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Abstract
This paper reports on the creation and development of the Tembusu Learner Treebank — an open treebank created from the
NTU Corpus of Learner English, unique for incorporating mal-rules in the annotation of ungrammatical sentences. It describes
the motivation and development of the treebank, as well as its exploitation to build a new parse-ranking model for the English
Resource Grammar, designed to help improve the parse selection of ungrammatical sentences and diagnose these sentences
through mal-rules. The corpus contains 25,000 sentences, of which 4,900 are treebanked. The paper concludes with an
evaluation experiment that shows the usefulness of this new treebank in the tasks of grammatical error detection and diagnosis.
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1. Introduction
Treebanks are valuable language resources, where in-
formation pertaining to syntactic and/or semantic struc-
ture is provided alongside a corpus. Treebanks have
many usages, both in empirical linguistic research and
in NLP. They have proved to be invaluable resources
for tasks such as parsing, machine translation, infor-
mation retrieval, and others.
In general, most NLP tasks have something to gain
from richer annotation schemas, and this is why tree-
banks are generally seen as worthwhile endeavors, de-
spite requiring a large investment of resources to create.
Current attempts to address the profoundly linguistic
problems of grammatical error detection and diagnosis
rely on fairly shallow annotations. Mainstream shared-
tasks generally bypass any notion of grammatical struc-
ture when providing labeled training data. We believe
this information is important for these tasks, and aim
to fill this gap. The Tembusu Treebank is new kind of
data resource, designed to aid the tasks of grammati-
cal error detection and diagnosis with deep structural
annotations of syntax and semantics, along with gram-
matical error annotations in the form of mal-rules.

2. Related Work
2.1. The NTU Corpus of Learner English
The Tembusu Treebank is based on the NTU Corpus
of Learner English (Winder et al., 2017, NTUCLE).
The NTUCLE is an open corpus of learner English,
made up of assignments submitted by first year under-
graduate engineering students from a major university
in Singapore (NTU). It was hand-tagged by six pro-
fessional English lecturers, and uses a new annotation
schema largely based on pre-existing tagsets such as
the ones used by the NUS Corpus of Learner English
(Dahlmeier et al., 2013) and the Cambridge Learner
Corpus (Nicholls, 2003). NTUCLE’s first release con-
tained 180 tagged documents, containing 9,571 sen-

tences out of which 2,751 were considered problem-
atic.

2.2. The English Resource Grammar
The Tembusu Treebank is built from parses generated
by the English Resource Grammar (Flickinger, 2000;
Copestake and Flickinger, 2000, ERG). The ERG is
an open-source, broad-coverage computational gram-
mar for English. It has a very large lexicon and wide
coverage of syntactic phenomena capable of producing
high-precision syntactic and semantic representations
for English. It follows the theoretical framework of
Head-Driven Phrase Structure Grammar (Pollard and
Sag, 1994; Sag et al., 1999, HPSG) and produces
Minimal Recursion Semantics (Copestake et al., 2005,
MRS). Despite a high standard of linguistic accuracy,
the ERG has an impressive coverage over unseen En-
glish text across a variety of genres — between 81.2%
and 96.8% (Flickinger, 2011).
Of special interest for the Tembusu Treebank is the fact
that the ERG has incorporated substantial work on the
design of mal-rules (Bender et al., 2004; Flickinger
and Yu, 2013; Suppes et al., 2014; Flickinger et al.,
2016) — which allow the grammar to identify, diag-
nose and potentially correct a variety of ungrammat-
ical and stylistically deprecated sentences. Mal-rules
were first proposed by Schneider and McCoy (1998),
and extend descriptive grammars in order to allow spe-
cific ungrammatical phenomena.

(1) * These rule correct error.
mal-S

mal-NP

D

these

N

rule

VP

V

correct

mal-NP

error

Taking (1) as an example, there are multiple rules in the
English grammar that should prevent (1) from form-
ing a proper sentence: i) the single noun error should
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not be able to form a bare noun phrase (NP); ii) the
NP these rule should not be able to form due to agree-
ment constraints; iii) and, finally, if we assume a sin-
gular subject, there are also agreement issues between
the subject and the main verb of the sentence. In (1),
the nodes in the syntactic tree that would need to corre-
spond to mal-rules are marked with the suffix ‘mal-’.
Early work with mal-rules in the ERG targeted elemen-
tary and middle-school English language education in
the USA (Suppes et al., 2014), and showed very posi-
tive results in its ability to provide corrective feedback
and to improve students’ language use.
Systems based on the ERG participated in the 2013
CoNLL Shared Task on Grammatical Error Correction
(Flickinger and Yu, 2013) and the 2016 Shared Task on
Automated Evaluation of Scientific Writing (Flickinger
et al., 2016). Despite not being the top-ranked systems,
the ERG-based systems were able to consistently iden-
tify multiple problems in the ‘gold’ annotations pro-
vided as development and evaluation data in these tasks
(e.g., missing, incorrect or unnecessary error annota-
tions in the gold data, and missing plausible corrections
in the test sets). More recently, the ERG has also been
successfully adapted into a system designed to provide
corrective feedback to undergraduate engineering stu-
dents — the iTELL Automated Writing Support Sys-
tem (Morgado da Costa et al., 2020).
From an analysis of the results of the above-mentioned
systems, it became clear that the ERG’s ability to di-
agnose grammatical problems is potentially very good,
but inherently dependent on the parse ranking models
used by the grammar. However, even though the ERG
has been used for grammatical error detection and di-
agnosis for many years, there have been no attempts
to train a new model with learner data. The Tembusu
Treebank is the first step to close this gap.

