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Abstract
Crowdsourcing the collection of speech provides a scalable setting to access a customisable demographic according to each
dataset’s needs. The correctness of speaker metadata is especially relevant for speaker-centred collections - ones that require
the collection of a fixed amount of data per speaker. This paper identifies two different types of misalignment present in
these collections: Multiple Accounts misalignment (different contributors map to the same speaker), and Multiple Speakers
misalignment (multiple speakers map to the same contributor). Based on state-of-the-art approaches to Speaker Verification,
this paper proposes an unsupervised method for measuring speaker metadata plausibility of a collection, i.e., evaluating the
match (or lack thereof) between contributors and speakers. The solution presented is composed of an embedding extractor and
a clustering module. Results indicate high precision in automatically classifying contributor alignment (> 0.94).
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1. Introduction
The success of Deep Neural Network-based solutions,
which increasingly achieve (and surpass) human-level
performance in several tasks, have allowed for Artifi-
cial Intelligence (AI) systems to incorporate our quo-
tidian life in a multitude of areas, ranging from shop-
ping, to banking, social media, or security, to name a
few (Grace et al., 2018). The ubiquitous adoption of
AI, paired with said systems’ intrinsic characteristics,
have put a high pressure on the sourcing of training
data by Machine Learning practitioners (Halevy et al.,
2009).
Crowdsourcing has been establishing itself as an al-
ternative data sourcing paradigm, producing data with
quality standards that are comparable to that of ex-
perts (Behrend et al., 2011). However, it does impose
a new set of challenges. To get the most out of the
“wisdom of the crowds” (Surowiecki, 2005) several
methods to detect low quality work have been devel-
oped, including follow-up validation tasks, gold stan-
dard comparison (Snow et al., 2008), agreement be-
tween contributors (Aroyo and Welty, 2015), and be-
havioural capturing techniques (Rzeszotarski and Kit-
tur, 2011).
But while these strategies address the quality of the
data itself, they do not tackle the correctness of the con-
tributors’ self-reported metadata, typically provided
during sign-up, and that, for a variety of reasons (in-
cluding mistakes) may not correspond to the actual pro-
file of the individual. Contributor metadata, as dis-
cussed above, is of importance to mitigate biases in the
data, and can include dimensions such as age, gender,
country of origin, languages spoken and corresponding
proficiency levels.
For the particular case of speech data collections,

* J.M. completed most of this work at Defined.AI.

which is the main subject of the present study, contrib-
utors’ metadata is a critical component, as it is not only
used to assure fair distributions over participants, but
is part of the dataset labels itself. Certain aspects of
the profile metadata, such as gender or language pro-
ficiency, can be validated with follow-up classification
tasks, without what would be considered a prohibitive
increase of the overall cost of the collection. For in-
stance, one can pick a single recording per contributor
and ask the remaining pool whether the voice matches
the self-reported information. Furthermore, this pro-
cess can be optimised by using high-performing ML
solutions, like gender (Doukhan et al., 2018; Ghahre-
mani et al., 2018) or language nativeness level classi-
fiers (Abad et al., 2016; Botelheiro et al., 2021).
Another metadata dimension that is of particular inter-
est for speech collection relates to speaker uniqueness,
i.e., guaranteeing perfect contributor-speaker pairs. A
common setting where this is imperative is when exe-
cuting the so-called speaker-centred collections. These
collections aim at recording a given amount of hours of
speech per speaker, for a predefined number of speak-
ers. Datasets with such characteristics are used, for
instance, in the field of Speaker Recognition to train
systems that are able to distinguish or pinpoint who is
talking.
Misalignment between contributors and speakers can
be classified into two distinct cases:

• Multiple Speakers Misalignment – contributors
who shared accounts with other individuals;

• Multiple Accounts Misalignment – contributors
who signed-up for the platform more than once.

