Unsupervised Machine Translation in Real-World Scenarios

Ona de Gibert Bonet, Iakes Goenaga, Jordi Armengol-Estapé, Olatz Perez-de-Viñaspre, Carla Parra Escartín, Marina Sanchez, Mārcis Pinnis, Gorka Labaka, Maite Melero


Abstract
In this work, we present the work that has been carried on in the MT4All CEF project and the resources that it has generated by leveraging recent research carried out in the field of unsupervised learning. In the course of the project 18 monolingual corpora for specific domains and languages have been collected, and 12 bilingual dictionaries and translation models have been generated. As part of the research, the unsupervised MT methodology based only on monolingual corpora (Artetxe et al., 2017) has been tested on a variety of languages and domains. Results show that in specialised domains, when there is enough monolingual in-domain data, unsupervised results are comparable to those of general domain supervised translation, and that, at any rate, unsupervised techniques can be used to boost results whenever very little data is available.
Anthology ID:
2022.lrec-1.325
Volume:
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Month:
June
Year:
2022
Address:
Marseille, France
Editors:
Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association
Note:
Pages:
3038–3047
Language:
URL:
https://aclanthology.org/2022.lrec-1.325
DOI:
Bibkey:
Cite (ACL):
Ona de Gibert Bonet, Iakes Goenaga, Jordi Armengol-Estapé, Olatz Perez-de-Viñaspre, Carla Parra Escartín, Marina Sanchez, Mārcis Pinnis, Gorka Labaka, and Maite Melero. 2022. Unsupervised Machine Translation in Real-World Scenarios. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 3038–3047, Marseille, France. European Language Resources Association.
Cite (Informal):
Unsupervised Machine Translation in Real-World Scenarios (de Gibert Bonet et al., LREC 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.lrec-1.325.pdf