",
author = "Gon{\c{c}}alo Oliveira, Hugo",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.275",
pages = "2573--2582",
abstract = "We explored transformer-based language models for ranking instances of Portuguese lexico-semantic relations. Weights were based on the likelihood of natural language sequences that transmitted the relation instances, and expectations were that they would be useful for filtering out noisier instances. However, after analysing the weights, no strong conclusions were taken. They are not correlated with redundancy, but are lower for instances with longer and more specific arguments, which may nevertheless be a consequence of their sensitivity to the frequency of such arguments. They did also not reveal to be useful when computing word similarity with network embeddings. Despite the negative results, we see the reported experiments and insights as another contribution for better understanding transformer language models like BERT and GPT, and we make the weighted instances publicly available for further research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="goncalo-oliveira-2022-exploring">
<titleInfo>
<title>Exploring Transformers for Ranking Portuguese Semantic Relations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hugo</namePart>
<namePart type="family">Gonçalo Oliveira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explored transformer-based language models for ranking instances of Portuguese lexico-semantic relations. Weights were based on the likelihood of natural language sequences that transmitted the relation instances, and expectations were that they would be useful for filtering out noisier instances. However, after analysing the weights, no strong conclusions were taken. They are not correlated with redundancy, but are lower for instances with longer and more specific arguments, which may nevertheless be a consequence of their sensitivity to the frequency of such arguments. They did also not reveal to be useful when computing word similarity with network embeddings. Despite the negative results, we see the reported experiments and insights as another contribution for better understanding transformer language models like BERT and GPT, and we make the weighted instances publicly available for further research.</abstract>
<identifier type="citekey">goncalo-oliveira-2022-exploring</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.275</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>2573</start>
<end>2582</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Transformers for Ranking Portuguese Semantic Relations
%A Gonçalo Oliveira, Hugo
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F goncalo-oliveira-2022-exploring
%X We explored transformer-based language models for ranking instances of Portuguese lexico-semantic relations. Weights were based on the likelihood of natural language sequences that transmitted the relation instances, and expectations were that they would be useful for filtering out noisier instances. However, after analysing the weights, no strong conclusions were taken. They are not correlated with redundancy, but are lower for instances with longer and more specific arguments, which may nevertheless be a consequence of their sensitivity to the frequency of such arguments. They did also not reveal to be useful when computing word similarity with network embeddings. Despite the negative results, we see the reported experiments and insights as another contribution for better understanding transformer language models like BERT and GPT, and we make the weighted instances publicly available for further research.
%U https://aclanthology.org/2022.lrec-1.275
%P 2573-2582
Markdown (Informal)
[Exploring Transformers for Ranking Portuguese Semantic Relations](https://aclanthology.org/2022.lrec-1.275) (Gonçalo Oliveira, LREC 2022)
ACL