2.3. Similar Treebanks
Our treebank is similar in kind to other available tree-
banks. It is most similar to the Redwoods treebank
(Oepen et al., 2002) and the DeepBank (Flickinger et
al., 2012) – two other English treebanks built with
the help of the ERG. In the same group we have the
Japanese Hinoki Treebank (Bond et al., 2004; Bond et
al., 2008) built from JACY (Siegel and Bender, 2002;
Siegel et al., 2016) (for Japanese), and JATI (Moeljadi,
2017), a treebank for the Indonesian language built
with INDRA (Moeljadi et al., 2015).
All these treebanks share a similar structure, and in-
clude very rich syntactic and semantic outputs. The
treebanks include a list of possible parses from each
grammar (representing the ambiguity generated by the
source grammar) and, when possible, the single most
appropriate parse selected by a human annotator. The
treebanks include fairly general structures, such as
simple labeled syntactic trees, as well as formalism-
specific outputs such as MRS semantics, and a full
derivation tree that stores enough information to repli-

cate the full syntactic analysis done by the computa-
tional grammar. These treebanks also share infrastruc-
ture that supports their maintenance and evolution, as
their respective grammars evolve over time. This in-
cludes a shared set of tools that can be used to annotate
and update the treebanks, as well as to train stochastic
parse-ranking models that can be used by their source
grammars (Oepen et al., 2004).
The main differences between the Tembusu Treebank
and other pre-existing treebanks is the fact that it is
built from learner data and the fact that it uses mal-
rules. This new treebank was then used to produce a
new parse-ranking model for the ERG, with the goal of
improving its error detection capabilities. The evalua-
tion of this model is discussed in Section 4.

2.4. Similar Projects
The Tembusu treebank shares some similarity with
SALLE — Syntactically Annotating the Language of
Learner English (Ragheb and Dickinson, 2012; Ragheb
and Dickinson, 2014) and the Universal Dependencies
for Learner English (Berzak et al., 2016), which overtly
follows in SALLE’s footsteps.
These projects use syntactic dependency-style analy-
sis to hand-annotate learner data, which can be use-
ful to inform tasks such as grammatical error detection
and/or correction. However, their main concern is to
increase the robustness of statistical parsers, and their
ability to reasonably deal with non-canonical language.
Although related, these goals are not fully-aligned with
those of our project.
These two projects focus on establishing a reasonable
layer of dependency annotations when presented with
sentences that would not be able to be annotated using
standard guidelines (designed for canonical language).
Neither project attempts to explicitly diagnose or anno-
tate the source or kind of errors present in the data. And
even though the second project (Berzak et al., 2016)
provides a corrected version of each ungrammatical
sentence (tagged using the standard universal depen-
dency guidelines), neither project explicitly elaborates
on how these annotations can be used to improve the
tasks of error detection, error correction, or in the pro-
vision of corrective feedback. In general, these projects
are essentially working towards certain classes of errors
(or non-canonical language) being ignored by parsers
by attempting to ‘reduc[e] the impact of grammatical
errors in automatic annotation’ (Berzak et al., 2016).
Some of the main differences between the Tembusu
Treebank and the projects mentioned above are:

• our treebank uses a grammar to annotate trees, while
other projects use direct human labeling. This
has advantages and disadvantages. Using a gram-
mar assumes that a theoretical model of a phe-
nomenon/construction has been previously devel-
oped, which helps provide deeper morphosyntactic
and semantic information for annotated trees. The
downside is the impossibility to provide annotations
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for sentences with phenomena or errors not covered
by a grammar (i.e. not all sentences are annotated);

• our treebank includes full derivation trees that store
enough information to replicate the complete syntac-
tic analysis provided by the ERG — including mal-
rules; this means that our annotations can be used
to describe which constraints are being violated by
an ungrammatical sentence. The above-mentioned
projects label ungrammatical data in a way similar to
that of grammatical data — and hence cannot easily
describe where or why a sentence is ungrammatical;

• because it is produced from the ERG, our treebank is
uniquely suited to train this grammar without com-
promising its flexibility or precision. The inherent
upside of having detailed annotations is the fact that
these annotations can be used by simpler systems
(e.g., converting fine-grained linguistic labels into
coarser ones). However, the reverse is not true. As
such, while the data provided by the Tembusu Tree-
bank could, in theory, be converted into Universal
Dependencies (with some amount of work to produce
adequate mappings), the reverse is not possible.