With no quality control mechanism in place, these sce-
narios generate erroneous data: in the first case, it
causes the same contributor identifier in a collection to
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contain speech from more than one speaker and, in the
second case, it causes different contributor identifiers
to contain audio recorded by the same speaker.
In contrast with other profile dimensions, speaker
uniqueness presents additional challenges for valida-
tion. On the one hand, relying on manual verifica-
tion by other contributors would generate an unprac-
tical (expensive) number of comparison combinations.
If one imagines a collection targeting 100 speakers,
each contributing with 15 utterances, validating Multi-
ple Speakers Misalignment (MS) would require 10.5K
pairwise comparisons between utterances1, while val-
idating Multiple Accounts Misalignment (MA) would
add an extra 5K tasks approximately2.
On the other hand, while automated solutions to
speaker verification exist (Brummer et al., 2014; Sny-
der et al., 2018), the specific crowdsourcing setting
poses yet another series of challenges that require fur-
ther tailoring. In a mature crowdsourcing platform, a
vast number of contributors (in the order of hundreds
of thousands) can contribute to different collections, in
different languages, at different proficiency levels, en-
vironment conditions, devices, and under particular in-
structions (which can even request for individuals to in-
tentionally alter their natural speech production, for in-
stance, to shout, whisper or to hyper-articulate words).
These idiosyncrasies render the traditional two-stage
process of enrolment followed by verification difficult
to apply with success.
Under the circumstances described above, and assum-
ing the relevance of speaker uniqueness information
correctness, this paper tackles the issue by proposing
an unsupervised speaker validation automated process,
centred on the dataset that is to be verified (and no other
data)3.
The remainder of this paper will be organised as fol-
lows: Section 2 describes the current state-of-the-art
of the Speaker Recognition area in general; Section 3
presents the architecture of the proposed solution, in-
cluding experimental setup to evaluate its performance,
testing datasets and results; Section 4 carries out an ex-
periment where misalignment cases are simulated in
a controlled manner in the data, and performance is
reported in terms of precision and recall of the inter-
est groups; Section 5 discusses results, elaborating on
the suitability of the proposed solution to be used in a
crowdsourcing setting; and finally, Section 6 presents
the conclusions and points to future work directions.

1Assuming comparison between every combination of
recordings of the same contributor, given by 15C2 × 100 =
10, 500

2Assuming taking one recording per contributor, and
comparing those for every contributor pair, given by 100C2 =
4, 950

3The Codebase for this paper can be found at
www.github.com/johndmendonca/CrowdCluster

2. Background
In the context of the present paper, Speaker Verification
(deciding whether a given utterance belongs to one of a
closed set of known speakers) aligns the most with the
problem statement described in the introductory sec-
tion: make several binary decisions on the likelihood
of a pair of utterances belonging to the same speaker
(to validate Multiple Speakers Misalignment) or to dif-
ferent speakers (to validate the Multiple Accounts coun-
terpart).
The representation of a speaker through embeddings is
the current state-of-the-art in the Speaker Recognition
area. Speaker embeddings provide a compact represen-
tation of speaker identity, as one single fixed-dimension
vector. The training process of speaker embeddings,
which occurs in large amounts of data, allows for in-
ferring a relevant set of speaker characteristics (equal
to the number of dimensions desired). This approach
contrasts to the need of manually engineering a set of
features (for instance related to prosody) that can dis-
tinguish between speakers.
For representing information in a unit-length hyper-
space, speaker embeddings also come with the advan-
tage of simplifying the implementation of the scoring
module of the Speaker Verification system. Measuring
the similarity between embeddings can be done with
common algebraic operations, such as the cosine dis-
tance, or other dedicated operations between vectors,
such as Gaussian-PLDA (Ioffe, 2006).
Two different embedding approaches are worth further
analysis: x-vectors and ECAPA-TDNN embeddings.
X-vectors, first presented by Snyder et al. (2018),
were developed as an improvement of the i-vector sys-
tem (Dehak et al., 2010), replacing Joint Factor Anal-
ysis of Gaussian Mixture Model supervectors by em-
beddings extracted from a feedforward DNN. The net-
work of the x-vector system is divided into two differ-
ent levels: the frame level uses a time delay architec-
ture (TDNN) that functions on speech frames, offering
temporal context (Peddinti et al., 2015); the segment
level is connected to the frame level using a statistics
pooling layer. This pooling layer calculates the mean
and standard deviation from the aggregate output of the
final frame level. This pooling procedure compiles in-
formation from the entire segment to subsequent layers.
The training of the DNN is conducted using multi-class
cross-entropy objective.
Concerning ECAPA-TDNN embeddings, introduced
by Desplanques et al. (2020), while their architecture
is largely based off the original x-vector, several en-
hancements are incorporated. Firstly, the initial frame
layers are restructured into one-dimensional Res2Net
modules with impactful skip connections. Similarly to
SE-ResNet (Hu et al., 2018), Squeeze-and-Excitation
blocks (SE) are introduced in these modules to explic-
itly model channel inter-dependencies. The SE block
expands the temporal context of the frame layer by re-
scaling the channels according to global properties of
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the recording. Secondly, information is aggregated and
features are propagated to different hierarchical levels.
Finally, the statistics pooling module is improved with
channel-dependent frame attention. This enables the
network to focus on different subsets of frames during
each of the channel’s statistics estimation. The network
is trained by optimising the AAM-softmax (Deng et al.,
2019) loss on the speaker identities in the training cor-
pus. This loss directly optimises the cosine distance
between the speaker embeddings.

