
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 6223–6231
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

6223

Named Entity Recognition to Detect Criminal Texts on the Web

Paweł Skórzewski, Mikołaj Pieniowski, Grażyna Demenko,
Adam Mickiewicz University, Poznań

ul. Wieniawskiego 1, 61-712 Poznań

pawel.skorzewski@amu.edu.pl, mikpie1@st.amu.edu.pl, lin@amu.edu.pl,

Abstract
This paper presents a toolkit that applies named-entity extraction techniques to identify information related to criminal activity in texts
from the Polish Internet. The methodological and technical assumptions were established following the requirements of our application
users from the Border Guard. Due to the specificity of the users’ needs and the specificity of web texts, we used original methodologies
related to the search for desired texts, the creation of domain lexicons, the annotation of the collected text resources, and the combination
of rule-based and machine-learning techniques for extracting the information desired by the user. The performance of our tools has been
evaluated on 6240 manually annotated text fragments collected from Internet sources. Evaluation results and user feedback show that
our approach is feasible and has potential value for real-life applications in the daily work of border guards. Lexical lookup combined
with hand-crafted rules and regular expressions, supported by text statistics, can make a decent specialized entity recognition system in
the absence of large data sets required for training a good neural network.

Keywords: criminal texts, named entity recognition, natural language processing

1. Introduction

In recent years, the problem of combating organized crime
related to cross-border criminal activities (e.g., illegal
smuggling of various goods across borders, particularly
drugs, and other criminal activities like slavery,
prostitution, trafficking in human organs) has become
particularly important. Valuable criminal-justice analyses
based on web texts are currently difficult to be
automatically accessed and used by intelligence
investigators. In their daily work, employees of the Border
Guard manually collect, read, and analyze dozens of
documents from various websites. Most of these
documents are not relevant to the desired activity, e.g., drug
trafficking. The process is highly time-consuming, and the
results are not necessarily satisfactory. It is necessary to
automate searching for information, extracting the desired
information, classifying documents, and profiling the text
authors and organized groups. Informal text coming from
heterogeneous sources is hard to process entirely
automatically. Therefore, identifying and recognizing
entities, i.e., places, organizations, or personal names,
could help police and Border Guard officers understand
and find relevant information in the data extracted.
The problem of recognizing named entities is well
researched (Minkov, Wang, and Cohen, 2005), also in
terms of language-independent solutions. Even so, only
preliminary work has been presented for crime detection
based on web text.
An excellent overview of the literature dedicated to NER
extraction is given by Al-Moslmi et al. (2020). The paper
provides an overview of state of the art in this area,
including Named Entity Recognition (NER), Named Entity
Disambiguation (NED), and Named Entity Linking (NEL).
The authors not only explain the concept of NER in detail
but also introduce the concept of NED, which refers to the
ambiguity of the extracted units, and NEL, which refers to
the mutual relations of the identified units.
Web texts are particularly useful in domain-specific
applications because they contain information that may not
be available in well-structured databases. However, such
information is frequently hidden in unstructured text, thus
limiting its usage in criminal activity detection. Despite the
availability of generic named entity recognition tools,
analyzing short informal texts collected from networks

signaling illegal activities of individuals or organized crime
groups poses the following challenges (Chau, Xu, and
Chen, 2002).

• The analysis of texts in terms of crime-related
content requires recognizing not only standard
named entity categories like person names,
organizations, and locations. Other expression
categories, such as addresses, product names (e.g.,
drug names, cigarette and alcohol brands),
descriptions, or actions, are equally relevant to
crime intelligence analysis. Therefore, it is
necessary to define the taxonomy of named
entities precisely.

• Web texts are very specific: they are very noisy
compared to other types of text data, such as well-
prepared documents. They are mostly very short,
contain many typos, spelling errors, and different
kinds of grammatical errors, thus making the
entity extraction task very difficult.

• The vocabulary is full of domain jargon and
numerous ambiguities at every level of linguistic
analysis.

These conditions are more or less important, depending on
the language. For the Polish language, irregular grammar,
numerous ambiguities at each linguistic level, and a
relatively free sentence order sometimes make it
impossible to interpret the extracted information correctly,
even in the case of human analysis. Methods used in named
entity recognition systems for Polish include conditional
random fields (Waszczuk et al., 2013; Marcińczuk, Kocoń,
and Oleksy, 2017) and recurrent neural networks
(Borchmann, Gretkowski, and Graliński, 2018;
Marcińczuk, Kocoń, and Gawor, 2018).
We discuss the following research questions based on the
analysis of actual crime text collected from the Internet.
Section 2 presents the applied methodology, including the
list of entity categories we distinguished and the named
entity extraction approaches we used. In Section 3, we
discuss the process of gathering and annotating our
experimental dataset and present their results. Section 4
describes the algorithms and models we developed to
extract named entities from the text. In Section 5, we
present the evaluation results. Section 6 contains the
discussion of the obtained results and the further plans.