3. The Treebank
The Tembusu Treebank is built from an enhanced ver-
sion of the NTUCLE (Winder et al., 2017). Data col-
lection continued until 2021, under the same conditions
and for similar student populations. Today, it contains
slightly over 800 documents (≈25,000 sentences).
The Tembusu Treebank gives a new life to this learner
corpus. It releases all previously unavailable data under
a Creative Commons Attribution 4.0 International li-
cense, and defines a new future for this data — a learner
treebank. The treebank has been in continuous devel-
opment since 2020, and this paper reports on its first
release (with ≈20% of the data tagged). The treebank
will be made available on Github,1 and will include the
full dataset (including untagged documents).

3.1. ACE Tools
The treebanking process relied heavily on the ACE
Tools:2 a suite of open-source applications based on
the Answer Constraint Engine (ACE). ACE is a highly
efficient HPSG unification engine that supports both
parsing and generation for grammars written in Type
Description Language (Krieger and Schäfer, 1994). In
addition to the main parsing engine, the ACE Tools
also include the Full Forest Treebanker (Packard, 2015,
FFTB) and ready-to-use binaries to train parse-ranking
models from full-forest treebanks.
The Tembusu Treebank uses a slightly enhanced ver-
sion of the FFTB tool. These enhancements included
small changes to be able to securely serve the FFTB as
a web-service (so the results of remote annotation could
be centralized in a server), and improvements to the

1https://github.com/lmorgadodacosta/
the-tembusu-treebank

2http://sweaglesw.org/linguistics/acetools/

user-interface of the FFTB (i.e., providing in-tool ac-
cess to grammar documentation, and making mal-rules
visually distinct from other rules).

3.2. The Treebanking Process
This first release of the Tembusu Treebank was tagged
with the help of five student assistants (four undergrad-
uates and one graduate student), all majoring in Lin-
guistics and Multilingual Studies. All students had suc-
cessfully completed a Syntactic Theory course, where
they were introduced to the HPSG framework. How-
ever, even though students may have a detailed under-
standing of the theoretical inner-workings and assump-
tions of HPSG, treebanking sentences with a real gram-
mar is a very different experience. As such, all five
students went through an intensive training exercise.
While developing a grammar, grammarians often need
to decide on the best among many possible analyses for
each linguistic phenomena. As such, real grammars (in
this case, the ERG) have their own assumptions, which
are not always intuitive and need to be learned. For
example, the destination (e.g., ‘to Beijing’) in a sen-
tence such as ‘She went to Beijing.’ is treated as an
adjunct in the ERG — while other English grammars
might treat it as a complement. Much of the variety that
can be found in implemented grammars mirrors cur-
rent linguistic discussions. It is not always clear what
is the best analysis for certain linguistic phenomena.
Our treebankers needed to learn many of the decisions
taken while developing the ERG.
Apart from this layer of idiosyncrasy, the main task of
treebanking is dealing with ambiguity. Treebanking a
sentence involves resolving any inherent ambiguity that
it may have. Sentence (2) shows a classic example of
PP attachment ambiguity.

(2) Kim saw the kid with the binoculars.

Consider (3) and (4) as two possible analyses of (2),
which show the syntactic ambiguity. In the analysis
(3), the kid was carrying or using the binoculars, while
the reading captured by (4) describes a situation where
the binoculars were used as an instrument in the act of
seeing (i.e., it was Kim holding/using the binoculars).

(3) S

NP

Kim

VP

V

saw

NP

NP

D

the

NP

kid

PP

P

with

NP

D

the

NP

binoculars

(4) S

NP

Kim

VP

VP

V

saw

NP

D

the

NP

kid

PP

P

with

NP

D

the

NP

binoculars

Whenever there is context, the decision of how to re-
solve ambiguity should be done with the available con-
text in mind. Sometimes, common-sense knowledge
also plays a part in this disambiguation process. For
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example, (4) makes more sense, especially given the
common sense knowledge of what binoculars are used
for. However, more often than not, the context is not
enough to resolve all available ambiguity.
In sentence (5), for example, it is arguably more diffi-
cult to decide if the purchase happened on Tuesday or
if the concert will happen on Tuesday. In such cases,
treebanking projects need to create guidelines for the
treebankers on how to deal with these problems.3

(5) Yasu bought tickets for the concert on Tuesday.