3. Architecture of the Solution
As described in the introductory section, the purpose
of the present work is to provide an unsupervised
method for measuring speaker metadata plausibility
of a speech collection, more specifically, to validate
speaker uniqueness.
The formulation of the solution takes the approach
found in Speaker Verification systems, in the sense
that multiple binary decisions need to be made over
a closed set of speakers (equivalent to the number of
contributors in the dataset). Guaranteeing intra-speaker
correctness (or the absence of Multiple Speakers Mis-
alignment) involves a positive answer while matching
all the possible pairwise combinations of every con-
tributor’s recordings. In contrast, guaranteeing inter-
speaker correctness (or the absence of Multiple Ac-
counts Misalignment) involves a negative answer while
matching recordings of different contributors.
The differences between the proposed solution and a
classical SV architecture have to do with the fact that
neither enrolment nor the decision (and pre-defined
threshold) components are present. Instead, a clus-
tering approach is taken, similar to what is done in
Speaker Diarization. In a sense, the goal is to allow
for the data itself to define what is a consistent range of
variability for a speaker, taking into consideration the
dimensions that were varied in the collection.
In more detail, the proposed solution is composed by:

• Embeddings Extractor – generates a speaker
embedding for every recording in the collection;

• Clustering Module – all embeddings are submit-
ted for clustering, with the number of clusters
equal to the number of contributors in the collec-
tion. With that information, the clustering algo-
rithm is responsible for finding groups of record-
ings (clusters) that are the most similar amongst
them.

In a full speaker correctness scenario, all recordings of
a given contributor are allocated to one single cluster.
Furthermore, that cluster has no other recordings other
than those produced by the corresponding contributor.
Taking into consideration the literature on Speaker
Recognition (Section 2), the process described above
was tested under different settings by varying the em-
beddings extractor component (further detailed in Sec-
tion 3.1) and the clustering module (Section 3.2).

The resulting systems were evaluated on three distinct
datasets, described in detail in Section 3.3. Results of
these experiments are reported in Section 3.4.

3.1. Embeddings Extractor
The two embedding methods explored in this ex-
periment are the ones described in Section 2. The
x-vector embedding extraction followed the Kaldi
Speech Recognition Toolkit (Povey et al., 2011) recipe
for VoxCeleb (Nagrani et al., 2020). Training was
conducted on the dev portion of VoxCeleb1, plus all
of VoxCeleb2, augmented with reverberation and mu-
sic, babble and noise from the MUSAN corpus (Sny-
der et al., 2015). The features were 30-dimensional
MFCCs obtained every 10ms with a frame length of
25ms, mean-normalised over a sliding window of up
to 3 seconds. An energy-based Voice Activity Detec-
tion module filtered out non-speech frames. X-vectors
were extracted from the last layers of the pre-trained
DNN model (before the softmax layer), outputting 512-
dimensional embeddings.
Regarding the ECAPA-TDNN embedding extraction,
the SpeechBrain toolkit was used (Ravanelli et al.,
2021), which offers a model pre-trained on Vox-
Celeb1+2. Similar to the x-vector training, RIRs2 and
MUSAN are used for data-augmentation purposes. The
input features are 80-dimensional MFCCs from a 25 ms
window with a 10 ms frame shift.

3.2. Clustering Module
The clustering algorithm chosen for the experiments
was Agglomerative Hierarchical Clustering, a well-
established method for performing unsupervised learn-
ing. In sum, this technique repeatedly aggregates the
two closest nodes at every iteration, starting from a
point where every data point (recording embedding) is
an individual node, and concluding once reaching the
desired number of clusters.
For this component, two parameters were varied: dis-
tance measure and linkage. With respect to distance
measures, for x-vectors, cosine distance and PLDA
Scoring were used; for ECAPA-TDNN embeddings,
only cosine distance was considered.
Regarding linkage methods, results are reported ac-
cording to complete-linkage (which at any given point
chooses to merge the pair of clusters that will form the
cluster with the smallest diameter) and average-linkage
(which minimises the average distances between all
pairs of objects in the resulting cluster).