6224

2. Methodology

2.1 Entity Categorization

Named entities considered in the context of analyzing texts
in terms of crime-related expressions are not limited to
proper names but also include descriptions, names of
actions, etc. We have distinguished nine categories
pertinent to the task:

• Identifier is a named entity allowing to directly
identify the author of the text, e.g., first name, last
name, nickname, telephone number. This category
also includes all named entities that facilitate
locating the event or identifying the author of the
text, e.g., e-mail addresses, links, URLs, website
names, etc. Examples: Zbyszek (a given name),
zb@example.com (an e-mail address),
+48123456789 (a phone number).

• Object–person. This category includes all terms
referring to people, such as demonyms,
ethnonyms, names of professions, functions,
nationalities, etc. Examples: Polak (‘Pole’),
żoliborzanin (‘inhabitant of Żoliborz district’),
starzec (‘old man’), sekretarka (‘secretary’).

• Object–thing. This category is related to potential
crime objects, excluding people. It includes
physical or virtual (e.g., data) goods, works, and
products – anything that may be the object of
trafficking or a crime. A variety of entity types
belongs to this category: names of drugs and
medical substances, alcohols, guns, documents,
vehicle brands, etc. Examples: dowód osobisty
(‘identity card’), LSD, tequila, Volkswagen

• Action. This category includes the names of
actions directly or indirectly related to criminal
activity. Actions directly associated with illegal
activity include selected types of crimes, e.g.,
smuggling or drug trafficking. Activities
indirectly related to criminal activity include, for
example, traveling, accessing information, using
websites, or shipping goods. Actions can be
expressed with verbs (e.g., wysłać ‘to send’) or
nouns (e.g., wysyłka ‘shipment’). Verbs denoting
actions refer to dynamic situations, i.e., situations
that involve a change in the state of the performer
of this activity, the object to which the activity
relates, or the relationship between the
participants of the action. These actions are
carried out consciously, i.e., under the contractor’s
control. They include verbs for movement (walk,
drive, move, carry), making sounds (talk, whisper,
cry), judging (praise, condemn), physical activity
(work, beat, pull), and much more. Actions are
generally expressed by verbs denoting activities or
dynamic situations. Verbs in the first person are
particularly valuable, e.g., sprzedam (‘I will sell’),
kupiłem (‘I bought’). Actions can also be signaled
indirectly with other parts of speech, e.g.,
sprzedaż i kupno (‘sale and purchase’), wymiana
(‘exchange’), handel (‘trade’), dystrybucja
(‘distribution’).

• Organization. This category includes the names
of major Polish and international organizations
and organizations related to cross-border
smuggling. Examples: Straż Graniczna (‘Border

Guard’), WORD (‘Voivodship’s Road Traffic
Center’).

• Location category includes geographical places,
addresses, and names of institutions. Examples:
Warszawa (‘Warsaw’), ul. Słowackiego 8 (an
address).

• Time. This category includes temporal
expressions of various kinds, such as date (an
expression that describes the appointment
according to the calendar), time (exact
hour/minutes), time of day/night (does not have to
be very precise), duration (a time interval that
answers the question “how long”), or set (an
expression that describes a series of events; it
answers the question “how often”).

• Measure. This category includes terms relating to
size: physical measures, terms indicating the size,
numbers concerning specific items, also names of
currencies. Measures can be expressed with
different parts of speech. Examples: 100 dolarów
(‘100 dollars’), 5 zł (‘5 zlotys’), 200 mg, 5 szt.
(‘5 pieces’)

• Description category includes various
expressions of characteristics, explanation,
comments and can be expressed with different
parts of speech. Examples: bezpośrednio od
producenta (‘directly from the manufacturer’),
białe (‘white’), z zagranicy (‘from abroad’), tanie
w dobrej cenie (‘cheap at a good price’), bez
akcyzy (‘duty free’).