Finally, as previously mentioned, one of the main dif-
ferentiators of the Tembusu Treebank is the fact that it
uses mal-rules. In this case, a new set of guidelines was
also developed to help treebankers understand how to
use mal-rules, including situations where they should
not be used even if they were available. In the pres-
ence of multiple ways of correcting a sentence, tree-
bankers were instructed to select the most natural cor-
rection (similar to what is done for disambiguation —
using context and common sense knowledge). When-
ever mal-rules were available but none of the possible
corrections was diagnosing/reconstructing a plausible
interpretation given the context, treebankers were in-
structed to not treebank these sentences (i.e., told to re-
ject them). In the future, the addition of more mal-rules
to the ERG may allow these sentences to be tagged.
Treebankers had to go through a training exercise
where they learned how to work with the treebank-
ing tools, how to access the grammar documentation,
and how to inspect previous treebanks created from the
ERG (which could be used as a guide for the treebank-
ing process). During their training, treebankers also
had sessions with the main developer and maintainer
of the ERG to learn and discuss the main assumptions
and idiosyncrasies of this grammar. The goal of this
training exercise was to annotate a set of 500 sentences,
which was thoroughly tagged and discussed through
multiple adjudication sessions by all the treebankers.
Adjudication sessions can only happen when more than
one person tags the same set of data, and are used to
discuss and harmonize annotations. These sessions are
especially important in annotation tasks dealing with
high complexity or ambiguity — both true in the case
of treebanking. Adjudication exercises can be very im-
portant to bring treebankers to the same wavelength —
i.e., being aware of the thought processes of the other
treebankers. By requesting treebankers to discuss dis-
crepancies and to decide on a single analysis, the an-
notation process becomes more streamlined, and some
types of discrepancies tend to dissipate over time as
treebankers are asked to adjudicate discrepancies mul-
tiple times during the treebanking process.
During training, each treebanker had the opportunity
to adjudicate different subsets of sentences with mul-

3For example, when context alone was not enough to clear
up ambiguity, our treebankers were told to prefer higher at-
tachment of PPs — i.e., prefer trees like (4), instead of (3).

tiple other treebankers. These sessions were super-
vised by at least one experienced linguist/treebanker,
ensuring that all discussions were productive. How-
ever, despite being highly desirable, adjudicating a full
treebank in this manner would be too expensive and
time consuming. For this treebank, adjudication ses-
sions happened heavily during the training process, and
then more sparsely during the the main annotation exer-
cise. This was done to save resources, while maintain-
ing the ability to measure inter-treebanker agreement,
and to ensure treebankers kept following the guidelines
throughout the process.
Table 1 shows a summary of the entire treebanking pro-
cess. A total of 4,900 sentences were tagged. The
first dataset (ID 0) was the largest, with 500 sentences,
and was used during the training sessions. All other
sets had 200 sentences each.4 The remaining 22 sets
were tagged by either one or two treebankers. In total,
1700 sentences (≈35%) were tagged by two or more
treebankers. Whenever a set was treebanked by two
people, it was also adjudicated before moving on with
further sets. It was important for the treebanking pro-
cess to guarantee that adjudication sessions happened
at various stages of the process, to ensure that quality
remained stable throughout the entire process.
From the 4,900 treebanked sentences, 890 contain at
least one mal-rule. In total they contain 1,253 mal-
rule instances, distributed over 133 types – which is
still only a fraction of the more than 270 mal-rule types
currently available in the ERG.5 As expected, the dis-
tribution of errors is strongly skewed towards types that
were common among the student population that pro-
duced this dataset (Winder et al., 2017). These include:
the misuse or absence of necessary articles, problems
concerning verb and quantifier agreement, tense asym-
metry, run-on sentences, among many others. An un-
fortunate consequence of this skewed distribution is
that a fairly large portion of mal-rule types (n=58) have
only one instance in the treebank – showing that there
is still room to improve this dataset.

Measuring the Quality of the Treebank
Evaluating the quality of the treebank process is not a
simple endeavor, especially since there is no gold stan-
dard to measure against. One could argue that a human
annotated treebank is, in itself, a gold standard for fu-
ture attempts to automatically select the best parse/tree
for a given sentence. However, as discussed above, the
task of treebanking includes common-sense reasoning,
as well as true ambiguities that prevent this task from
being treated as having a single correct answer. In
most cases, the task is picking the best possible anal-
ysis from a pool of plausible analyses. As such, it is
difficult to discuss quality in a very explicit way.