3.3. Data
Experiments were carried out in three different
datasets: DC–EN, DC–HE, and VC. Table 1 summa-
rizes the datasets size in number of utterances and
speakers, for convenience. We also present the detected
misaligned after manual validation.
The first two datasets (with the DC– prefix) correspond
to speech data collections executed on a real crowd-
sourcing platform. These collections consist of prompt
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Dataset # Utt # Spk MS % MA %
DC–EN 2,745 277 0.0 0.0
DC–HE 2,144 147 3.4 0.0

VC 4,878 40 0.0 0.0

Table 1: Dataset summary. MS denotes Multiple
Speaker Misalignment, MA denotes Multiple Account
Misalignment.

reading tasks recorded in an application environment
using a mobile phone, manually validated for speaker
correctness. In these sets, wave files are downsampled
to 16kHz, with a bit depth of 16, in a single channel.
An energy-based VAD filters silence, leaving a leading
silence of 300 ms and a trailing silence of 300 ms.
In more detail, the DC-EN dataset is a collection
of American English in a silent environment. The
prompts include wake-up calls of personal virtual as-
sistants, followed by a request. A total of 277 adult
contributors participated in the collection, resulting in a
total of 2,745 executions (approximately 10 recordings
per contributor on average). Average utterance duration
for DC–EN is 4.98 seconds, with a minimum duration
of 0.09s and a maximum of 10.71s.
The DC–HE dataset is a scripted speech data collec-
tion of Hebrew. The number of enrolled contributors
for this job was 147 adults producing 2,157 executions
(approximately 15 recordings per contributor on aver-
age). The average utterance duration is 8.19s, with a
minimum duration of 4.12s and a maximum duration of
18.40s. Multiple Speaker misalignment was detected
on 5 of the contributors, with the corresponding 13 ut-
terances being excluded from the final dataset.
Finally, and for reproducibility reasons, the proposed
solution was also evaluated on Voxceleb1 Test (VC).
This subset of VoxCeleb1 contains 40 speakers, bal-
anced with respect to gender, amounting to 4,874 utter-
ances.

3.4. Results
This section presents the results in terms of V-
measure (Rosenberg and Hirschberg, 2007) of the
different system configurations discussed above, i.e.,
by varying embedding extractor (x-vector vs ECAPA-
TDNN), distance metric (cosine vs PLDA), cluster-
ing linkage method (complete vs average), and dataset
(DC-EN vs DC–HE vs VC). It is important to highlight
that herein data has no misalignment, and all contribu-
tors in the datasets map to unique speakers. Therefore
the goal is to understand the performance of the pro-
posed solution in a perfect scenario.
Overall outcomes are summarised in Table 2. For x-
vectors, PLDA consistently outperforms the cosine dis-
tance counterpart, as also observed by Snyder et al.
(2018). In sync with the results reported by Desplan-
ques et al. (2020) and Dawalatabad et al. (2021),
ECAPA-TDNN embeddings surpass the x-vector ap-

Dataset Embedding Distance Linkage
Complete Avg.

DC–EN x-vector Cosine 0.944 0.919
PLDA 0.977 0.976

ECAPA-TDNN Cosine 0.995 0.995

DC–HE x-vector Cosine 0.971 0.969
PLDA 0.996 0.998

ECAPA-TDNN Cosine 1.000 1.000

VC x-vector Cosine 0.835 0.725
PLDA 0.976 0.950

ECAPA-TDNN Cosine 0.998 0.975

Table 2: Results for the multiple clustering settings.

proach for all experiments. With respect to Linkage,
the V-measure for the best performer remains the same,
with the exception of VC dataset, where complete-
linkage achieves a relative improvement of 2%.
In sum, the combination with ECAPA-TDNN embed-
dings, with cosine distance metric and complete link-
age is chosen as the most suitable for assessing speaker
correctness, consistently achieving V-measure > 0.995
across all datasets. The highest difference in perfor-
mance was observed for the VC dataset, with a rela-
tive improvement of aproximately 16% between the x-
vector and ECAPA-TDNN setting. This further corrob-
orates the fact that ECAPA-TDNN’s are a more robust
speaker representation in face of variation in terms of
contributors and recording conditions.

