@inproceedings{pfutze-etal-2022-corpus,
title = "A Corpus for Suggestion Mining of {G}erman Peer Feedback",
author = {Pf{\"u}tze, Dominik and
Ritz, Eva and
Janda, Julius and
Rietsche, Roman},
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.593",
pages = "5539--5547",
abstract = "Peer feedback in online education becomes increasingly important to meet the demand for feedback in large scale classes, such as e.g. Massive Open Online Courses (MOOCs). However, students are often not experts in how to write helpful feedback to their fellow students. In this paper, we introduce a corpus compiled from university students{'} peer feedback to be able to detect suggestions on how to improve the students{'} work and therefore being able to capture peer feedback helpfulness. To the best of our knowledge, this corpus is the first student peer feedback corpus in German which additionally was labelled with a new annotation scheme. The corpus consists of more than 600 written feedback (about 7,500 sentences). The utilisation of the corpus is broadly ranged from Dependency Parsing to Sentiment Analysis to Suggestion Mining, etc. We applied the latter to empirically validate the utility of the new corpus. Suggestion Mining is the extraction of sentences that contain suggestions from unstructured text. In this paper, we present a new annotation scheme to label sentences for Suggestion Mining. Two independent annotators labelled the corpus and achieved an inter-annotator agreement of 0.71. With the help of an expert arbitrator a gold standard was created. An automatic classification using BERT achieved an accuracy of 75.3{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pfutze-etal-2022-corpus">
<titleInfo>
<title>A Corpus for Suggestion Mining of German Peer Feedback</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Pfütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Ritz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julius</namePart>
<namePart type="family">Janda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Rietsche</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Peer feedback in online education becomes increasingly important to meet the demand for feedback in large scale classes, such as e.g. Massive Open Online Courses (MOOCs). However, students are often not experts in how to write helpful feedback to their fellow students. In this paper, we introduce a corpus compiled from university students’ peer feedback to be able to detect suggestions on how to improve the students’ work and therefore being able to capture peer feedback helpfulness. To the best of our knowledge, this corpus is the first student peer feedback corpus in German which additionally was labelled with a new annotation scheme. The corpus consists of more than 600 written feedback (about 7,500 sentences). The utilisation of the corpus is broadly ranged from Dependency Parsing to Sentiment Analysis to Suggestion Mining, etc. We applied the latter to empirically validate the utility of the new corpus. Suggestion Mining is the extraction of sentences that contain suggestions from unstructured text. In this paper, we present a new annotation scheme to label sentences for Suggestion Mining. Two independent annotators labelled the corpus and achieved an inter-annotator agreement of 0.71. With the help of an expert arbitrator a gold standard was created. An automatic classification using BERT achieved an accuracy of 75.3%.</abstract>
<identifier type="citekey">pfutze-etal-2022-corpus</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.593</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>5539</start>
<end>5547</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Corpus for Suggestion Mining of German Peer Feedback
%A Pfütze, Dominik
%A Ritz, Eva
%A Janda, Julius
%A Rietsche, Roman
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F pfutze-etal-2022-corpus
%X Peer feedback in online education becomes increasingly important to meet the demand for feedback in large scale classes, such as e.g. Massive Open Online Courses (MOOCs). However, students are often not experts in how to write helpful feedback to their fellow students. In this paper, we introduce a corpus compiled from university students’ peer feedback to be able to detect suggestions on how to improve the students’ work and therefore being able to capture peer feedback helpfulness. To the best of our knowledge, this corpus is the first student peer feedback corpus in German which additionally was labelled with a new annotation scheme. The corpus consists of more than 600 written feedback (about 7,500 sentences). The utilisation of the corpus is broadly ranged from Dependency Parsing to Sentiment Analysis to Suggestion Mining, etc. We applied the latter to empirically validate the utility of the new corpus. Suggestion Mining is the extraction of sentences that contain suggestions from unstructured text. In this paper, we present a new annotation scheme to label sentences for Suggestion Mining. Two independent annotators labelled the corpus and achieved an inter-annotator agreement of 0.71. With the help of an expert arbitrator a gold standard was created. An automatic classification using BERT achieved an accuracy of 75.3%.
%U https://aclanthology.org/2022.lrec-1.593
%P 5539-5547
Markdown (Informal)
[A Corpus for Suggestion Mining of German Peer Feedback](https://aclanthology.org/2022.lrec-1.593) (Pfütze et al., LREC 2022)
ACL
- Dominik Pfütze, Eva Ritz, Julius Janda, and Roman Rietsche. 2022. A Corpus for Suggestion Mining of German Peer Feedback. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 5539–5547, Marseille, France. European Language Resources Association.