4Although sets do not reflect document boundaries, indi-
vidual documents can still be retrieved from the dataset

5A list of all mal-rule types can be found in the source
code of the ERG (http://svn.delph-in.net/erg/trunk)

http://svn.delph-in.net/erg/trunk
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Datasets Treebankers
ID Size A B C D E

0 500 ☀ ☀ ☀ ☀ ☀

1 200 ☀ ☀

2 200 ☀ ☀

3 200 ☆

4 200 ☆

5 200 ☆

6 200 ☆

7 200 ☆

8 200 ☆

9 200 ☆

10 200 ☆

11 200 ☀ ☀

12 200 ☀ ☀

13 200 ☆

14 200 ☆

15 200 ☆

16 200 ☆

17 200 ☆

18 200 ☆

19 200 ☆

20 200 ☆

21 200 ☀ ☀

22 200 ☀ ☀

Total 4900 1300 1900 700 1900 2300

Table 1: Treebank Summary (filled stars indicate sets
tagged by two or more treebankers)

The common practice to measure the quality of a tree-
bank relies on portions of the treebank that have been
tagged by two or more people. The same metrics used
by computational parsers are applied to double anno-
tated subsets of the corpus, producing a measure of
how much two treebankers’ choices overlap, without
necessarily defining which one is the correct tree. To
measure this ≈ 35% of this treebank was tagged by two
people, with overlapping sets prepared as part of the
treebanking process.
The metric used to measure the overlap between two
treebankers is derived from the PARSEVAL metric,
first proposed in Black et al. (1991). PARSEVAL is
useful for constituency-based parsers, and is able to
calculate how much the constituents defined by two dif-
ferent parse trees overlap.
The implementation used for this paper follows Collins
(1997) to define Labeled Precision. In this definition,
a constituent is only deemed equivalent if: a) it spans
over the same set of words in the sentence; and b) has
the same label. Unlabeled Precision is a similar metric
where a constituent only needs to span over the same
set of words in the sentence to be considered equiva-
lent (i.e., the label may or may not match) — which is
useful if there are many similar labels available.
When used to evaluate parsers, one tree is defined as
canonical (‘gold’ or ‘target’), and the tree produced by
the parser is evaluated against that tree. In its canonical
form, PARSEVAL precision is calculated using the for-
mula shown in (6). And it essentially measures the per-
centage of constituents in the generated tree that exist
in the gold standard. PARSEVAL Recall (also labeled
or unlabeled) is a related metric and can be calculated

using the formula in (7). Recall can be seen as a mea-
sure of completeness or, in other words, the percentage
of the gold tree that is matched by constituents in the
generated tree.
However, when no tree is canonical — as is the case
for treebank adjudication — this algorithm needs to be
slightly modified, so it is not biased to any particular
tree. Agreement is, essentially, a measure between pre-
cision and recall — the formulas can be seen in (8)
and (9), for Labeled Agreement (LA) and Unlabeled
Agreement (UL), respectively.
These formulas ensure that if two trees are consid-
ered equivalent, then the denominator (Number of the
sum of constituents in both trees) is exactly the same
as twice the numerator (Number of labeled/unlabeled
constituents equivalent between both trees) — yielding
a score of 1. If there are no constituents considered
equivalent in both trees, then it produces a score of 0.
A partial overlap of the two trees will yield a score be-
tween 0 and 1, proportional to the amount of overlap,
but not biased toward either of the two trees.

(6) P =
No. of generated constituents that also exist in the GOLD tree

Number of constituents in the generated tree

(7) R =
No. of generated constituents that also exist in the GOLD tree

Number of constituents in the GOLD tree

(8) LA =
2 ×Number of labeled constituents equivalent in both trees

Number of the sum of constituents in both trees

(9) UA =
2 ×Number of unlabeled constituents equivalent in both trees

Number of the sum of constituents in both trees

Scores for these two metrics were computed for each
sentence before being adjudicated and then averaged
across all sentences in a given set. The results can
be seen in Table 2. The unlabeled precision is, nat-
urally, slightly higher than the labeled precision (by
roughly 5%). It is possible to observe a slight tendency
to increase the overlap in later sets, which shows that
the treebankers are getting more accurate with expe-
rience. An average agreement score of 73.1% for la-
beled agreement and 78% for unlabeled agreement is in
line with what was expected. These numbers are com-
parable to those provided by Tanaka et al. (2005) —
reporting 83.5% for a similar metric of labeled agree-
ment across annotators, when building the Hinoki Tree-
bank with a fairly large HPSG grammar of Japanese. In
comparison, the ERG is a much larger grammar, capa-
ble of generating a lot more ambiguity. The NTUCLE
also contains longer sentences than Hinoki. This ex-
plains why the precision is lower than those presented
by Tanaka et al. (2005).
In total, 76.3% of the 4,900 annotated sentences in the
Tembusu treebank had a suitable parse (i.e., 23.7% of
all sentences were rejected). These numbers can be ex-
plained by two factors: i) grammatical sentences for
which the ERG cannot produce an adequate analysis
were rejected (see Section 2.2); ii) ungrammatical sen-
tences for which there were no available mal-rules were
also rejected. These numbers are expected to improve
as the ERG’s syntactical and lexical coverage increases
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overtime, and as the mal-rule repertoire expands to cur-
rently unavailable classes of errors.