4. Speaker Misalignment
While collecting speech data in a crowdsourcing plat-
form it is expected for some misalignment to be intro-
duced in the data, either by contributors sharing ac-
counts, or by holding several accounts and repeating
participation under a different contributor identifier.

ClusterID

C
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tri
bu

to
rID

# Executions

Figure 1: Example cluster assignment.

Figure 1 shows a heatmap with the results of the pro-
posed method for a dataset that was not validated for
speaker correctness. On the Y-axis, the figure dis-
plays different contributor identifiers (each associated
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with one account), and on the X-axis it displays the
cluster identifiers (which can be interpreted as identi-
fied speakers). The colour scheme at each contributor-
cluster pair reflects the number of recordings that were
assigned to that cluster (the lighter the colour, the more
utterances, for a maximum of 10). For visualisation
purposes, the figure was zoomed in on the portion of
the data with conflicts. Observing the figure in detail,
two interesting cases can be highlighted:

• Horizontal solid red box – contributor #122169
has a significant amount of recordings located in
two distinct clusters, identified as clusters #35
and #43. This means that these two groups of
utterances were considered distant enough to be
separated. For the purposes of the problem state-
ment, this can be interpreted as a sign of Multiple
Speaker misalignment;

• Vertical dashed orange box – contributors
#121893 and #124341 both have a significant
amount of recordings located in the same cluster
(#55). This means that the utterances recorded
by these two contributors were considered similar
enough to be clustered together, which can be a
sign of Multiple Accounts misalignment.

Taking advantage of these observations of the cluster-
ing result, this section addresses the problem of classi-
fying contributors according to three different classes:
No Misalignment (NoM), Multiple Speakers misalign-
ment (MS) and Multiple Accounts misalignment (MA).

4.1. Misalignment Detection
Having a clustering methodology defined, and given
the particular configurations that can be observed after
clustering, it is possible to define an algorithm capa-
ble of identifying and classifying misalignment in the
resulting dataset of a speech collection.
Algorithm 1 details the sequence of steps proposed for
the classification. Briefly put, given a dataset D (where
each entry is a recording and the ID of the correspond-
ing contributor), and the corresponding embeddings for
each recording, E, the algorithm iteratively removes
suspicious cases of both MS and MA, until no more
can be detected.
In more detail, a contributor is signalled as having
multiple account misalignment, CMA, when all of
their utterances are enclosed in a cluster that is shared
with other contributor(s): this filtering is denoted as
get multiple accounts() in Algorithm 1. On the
other hand, a contributor is identified as an instance
of multiple speaker misalignment, CMS , when their
recordings are distributed over more than one cluster,
and such clusters contain only occurrences of that con-
tributor: this is denoted as get multiple speakers()
in Algorithm 1.
Upon removal of CMA and CMS from the data, D, the
contributors without any misalignment are extracted,
denoted CNoM . The detection of these contributors

Algorithm 1: Misalignment detection system
Input: D,E
Output: pred
clst = cluster(D,E)
has MS, has MA = True
i = 0
while has MS or has MA do

CMAi = get multiple accounts(D, clst)
has MA = (len(CMAi) > 0)
if has MA then

D = D − CMAi

clst = cluster(D,E)

end
CMSi = get multiple speakers(D, clst)
has MS = (len(CMAi) > 0)
if has MS then

D = D − CMSi

clst = cluster(D,E)

end
i+ = 1

end
CNoM = get no misalignment(D, clst)
CMA = set(CMA)
CMS = set(CMS)
Cinc = D − CNoM

pred = (CNoM , CMA, CMS , Cinc)
return pred

is conducted by filtering C ∈ D such that all of the
executions pertaining the contributor are enclosed in
a single cluster, with said cluster only having execu-
tions from a single contributor: in Algorithm 1 denoted
as get no misalignment(). Contributors who end up
not mapping to any of these three well-defined con-
figurations are labelled as inconclusive (Cinc). Theo-
retically, these contributors may have misalignment of
both types (MA and MS). In practice, the category Cinc

is also expected to hold noisy results while clustering.
Central to the proposed process is the recurrent re-
clustering of the dataset D between every operation of
contributor classification (removal of misaligned con-
tributors – CMA and CMS – from D). This strategy
allows for the refinement of the clustering module, re-
calibrating the number of clusters with the number of
contributors as the dataset is processed.

