@inproceedings{ali-etal-2022-constructing,
title = "Constructing A Dataset of Support and Attack Relations in Legal Arguments in Court Judgements using Linguistic Rules",
author = "Ali, Basit and
Pawar, Sachin and
Palshikar, Girish and
Singh, Rituraj",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.51",
pages = "491--500",
abstract = "Argumentation mining is a growing area of research and has several interesting practical applications of mining legal arguments. Support and Attack relations are the backbone of any legal argument. However, there is no publicly available dataset of these relations in the context of legal arguments expressed in court judgements. In this paper, we focus on automatically constructing such a dataset of Support and Attack relations between sentences in a court judgment with reasonable accuracy. We propose three sets of rules based on linguistic knowledge and distant supervision to identify such relations from Indian Supreme Court judgments. The first rule set is based on multiple discourse connectors, the second rule set is based on common semantic structures between argumentative sentences in a close neighbourhood, and the third rule set uses the information about the source of the argument. We also explore a BERT-based sentence pair classification model which is trained on this dataset. We release the dataset of 20506 sentence pairs - 10746 Support (precision 77.3{\%}) and 9760 Attack (precision 65.8{\%}). We believe that this dataset and the ideas explored in designing the linguistic rules and will boost the argumentation mining research for legal arguments.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ali-etal-2022-constructing">
<titleInfo>
<title>Constructing A Dataset of Support and Attack Relations in Legal Arguments in Court Judgements using Linguistic Rules</title>
</titleInfo>
<name type="personal">
<namePart type="given">Basit</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sachin</namePart>
<namePart type="family">Pawar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Girish</namePart>
<namePart type="family">Palshikar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rituraj</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Argumentation mining is a growing area of research and has several interesting practical applications of mining legal arguments. Support and Attack relations are the backbone of any legal argument. However, there is no publicly available dataset of these relations in the context of legal arguments expressed in court judgements. In this paper, we focus on automatically constructing such a dataset of Support and Attack relations between sentences in a court judgment with reasonable accuracy. We propose three sets of rules based on linguistic knowledge and distant supervision to identify such relations from Indian Supreme Court judgments. The first rule set is based on multiple discourse connectors, the second rule set is based on common semantic structures between argumentative sentences in a close neighbourhood, and the third rule set uses the information about the source of the argument. We also explore a BERT-based sentence pair classification model which is trained on this dataset. We release the dataset of 20506 sentence pairs - 10746 Support (precision 77.3%) and 9760 Attack (precision 65.8%). We believe that this dataset and the ideas explored in designing the linguistic rules and will boost the argumentation mining research for legal arguments.</abstract>
<identifier type="citekey">ali-etal-2022-constructing</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.51</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>491</start>
<end>500</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Constructing A Dataset of Support and Attack Relations in Legal Arguments in Court Judgements using Linguistic Rules
%A Ali, Basit
%A Pawar, Sachin
%A Palshikar, Girish
%A Singh, Rituraj
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F ali-etal-2022-constructing
%X Argumentation mining is a growing area of research and has several interesting practical applications of mining legal arguments. Support and Attack relations are the backbone of any legal argument. However, there is no publicly available dataset of these relations in the context of legal arguments expressed in court judgements. In this paper, we focus on automatically constructing such a dataset of Support and Attack relations between sentences in a court judgment with reasonable accuracy. We propose three sets of rules based on linguistic knowledge and distant supervision to identify such relations from Indian Supreme Court judgments. The first rule set is based on multiple discourse connectors, the second rule set is based on common semantic structures between argumentative sentences in a close neighbourhood, and the third rule set uses the information about the source of the argument. We also explore a BERT-based sentence pair classification model which is trained on this dataset. We release the dataset of 20506 sentence pairs - 10746 Support (precision 77.3%) and 9760 Attack (precision 65.8%). We believe that this dataset and the ideas explored in designing the linguistic rules and will boost the argumentation mining research for legal arguments.
%U https://aclanthology.org/2022.lrec-1.51
%P 491-500
Markdown (Informal)
[Constructing A Dataset of Support and Attack Relations in Legal Arguments in Court Judgements using Linguistic Rules](https://aclanthology.org/2022.lrec-1.51) (Ali et al., LREC 2022)
ACL