ID Size Overlap LA UA
0 500 A B C D E 0.681 0.747
1 200 A B 0.738 0.778
2 200 C D 0.690 0.730

11 200 A E 0.773 0.812
12 200 B D 0.773 0.820
21 200 D E 0.775 0.816
22 200 B E 0.761 0.807

1,700 0.731 0.780

Table 2: Agreement of Overlapped Sets

3.3. New Parse Ranking Model
As introduced above, one of the main reasons to create
the Tembusu Treebank was to gather and annotate data
to train a new mal-rule enhanced parse-ranking model
for the ERG. This new model should, in principle, per-
form better at tasks such as parse-selection and error
diagnosis when using mal-rules within the ERG.
One of the current issues of using the ERG with mal-
rules enabled but with a model not trained using mal-
rules is the fact that the model does not know the rela-
tive likelihood of mal-rules when compared with the
other available rules in the grammar. Mal-rules are
essentially initiated with neutral weights, when many
other rules show up with negative weights inside the
model. This effectively makes the grammar select
parses with mal-rules even when other plausible gram-
matical parses are still available. Training a parse rank-
ing model on a treebank containing mal-rules allows
the model to store the right relative weights of all rules.
With enough data, theoretically, this means that the
grammar should be able to prefer parses without mal-
rules whenever a plausible parse is available.
With this in mind, the Tembusu Treebank was used to
train a new maximum entropy parse ranking model for
the ERG. This model was trained using available bina-
ries in the ACE Tools (see Section 3.1), following the
standard parameters used to train other ERG models
(e.g., grandparenting=3, see Toutanova et al. (2005)).
In the next section we discuss a small experiment de-
signed to evaluate this new model.

4. Evaluation
We set up an experiment to determine if the new parse
ranking model had measurable impact on the perfor-
mance of the error detection and diagnosis capabilities
of the mal-rule enhanced ERG (edERG). It measured
only the ERG’s ability to better detect and diagnose the
classes of errors it was already designed to capture (i.e.,
errors for which mal-rules already existed), although
its results could be extrapolated for future mal-rules, if
suitable treebanked data becomes available.
We selected a test set of 1,000 sequential sentences,
collected from the unannotated portion of the NTUCLE
(approx. 30 student assignments). We then prepared

and compared five configurations of the ERG, includ-
ing systems with and without mal-rules enabled, and
systems using the new and old parse ranking models.
We also compared a two-step approach for error detec-
tion, as proposed in Morgado da Costa et al. (2020).
In this two-step approach, i) the standard release of the
ERG is used to provide a filter to likely ungrammati-
cal sentences (i.e., sentences rejected by the standard
release of the ERG are considered potentially problem-
atic); ii) potentially problematic sentences are further
processed by the mal-rule enhanced version of the ERG
(edERG) to perform error diagnosis.
This two-step approach helped deal with the high rate
of misdiagnoses generated by the edERG without this
filtering step. This happened because there was no
available model trained using mal-rules — which was
one of the main motivations to create this new treebank.
The systems compared in this experiment are:

• ERG (orig.): the broad-coverage standard release of
the ERG grammar (without mal-rules), using its orig-
inal parse ranking model;

• edERG (orig.): the mal-rule enhanced version of the
ERG using its original parse ranking model;

• edERG (new): the mal-rule enhanced version of the
ERG using the new, mal-rule enhanced parse ranking
model described in Section 3.3;

• 2-step (orig.): the two-step approach proposed in
Morgado da Costa et al. (2020). Both the standard
release of the ERG (1st step) and the mal-rule en-
hanced version of the grammar (2nd step) use ERG’s
original parse ranking model;

• 2-step (new): the same two-step approach, with the
main difference that the mal-rule enhanced version
of the grammar uses the new, mal-rule enhanced
parse ranking model;

The five systems were created using the ‘trunk’ branch
of ERG’s SVN repository6 — the same version used
to create the Tembusu Treebank. Each sentence was
parsed by all five systems, using ACE with the same
parameters set to create the treebank.7

Table 3 shows an initial summary of the results ob-
tained by analyzing the top/best parse for each system.
Sentences are classified in three categories: ‘w/o er-
rors’ (i.e., the top parse did not include mal-rules), ‘w/
errors’ (i.e., the top parse includes at least one mal-
rule), and ‘no parse’ (i.e., the system was unable to
produce a parse for that sentence).

w/o errors w/ errors no parse
ERG (orig.) 0.920 0.001 0.079
edERG (orig.) 0.589 0.315 0.096
edERG (new) 0.703 0.201 0.096
2-step (orig.) 0.921 0.037 0.042
2-step (new) 0.921 0.037 0.042