4.2. Misalignment Generation
The final piece to understand the performance of
the clustering strategy to validate speaker uniqueness
correctness is to obtain correctly labelled misaligned
datasets. As the process of manually validating a sig-
nificant amount of data that would be sufficient to pro-
duce statistically sound results is unfeasible, this sec-
tion addresses the task by introducing misalignment in
face of validated datasets (such as the ones described in
Section 3.3).
Given a validated dataset (with no misalignment be-
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tween contributors and actual speakers), composed of
NC number of contributors, each with NU utterances,
misalignment is generated using the following heuris-
tic:

• Multiple Speakers NMS contributors are ran-
domly selected from the dataset, forming a set of
contributors denoted CMS . For each contributor
Ci, {i ∈ [0, .., NMS/2 − 1]} in CMS , a random
number of utterances are selected to be transferred
to Cj , {j = i + NMS/2}. The remaining ut-
terances from Ci are removed from the dataset,
together with the contributor identifier. As a re-
sult, Cj will contain utterances from two different
speakers.

• Multiple Accounts NMA contributors are ran-
domly selected from the dataset, forming a set of
contributors denoted CMA. For each contributor
Ci, {i ∈ [0, .., NMA] in CMA}, a random num-
ber of utterances are selected to be transferred to
a new contributor Cj , {j = i + NMA}. As a re-
sult, Ci and Cj will contain utterances of the same
speaker.

In the experiments carried out, CMA is disjoint from
CMS

4, meaning that no contributor has more than one
class of misalignment. Generating fraud with misalign-
ment cases involving more than two contributors and in
which each contributor can display both kinds of mis-
alignment is a relevant topic for future work.
The heuristic defined above allows one to generate any
desired scenario by defining the number of contribu-
tors (or percentage) for each type of misalignment, by
tweaking the NMS and NMA parameters. For the pur-
pose of the current paper, three types of scenarios are
explored:

• No Misalignment – this scenario corresponds to
running the process of contributor classification
on the datasets without introducing any misalign-
ment;

• Unbalanced Misalignment – scenarios that aim at
testing the impact on performance when having
an unmatched number of contributors with respect
to actual speakers. If CMA > CMS , there will
be a surplus of contributors in the dataset. The
opposing setup, where CMS > CMA will cause
the data to be clustered according to less speakers
than the ones that actually exists in the data.

• Balanced Misalignment: set of scenarios aiming
at testing robustness of the system with increasing
levels of misalignment.

4.3. Misalignment Detection Results
In this section, results when combining the misalign-
ment generation process introduced in Section 4.2 with

4In practice this means NMS +NMA ≤ NC .

the detection system detailed in 4.1 are presented to
gauge the performance of the proposed solution in the
different proposed scenarios of misalignment. Due to
the inherit randomness in the generation process, 100
runs were performed for each scenario. This process
was executed for all datasets individually, however,
given the similar conditions of DC–EN and DC–HE
(and corresponding results), results for these are aggre-
gated under DC. Results for VC are shown in separate
for reproducibility reasons.
Precision and Recall and corresponding standard de-
viations for each class (NoM-No Misalignment; MS-
Multiple Speaker; MA-Multiple Account) are pre-
sented in Table 3. The Confusion Matrices presented
henceforth identify the average occurrence rate across
all runs, and include the Inc-Inconclusive class, denot-
ing the reject option.
In the absence of misalignment, the results are closely
related to the ones presented in Section 3.4. More
specifically, the reduction of Recall can be explained by
the limited number of contributors with non-complete
cluster assignments, which is exclusively a result of ini-
tial clustering errors, and not from the detection system
in itself. As such, a small number of contributors are
erroneously identified.
The unbalanced introduction of misalignment into the
dataset (different amounts of MA and MS) leads to a
change in the clustering assignments. As explained in
Section 4.2, MA is simulated by splitting existing con-
tributors into new ones, which in turn increases the ac-
tual number of contributors (and as a result the number
of clusters). As such, clusters which would otherwise
be pure are forced to split. Conversely, MS is simu-
lated by combining 2 existing contributors into a single
one, which reduces the actual number of contributors
(and forcing the merger of portions of clusters). Con-
sequently, the performance of the detector is affected.

No MS MA Inc
Predicted label

No

MS

MA

Inc

Tr
ue

 la
be

l

0.81 0.0003 0.11 0.034

0.00028 0.03 0 0.02
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Figure 2: Confusion Matrix of DC with 5% MS.

