@inproceedings{bhattarai-etal-2022-convtexttm,
title = "{C}onv{T}ext{TM}: An Explainable Convolutional Tsetlin Machine Framework for Text Classification",
author = "Bhattarai, Bimal and
Granmo, Ole-Christoffer and
Jiao, Lei",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.401",
pages = "3761--3770",
abstract = "Recent advancements in natural language processing (NLP) have reshaped the industry, with powerful language models such as GPT-3 achieving superhuman performance on various tasks. However, the increasing complexity of such models turns them into {``}black boxes{''}, creating uncertainty about their internal operation and decision-making. Tsetlin Machine (TM) employs human-interpretable conjunctive clauses in propositional logic to solve complex pattern recognition problems and has demonstrated competitive performance in various NLP tasks. In this paper, we propose ConvTextTM, a novel convolutional TM architecture for text classification. While legacy TM solutions treat the whole text as a corpus-specific set-of-words (SOW), ConvTextTM breaks down the text into a sequence of text fragments. The convolution over the text fragments opens up for local position-aware analysis. Further, ConvTextTM eliminates the dependency on a corpus-specific vocabulary. Instead, it employs a generic SOW formed by the tokenization scheme of the Bidirectional Encoder Representations from Transformers (BERT). The convolution binds together the tokens, allowing ConvTextTM to address the out-of-vocabulary problem as well as spelling errors. We investigate the local explainability of our proposed method using clause-based features. Extensive experiments are conducted on seven datasets, to demonstrate that the accuracy of ConvTextTM is either superior or comparable to state-of-the-art baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhattarai-etal-2022-convtexttm">
<titleInfo>
<title>ConvTextTM: An Explainable Convolutional Tsetlin Machine Framework for Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bimal</namePart>
<namePart type="family">Bhattarai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ole-Christoffer</namePart>
<namePart type="family">Granmo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Jiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent advancements in natural language processing (NLP) have reshaped the industry, with powerful language models such as GPT-3 achieving superhuman performance on various tasks. However, the increasing complexity of such models turns them into “black boxes”, creating uncertainty about their internal operation and decision-making. Tsetlin Machine (TM) employs human-interpretable conjunctive clauses in propositional logic to solve complex pattern recognition problems and has demonstrated competitive performance in various NLP tasks. In this paper, we propose ConvTextTM, a novel convolutional TM architecture for text classification. While legacy TM solutions treat the whole text as a corpus-specific set-of-words (SOW), ConvTextTM breaks down the text into a sequence of text fragments. The convolution over the text fragments opens up for local position-aware analysis. Further, ConvTextTM eliminates the dependency on a corpus-specific vocabulary. Instead, it employs a generic SOW formed by the tokenization scheme of the Bidirectional Encoder Representations from Transformers (BERT). The convolution binds together the tokens, allowing ConvTextTM to address the out-of-vocabulary problem as well as spelling errors. We investigate the local explainability of our proposed method using clause-based features. Extensive experiments are conducted on seven datasets, to demonstrate that the accuracy of ConvTextTM is either superior or comparable to state-of-the-art baselines.</abstract>
<identifier type="citekey">bhattarai-etal-2022-convtexttm</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.401</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>3761</start>
<end>3770</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ConvTextTM: An Explainable Convolutional Tsetlin Machine Framework for Text Classification
%A Bhattarai, Bimal
%A Granmo, Ole-Christoffer
%A Jiao, Lei
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F bhattarai-etal-2022-convtexttm
%X Recent advancements in natural language processing (NLP) have reshaped the industry, with powerful language models such as GPT-3 achieving superhuman performance on various tasks. However, the increasing complexity of such models turns them into “black boxes”, creating uncertainty about their internal operation and decision-making. Tsetlin Machine (TM) employs human-interpretable conjunctive clauses in propositional logic to solve complex pattern recognition problems and has demonstrated competitive performance in various NLP tasks. In this paper, we propose ConvTextTM, a novel convolutional TM architecture for text classification. While legacy TM solutions treat the whole text as a corpus-specific set-of-words (SOW), ConvTextTM breaks down the text into a sequence of text fragments. The convolution over the text fragments opens up for local position-aware analysis. Further, ConvTextTM eliminates the dependency on a corpus-specific vocabulary. Instead, it employs a generic SOW formed by the tokenization scheme of the Bidirectional Encoder Representations from Transformers (BERT). The convolution binds together the tokens, allowing ConvTextTM to address the out-of-vocabulary problem as well as spelling errors. We investigate the local explainability of our proposed method using clause-based features. Extensive experiments are conducted on seven datasets, to demonstrate that the accuracy of ConvTextTM is either superior or comparable to state-of-the-art baselines.
%U https://aclanthology.org/2022.lrec-1.401
%P 3761-3770
Markdown (Informal)
[ConvTextTM: An Explainable Convolutional Tsetlin Machine Framework for Text Classification](https://aclanthology.org/2022.lrec-1.401) (Bhattarai et al., LREC 2022)
ACL