@inproceedings{tleubayev-etal-2022-cyrillic,
title = "{C}yrillic-{MNIST}: a {C}yrillic Version of the {MNIST} Dataset",
author = "Tleubayev, Bolat and
Zhexenova, Zhanel and
Koishybay, Kenessary and
Sandygulova, Anara",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.510",
pages = "4767--4773",
abstract = "This paper presents a new handwritten dataset, Cyrillic-MNIST, a Cyrillic version of the MNIST dataset, comprising of 121,234 samples of 42 Cyrillic letters. The performance of Cyrillic-MNIST is evaluated using standard deep learning approaches and is compared to the Extended MNIST (EMNIST) dataset. The dataset is available at https://github.com/bolattleubayev/cmnist",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tleubayev-etal-2022-cyrillic">
<titleInfo>
<title>Cyrillic-MNIST: a Cyrillic Version of the MNIST Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bolat</namePart>
<namePart type="family">Tleubayev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhanel</namePart>
<namePart type="family">Zhexenova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenessary</namePart>
<namePart type="family">Koishybay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anara</namePart>
<namePart type="family">Sandygulova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a new handwritten dataset, Cyrillic-MNIST, a Cyrillic version of the MNIST dataset, comprising of 121,234 samples of 42 Cyrillic letters. The performance of Cyrillic-MNIST is evaluated using standard deep learning approaches and is compared to the Extended MNIST (EMNIST) dataset. The dataset is available at https://github.com/bolattleubayev/cmnist</abstract>
<identifier type="citekey">tleubayev-etal-2022-cyrillic</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.510</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>4767</start>
<end>4773</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cyrillic-MNIST: a Cyrillic Version of the MNIST Dataset
%A Tleubayev, Bolat
%A Zhexenova, Zhanel
%A Koishybay, Kenessary
%A Sandygulova, Anara
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F tleubayev-etal-2022-cyrillic
%X This paper presents a new handwritten dataset, Cyrillic-MNIST, a Cyrillic version of the MNIST dataset, comprising of 121,234 samples of 42 Cyrillic letters. The performance of Cyrillic-MNIST is evaluated using standard deep learning approaches and is compared to the Extended MNIST (EMNIST) dataset. The dataset is available at https://github.com/bolattleubayev/cmnist
%U https://aclanthology.org/2022.lrec-1.510
%P 4767-4773
Markdown (Informal)
[Cyrillic-MNIST: a Cyrillic Version of the MNIST Dataset](https://aclanthology.org/2022.lrec-1.510) (Tleubayev et al., LREC 2022)
ACL
- Bolat Tleubayev, Zhanel Zhexenova, Kenessary Koishybay, and Anara Sandygulova. 2022. Cyrillic-MNIST: a Cyrillic Version of the MNIST Dataset. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 4767–4773, Marseille, France. European Language Resources Association.