When adding only MS to the dataset, Recall decreases
significantly (.92 vs.86 NoM-Recall on DC; .93 vs .77
on VC), showing the misalignment detection method
heavily relies on finding pure clusters in its heuris-
tic. Furthermore, the Standard Deviation of the Recall
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NoM MS MA
Dataset MS/MA (%) Precision Recall Precision Recall Precision Recall

DC

0/0 1.00 ± 0.00 0.92 ± 0.00 - - - -
0/5 1.00 ± 0.00 0.92 ± 0.01 - - 0.74 ± 0.05 0.97 ± 0.06
5/10 1.00 ± 0.00 0.90 ± 0.04 0.93 ± 0.05 0.75 ± 0.20 0.81 ± 0.09 0.98 ± 0.3
5/0 1.00 ± 0.00 0.86 ± 0.05 0.98 ± 0.04 0.59 ± 0.21 - -
10/5 1.00 ± 0.00 0.79 ± 0.07 0.99 ± 0.07 0.52 ± 0.17 0.49 ± 0.11 0.99 ± 0.2
5/5 1.00 ± 0.00 0.89 ± 0.07 0.94 ± 0.05 0.73 ± 0.19 0.65 ± 0.12 0.99 ± 0.03

10/10 1.00 ± 0.00 0.82 ± 0.08 0.99 ± 0.02 0.61 ± 0.19 0.72 ± 0.11 0.99 ± 0.02
25/25 0.99 ± 0.02 0.47 ± 0.09 0.99 ± 0.07 0.15 ± 0.07 0.91 ± 0.04 0.99 ± 0.01

VC

0/0 1.00 ± 0.00 0.93 ± 0.00 - - - -
0/5 1.00 ± 0.00 0.93 ± 0.02 - - 1.00 ± 0.00 0.97 ± 0.12
5/10 1.00 ± 0.01 0.82 ± 0.17 0.78 ± 0.40 0.57 ± 0.36 0.86 ± 0.22 0.99 ± 0.05
5/0 1.00 ± 0.01 0.77 ± 0.12 0.62 ± 0.49 0.38 ± 0.34 - -
10/5 1.00 ± 0.01 0.66 ± 0.17 0.76 ± 0.43 0.31 ± 0.25 0.51 ± 0.24 0.98 ± 0.11
5/5 1.00 ± 0.00 0.82 ± 0.16 0.78 ± 0.41 0,52 ± 0.34 0.77 ± 0.29 0.96 ± 0.14

10/10 1.00 ± 0.01 0.68 ± 0.17 0.82 ± 0.38 0.36 ± 0.27 0.71 ± 0.23 0.98 ± 0.06
25/25 0.94 ± 0.15 0.41 ± 0.18 0.57 ± 0.50 0.09 ± 0.09 0.92 ± 0.08 0.98 ± 0.04

Table 3: Misalignment Detection Results. DC denotes the combination of the crowdsourced datasets DC–EN and
DC–HE.

shows larger deviations across different runs, indicat-
ing inconsistency of results, depending on the clusters
affected. Figure 2 identifies some of the limitations of
the system. Namely, the system erroneously identifies
10% of the contributor pool as being MA, when in re-
ality they were not-misaligned and a combined 5% of
contributors were identified as Inconclusive.
The introduction of only MA doesn’t seem to affect the
performance of the system as heavily as MS, with VC
reaching near optimum Precision and Recall on the MA
class, whereas DC reports a similar Recall but a Preci-
sion of 0.74.
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Figure 3: Confusion Matrix of DC with 10/5%
MS/MA.

The experiments when combining both types of mis-
alignment with different amounts are also in line with
the results obtained individually. In both VC and DC,
Recall on MS exhibits poor results when MS is larger
than MA (.52 vs .75 MS-Recall on DC; .31 vs .57 on
VC). Furthermore, a decrease in MA Precision was de-

tected (.81 vs .49 MA-Precision on DC; .86 vs .51 on
VC). If one compare these results with the ones ob-
tained when inserting the same proportion of misalign-
ment, the same hypothesis is also confirmed: When
MA is larger than MS, MS precision remains about the
same (.75 vs .73 on DC; .57 vs .52 on VC). The Confu-
sion Matrix of C for the 10/5% scenario is presented in
Figure 3.

