@inproceedings{raring-etal-2022-semantic,
title = "Semantic Relations between Text Segments for Semantic Storytelling: Annotation Tool - Dataset - Evaluation",
author = "Raring, Michael and
Ostendorff, Malte and
Rehm, Georg",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.526",
pages = "4923--4932",
abstract = "Semantic Storytelling describes the goal to automatically and semi-automatically generate stories based on extracted, processed, classified and annotated information from large content resources. Essential is the automated processing of text segments extracted from different content resources by identifying the relevance of a text segment to a topic and its semantic relation to other text segments. In this paper we present an approach to create an automatic classifier for semantic relations between extracted text segments from different news articles. We devise custom annotation guidelines based on various discourse structure theories and annotate a dataset of 2,501 sentence pairs extracted from 2,638 Wikinews articles. For the annotation, we developed a dedicated annotation tool. Based on the constructed dataset, we perform initial experiments with Transformer language models that are trained for the automatic classification of semantic relations. Our results with promising high accuracy scores suggest the validity and applicability of our approach for future Semantic Storytelling solutions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="raring-etal-2022-semantic">
<titleInfo>
<title>Semantic Relations between Text Segments for Semantic Storytelling: Annotation Tool - Dataset - Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Raring</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malte</namePart>
<namePart type="family">Ostendorff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georg</namePart>
<namePart type="family">Rehm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantic Storytelling describes the goal to automatically and semi-automatically generate stories based on extracted, processed, classified and annotated information from large content resources. Essential is the automated processing of text segments extracted from different content resources by identifying the relevance of a text segment to a topic and its semantic relation to other text segments. In this paper we present an approach to create an automatic classifier for semantic relations between extracted text segments from different news articles. We devise custom annotation guidelines based on various discourse structure theories and annotate a dataset of 2,501 sentence pairs extracted from 2,638 Wikinews articles. For the annotation, we developed a dedicated annotation tool. Based on the constructed dataset, we perform initial experiments with Transformer language models that are trained for the automatic classification of semantic relations. Our results with promising high accuracy scores suggest the validity and applicability of our approach for future Semantic Storytelling solutions.</abstract>
<identifier type="citekey">raring-etal-2022-semantic</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.526</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>4923</start>
<end>4932</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Relations between Text Segments for Semantic Storytelling: Annotation Tool - Dataset - Evaluation
%A Raring, Michael
%A Ostendorff, Malte
%A Rehm, Georg
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F raring-etal-2022-semantic
%X Semantic Storytelling describes the goal to automatically and semi-automatically generate stories based on extracted, processed, classified and annotated information from large content resources. Essential is the automated processing of text segments extracted from different content resources by identifying the relevance of a text segment to a topic and its semantic relation to other text segments. In this paper we present an approach to create an automatic classifier for semantic relations between extracted text segments from different news articles. We devise custom annotation guidelines based on various discourse structure theories and annotate a dataset of 2,501 sentence pairs extracted from 2,638 Wikinews articles. For the annotation, we developed a dedicated annotation tool. Based on the constructed dataset, we perform initial experiments with Transformer language models that are trained for the automatic classification of semantic relations. Our results with promising high accuracy scores suggest the validity and applicability of our approach for future Semantic Storytelling solutions.
%U https://aclanthology.org/2022.lrec-1.526
%P 4923-4932
Markdown (Informal)
[Semantic Relations between Text Segments for Semantic Storytelling: Annotation Tool - Dataset - Evaluation](https://aclanthology.org/2022.lrec-1.526) (Raring et al., LREC 2022)
ACL