Table 3: Results of top/best parses (n=1,000)
6http://svn.delph-in.net/erg/trunk (Revision 29199)
7Parse-chart=15Gb; Unpacking=16Gb; Timeout=300s

http://svn.delph-in.net/erg/trunk
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The results show that the system edERG with the orig-
inal model chooses a parse with at least one mal-rule
for 31.5% of the sentences in the test set (i.e., classi-
fies them as problematic in some way). The system
edERG with the newly developed model is less greedy,
diagnosing only 20.1% of these sentences as problem-
atic. This decrease is welcomed, as it was known that
using ERG’s original model provided many spurious
diagnoses. However, both numbers are still quite large
when compared to the output of the two-step systems,
which identify only 3.7% of the test set as problematic.
Also noteworthy is the fact that the standard release
of the ERG (introduced earlier as not containing mal-
rules) identifies 0.1% of sentences as problematic. In
fact, the standard release of the ERG contains a very se-
lect number of mal-rules designed to accommodate, for
example, common misspellings. In this particular case,
this 0.1% refers to a single sentence that was correctly
identified as problematic due to a mix-up between the
possessive pronoun its and the contraction it’s.
Next, we wanted to confirm if the reduced number of
sentences identified as problematic was being achieved
by an actual decrease in misdiagnoses. We performed a
second-stage evaluation that looked at the subset of 349
sentences (from the original 1000) that were flagged
as problematic by at least one of the systems. Table 4
shows the summary of this analysis. Each sentence was
classified into one of four categories: sentences cor-
rectly classified as problematic (i.e., that have at least
one error); sentences incorrectly classified as problem-
atic (i.e., that were classified as problematic by the sys-
tem but not by human annotation); problematic sen-
tences ignored by the system (i.e., a system classifies a
sentence as grammatical but the human analysis iden-
tified at least one error in it); and sentences correctly
ignored by the system (i.e., both the system and the hu-
man analysis classify a sentence as grammatical).
The results shown in Table 4 confirm that the system
edERG using the new parse ranking model performs
much better at correctly ignoring sentences without
problems. While it is possible to observe a slight de-
crease in its ability to correctly identify problematic
sentences, it more than halves (from 49% to 21.5%) the
number of sentences misclassified as ungrammatical.

Correctly Incorrectly Ignored Correctly
Problem. Problem. Problem. Ignored

ERG (orig.) 0.003 0.000 0.430 0.567
edERG (orig.) 0.413 0.490 0.020 0.077
edERG (new) 0.361 0.215 0.072 0.352
2-step (orig.) 0.095 0.011 0.338 0.556
2-step (new) 0.095 0.011 0.338 0.556

Table 4: Human grammaticality judgments (n=349)
The results presented in Table 4 also show that both
two-step systems have a much lower incidence of mis-
classified sentences (of just around 1.1%) — which was
why it was the approach used in Morgado da Costa et
al. (2020). However, sustaining such a low rate of mis-
diagnoses comes at a cost — many problematic sen-

Precision Recall F1
ERG (orig.) 1.000 0.007 0.013
edERG (orig.) 0.457 0.954 0.618
edERG (new) 0.627 0.834 0.716
2-step (orig.) 0.892 0.219 0.351
2-step (new) 0.892 0.219 0.351

Table 5: Error Detection Summary

tences are ignored by these two-step systems. This hap-
pens because the standard release of the ERG is able
to parse most sentences without providing any warning
(Table 3 shows it was able to parse 92% of the test set).
As such, it becomes clear that using the standard re-
lease of the ERG might not be the most desirable filter,
since many problematic sentences are actually being
ignored without a warning. This does not necessarily
mean that the standard ERG is able to parse strictly un-
grammatical sentences, but only that there might be vi-
able parses with extremely implausible interpretations.
Table 5 shows very similar results to those presented in
Table 4, but from a system-relative perspective of pre-
cision, recall and F1 measures. The interpretations are
very similar, but through a different lens. It should not
be a surprise that the system edERG using the orig-
inal model offers the highest recall, since it was the
system who classified most sentences as problematic.
This, however, leads to a much lower precision score
(i.e., too many false positives). On the other hand, the
same system using the new model shows a strong boost
in precision (around 17%) but a slightly worse recall
measure. Overall, the F1 measure shows that the new
model performs better, when considering a balance be-
tween the losses in recall and the improvements in pre-
cision. Nevertheless, in real educational contexts, the
precision in error detection and diagnosis should be
rated much higher than recall — as telling a student
that a sentence is incorrect when it is not can have a
much worse impact than not being able to recognize a
sentence as problematic.