When introducing the same amount of misalignment of
both types, the number of clusters remains the same of
the initial clustering with clean data. As such, the clus-
tering performance does not affect the performance of
the misalignment detector. A trade-off between Pre-
cision and Recall on MS and MA is detected when
introducing both types at the same time. In DC, MS
presents itself as having high Precision and low Recall,
whereas MA presents high Recall, but lower Precision.
The higher the amount of misalignment, the lower MS
and NoM-Recall becomes. Precision on both MA and
MS increases in DC, with the trade-off being a larger
amount of Contributors being classed as Inconclusive.
This is further evidenced looking at the Confusion Ma-
trices in Figure 4.

It is important to note there are some differences in per-
formance between DC and VC: VC exhibits a larger
variability of results across runs (larger SD) and over-
all worse results for MS. This can be due to 2 differ-
ent reasons: First and foremost, the dimensions of VC
are quite disjoint from DC (double the amount of ex-
ecutions and less than 1/4 of the speakers). Secondly,
unlike the crowdsourced datasets, which present them-
selves as having low variability (similar channel condi-
tions, noise levels) the data mining process of Voxceleb
includes a wide range of conditions, which leads to in-
stability when forcing misalignment.
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Figure 4: Confusion Matrices of DC with increasing percentage of balanced MS/MA misalignment.

5. Discussion
The results achieved in the present study are promising
with respect to the suitability of introducing automatic
speaker verification into the crowdsourcing pipeline.
While it cannot replace human validation altogether,
the levels of performance achieved suggest that the val-
idation process can not only be optimised (in terms of
time and cost), but also improved (in terms of quality).
A straightforward application of the methodology de-
veloped is a tool to guide subsequent speaker validation
tasks. The high values of precision observed for cases
with no misalignment state that such contributors do
not need further validation, with up to precision = 99%
for the crowdsourcing datasets. As seen in the previous
section, it can make up to 76% (for 5% MS/MA) or
58% (10% MS/MA) of the contributors.
For the remaining cases, in face of lower precision re-
sults, the proposed systematic approach can be of help
in identifying which utterances should be compared to
corroborate or otherwise invalidate the system’s cate-
gorisation. In fact, given that embeddings are extracted
for all utterances, one can measure how distant every
pair of utterances is from each other. To validate a con-
tributor flagged with MS misalignment, it will be inter-
esting to request other contributors to compare the two
most distant utterances from that individual. On the
other hand, for MA, one can compare the two closest
recordings, i.e., the most confusable ones.
Taking as an example the volume of data in the DC–HE
dataset (˜2K executions from 147 contributors), a full
MS validation would require 13.4K pairwise compar-
isons, while validating MA would add an extra 10.7K
tasks, for a total of approximately 24.1K tasks5. On the
other hand, in a 5% MS/MA misalignment setting, the
number of comparisons needed could amount to around
406. Such a large difference stems from the fact the
validation shifted from the need for comparing all exe-
cutions individually, to picking the most promising ex-

5following the same approach used in the introductory
section

6assuming a simplified scenario where one comparison is
needed per case of MS, one comparison per case of MA, and
two comparisons for each inconclusive contributor

amples for human comparison.
Altogether, the full automation on classifying no mis-
aligned data and the significant reduction of human
tasks required to ensure dataset consistency allows for
faster cycles of data delivery in a crowdsourcing con-
text and a considerable improvement in both efficiency
and efficacy of the collection of speech data.

6. Conclusions
This work presents a speaker verification task in the
context of misalignment detection for crowdsourced
speech data collections. Noting the various combina-
tions of different languages and conditions that occur
during data collection, our proposed system leverages
pre-trained embedding extractors to performs cluster-
ing of all submitted executions. Results show this
method achieves near-optimal clustering without the
need for cumbersome enrolment and threshold selec-
tion procedures. Additional experiments pertaining the
automatic detection of misalignment were conducted.
Namely, a generation heuristic is introduced and then
clustering is performed to appoint contributors to their
respective classes. Results of these experiments show
high precision in the no misaligned class and a trade-
off between precision and recall on the misaligned
classes, which adding those deemed inconclusive, lays
the groundwork for final human validation.
Future work directions on this work include experi-
mentation with more data sources, privileging variabil-
ity in terms of language and channel conditions. A
simulation of detection of speaker misalignment while
the crowdsourcing job is ongoing is worthwhile and,
if successful, can prove useful in detecting misaligned
contributors earlier. Additionally, a Machine Learning
model that leverages a more extensive feature set that
includes embedding distances and other cluster infor-
mation could be implemented whilst maintaining a cer-
tain dimension of explainability.
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