@inproceedings{lee-etal-2022-context,
title = "Context-based Virtual Adversarial Training for Text Classification with Noisy Labels",
author = "Lee, Do-Myoung and
Kim, Yeachan and
Seo, Chang gyun",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.660",
pages = "6139--6146",
abstract = "Deep neural networks (DNNs) have a high capacity to completely memorize noisy labels given sufficient training time, and its memorization unfortunately leads to performance degradation. Recently, virtual adversarial training (VAT) attracts attention as it could further improve the generalization of DNNs in semi-supervised learning. The driving force behind VAT is to prevent the models from overffiting to data points by enforcing consistency between the inputs and the perturbed inputs. These strategy could be helpful in learning from noisy labels if it prevents neural models from learning noisy samples while encouraging the models to generalize clean samples. In this paper, we propose context-based virtual adversarial training (ConVAT) to prevent a text classifier from overfitting to noisy labels. Unlike the previous works, the proposed method performs the adversarial training in the context level rather than the inputs. It makes the classifier not only learn its label but also its contextual neighbors, which alleviate the learning from noisy labels by preserving contextual semantics on each data point. We conduct extensive experiments on four text classification datasets with two types of label noises. Comprehensive experimental results clearly show that the proposed method works quite well even with extremely noisy settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2022-context">
<titleInfo>
<title>Context-based Virtual Adversarial Training for Text Classification with Noisy Labels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Do-Myoung</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yeachan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chang</namePart>
<namePart type="given">gyun</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep neural networks (DNNs) have a high capacity to completely memorize noisy labels given sufficient training time, and its memorization unfortunately leads to performance degradation. Recently, virtual adversarial training (VAT) attracts attention as it could further improve the generalization of DNNs in semi-supervised learning. The driving force behind VAT is to prevent the models from overffiting to data points by enforcing consistency between the inputs and the perturbed inputs. These strategy could be helpful in learning from noisy labels if it prevents neural models from learning noisy samples while encouraging the models to generalize clean samples. In this paper, we propose context-based virtual adversarial training (ConVAT) to prevent a text classifier from overfitting to noisy labels. Unlike the previous works, the proposed method performs the adversarial training in the context level rather than the inputs. It makes the classifier not only learn its label but also its contextual neighbors, which alleviate the learning from noisy labels by preserving contextual semantics on each data point. We conduct extensive experiments on four text classification datasets with two types of label noises. Comprehensive experimental results clearly show that the proposed method works quite well even with extremely noisy settings.</abstract>
<identifier type="citekey">lee-etal-2022-context</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.660</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>6139</start>
<end>6146</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-based Virtual Adversarial Training for Text Classification with Noisy Labels
%A Lee, Do-Myoung
%A Kim, Yeachan
%A Seo, Chang gyun
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F lee-etal-2022-context
%X Deep neural networks (DNNs) have a high capacity to completely memorize noisy labels given sufficient training time, and its memorization unfortunately leads to performance degradation. Recently, virtual adversarial training (VAT) attracts attention as it could further improve the generalization of DNNs in semi-supervised learning. The driving force behind VAT is to prevent the models from overffiting to data points by enforcing consistency between the inputs and the perturbed inputs. These strategy could be helpful in learning from noisy labels if it prevents neural models from learning noisy samples while encouraging the models to generalize clean samples. In this paper, we propose context-based virtual adversarial training (ConVAT) to prevent a text classifier from overfitting to noisy labels. Unlike the previous works, the proposed method performs the adversarial training in the context level rather than the inputs. It makes the classifier not only learn its label but also its contextual neighbors, which alleviate the learning from noisy labels by preserving contextual semantics on each data point. We conduct extensive experiments on four text classification datasets with two types of label noises. Comprehensive experimental results clearly show that the proposed method works quite well even with extremely noisy settings.
%U https://aclanthology.org/2022.lrec-1.660
%P 6139-6146
Markdown (Informal)
[Context-based Virtual Adversarial Training for Text Classification with Noisy Labels](https://aclanthology.org/2022.lrec-1.660) (Lee et al., LREC 2022)
ACL