Evaluating Error Diagnosis
Finally, the new model was also evaluated with regard
to its ability to properly diagnose the errors in a sen-
tence. To achieve this, a further subset of 151 sentences
was selected. This was the subset of sentences that had
been confirmed to be problematic from the earlier sub-
set of 349 sentences discussed above. Each system was
then evaluated by its ability to select a parse that would
diagnose a plausible error in that sentence.
Sentences were classified as one of three categories:
correct diagnosis (i.e., every mal-rule provided by the
system’s top/best parse pointed to a plausible correc-
tion for that sentence), incorrect diagnosis (i.e., the
top/best parse provided by the system included at least
one mal-rule that did not point to a plausible correc-
tion for the sentence in question), and missed diagnosis
(i.e., the system provided either a parse without mal-
rules or did not provide a parse at all). An effort was
made to consider multiple possible corrections for each
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particular sentence. The main criterion for this eval-
uation was that all mal-rules included in a parse had
to lead to a plausible correction. Sentences with more
than one mal-rule that presented a mix of plausible and
implausible mal-rules were classified as ‘incorrect di-
agnosis’. However, if a sentence that had more than
one problem but included only a single plausible mal-
rule (i.e., a partial fix), that sentence was classified as
‘correct diagnosis’.
The reason for this is the fact that mal-rules are essen-
tially used to generate corrective feedback for problem-
atic sentences. As such, it was not deemed acceptable
to receive a mix of adequate and inadequate diagnoses
for the same sentence, since an inadequate diagnosis
could lead students to make further mistakes. However,
it was deemed acceptable to receive plausible feedback
to only a subset of errors present in a sentence, as it
could still help the student improve the sentence.

Precision Recall F1
ERG (orig.) 1.000 0.007 0.013
edERG (orig.) 0.556 0.920 0.693
edERG (new) 0.770 0.795 0.782
2-step (orig.) 0.667 0.157 0.254
2-step (new) 0.848 0.192 0.313

Table 6: Error Diagnosis Summary

Table 6 shows the summary of this evaluation. The re-
sults show that using the new mal-rule enhanced model
trained with our new treebank generated a strong in-
crease in precision of error diagnosis (between 18%
and 22%). And that, despite a slight decrease in re-
call, the F1 measure shows an overall improvement in
the full resolution of the task (between 6% and 9%).
Even though the design of the two-step systems pre-
vented the new model from contributing much towards
the task of error detection, this new model does show
improvements in the quality of error diagnosis in both
the single and the two-step system designs.

5. Conclusions and Future Work
In sum, our evaluation experiments show the impor-
tance of training a model that includes annotations for
error detection and diagnosis using mal-rules. Creating
and exploiting resources like the Tembusu Treebank al-
low us to increase the precision of the feedback which
should be the main focus of these tasks when applied
to educational contexts.
The parse-ranking model trained with our new treebank
increased ERG’s error detection precision by around
17%, and the precision of its error diagnosis by around
22% (when measured without any filtering techniques).
There is, however, still room to improve. One area of
concern is that even with the improvements our new
model provides, systems still produce a number of false
positives that may not be tolerable in a pedagogical set-
ting — at least not without filtering, as employed by the
two-step systems.

One way forward would be to continue improving the
treebank. We suggest three areas for improvement:
i) The size of the treebank. Currently, the Tembusu
Treebank contains only 4,900 annotated sentences. The
ERG normally uses a treebank trained on the Red-
woods treebank (Oepen et al., 2002) — with over
85,000 sentences. While the size of our efforts was suf-
ficient to show improvements, we expect that a larger
treebank will produce better results.
ii) The sparsity of ungrammatical sentences. Gram-
matical sentences are two to three times more frequent
than ungrammatical sentences in our corpus (see Ta-
ble 3). And the Zipfian distribution of language would
support the idea that many classes of errors are very
likely only sparsely annotated and even missing in our
treebank. The number of ungrammatical structures ef-
fectively caps the learning potential of the model. As
such, another good direction for future work would be
to focus specifically on acquiring and enriching our
treebank with ungrammatical sentences.
iii) The mal-rule repertoire. The ERG is not able to
detect and diagnose all grammatical errors. This also
hurts the system’s performance, especially in its abil-
ity to correctly diagnose errors. In the absence of a
plausible correction, the ERG often suggests less plau-
sible corrections — this is imposed by the nature of the
parse-ranking models, and how they deal with ambi-
guity. As such, continuing work on the repertoire of
mal-rules within the ERG is also a worthy direction of
future work.
Finally, and concerning future work that does not nec-
essarily depend on further improving the treebank, we
also believe that this new treebank can be very useful
for the training of new statistical parsers. Even though
our experiments have focused on using this new re-
source to train a parse-ranking model for the English
Resource Grammar, this treebank could be used to train
parsers capable of producing mal-rule enhanced trees
without the need of a formal grammar — which would
be ideal for situations where extra robustness would be
required. A hybrid solution, in the form of a PCFG
model on top of the ERG would also be an interesting
area of future study (Zhang and Krieger, 2011).8
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