2.2 Named Entity Extraction Approaches

We can distinguish three primary named-entity extraction
approaches: based on lexicon lookup and rules, statistical
approach, and machine learning. The last concept includes
neural networks, which can automatically infer features
through deep learning.
Rule-based systems rely on hand-crafted rules that do not
require annotated training data since they depend on lexical
resources. These rules can be structural, contextual, or
lexical (Krupka and Hausman, 1998). Their precision can
become high because of the lexicons and domain-specific
knowledge. The disadvantage is that this also makes them
domain-dependent, that lexicon resources may be
unavailable, and that constructing and maintaining such
resources for many languages is costly.
Statistic-based systems use statistical models to identify
specific patterns or cues for entities in texts and require a
training data set to obtain the statistics. Such systems may
use a statistical language model to identify named entities
in texts (Witten et al., 1999).
Machine-learning-based systems rely on entropy
maximization (Borthwick et al., 1998), neural networks
(Lample et al., 2016), decision trees (Baluja, Mittal, and
Sukthankar, 2000), hidden Markov models (Miller, Leek,
and Schwartz, 1998), or other machine learning techniques.
Deep learning methods can be used to infer features
automatically. Neural networks do not need seeds,
ontologies, or domain-specific lexicons and are therefore
more domain-independent. However, building robust
models require large datasets.
Instead of relying on a single approach, our named entity
extraction system utilizes a combination of lexicon lookup,
hand-crafted rules, statistics, and neural networks.

6225

3. Experimental Data

The entire process of preparing the evaluation corpus can
be divided into three key steps. The steps include locating
the sources of adequate texts, extracting and storing the
found data, and finally, annotating gathered texts. The
following subsections describe the process in an analogous
order.

3.1 Text Collecting

To create an evaluation corpus of the Named Entity
Recognition algorithm, it was necessary to collect texts rich
in domain lexis corresponding to the criminal environment
and containing as many of the categories listed in section
2.1 as possible. Depending on the source of given texts,
either a manual or automatic approach was employed to
capture them.

3.1.1 Indication of potential text sources

The first step towards creating an evaluation corpus was to
identify potential sources of such texts. The sources used in
the process can be divided into two main categories - those
originating from the Clearnet and those originating from
the anonymous TOR (The Onion Router) network. By
making it impossible to trace a user's movements, the TOR
network allows them to use the web anonymously1. This
feature allows the network to be used by criminals to
provide or use illegal services. To access content published
on the TOR network, it is necessary to install a suitable
browser that allows such access. TOR sites with illegal
content are usually secured and require registration (Mider,
2019). Moreover, the URLs of TOR networks are usually
strings of random characters - letters and numbers ending
with the domain ".onion" (Krauz, 2017), which was an
additional complication in the text collection process.
These factors meant that the texts found in the pre-imposed
requirements were collected manually rather than
automatically, as was the case with those from Clearnet. In
this case, the manual method was much more effective than
developing a script that bypassed the safeguards mentioned
above.
In order to determine Polish sources of criminal texts
meeting the established criteria, a list of active Polish sites
operating in the TOR network, published by the ITcontent2
service, was used. The Polish sites Cebulka and Darknet
were selected from this list. However, international sites
such as Apollon Market or Dream Market were also used
as text sources.
In the case of Clearnet, the traditional Google search engine
was used to find texts. Mainly two-part queries consisting
of an action verb and a following illegal object were used.
Of the results returned, the most relevant were selected.
Their content was then searched analogously to locate more
texts. The following list presents the sources used for
linguistic data extraction.

• Cebulka – the most popular Polish discussion
board and auction site operating in the TOR
network. Partial access is available without
registration.

• Darknet (Polka) – Polish discussion board and
auction site operating in the TOR network. Access
to the content requires registration.

1 https://www.torproject.org/

• Apollon Market / Dream Market / White
House Market – international auction services
operating in the TOR network. Each of them
requires registration for the contents to be viewed.

• oglaszamy24h.pl / top-ogloszenia.pl – Polish
advertising websites operating in the Clearnet.
Registration is not required.

• dopalacze-sklep.org – Polish online shop
offering illegal drugs of various kinds. It operates
in the Clearnet and does not require registration.

3.1.2 Text extraction and results

The automatic approach to text extraction employed in the
case of Clearnet sources was based on a proprietary web
scraper developed in the Python programming language.
The script was being adjusted individually for each
website. It employed three modules, namely – Requests:
HTTP for Humans (for handling HTTP requests), Beautiful
Soup (HTML/XML parser), and re (for enabling the usage
of regular expressions). The results of both manual and
automatic data extraction amounted to 3337 full texts
stored in the csv format.

3.2 Annotations

The subsequent step in the process of evaluation set
preparation was the annotation of the linguistic data
gathered in the previous steps in compliance with the afore-
established entity categorization. From the texts collected
in the previous steps, a subset of 450 texts was extracted
and divided into packages of ten full texts each. The
number of 450 texts was primarily due to the limited time
commitment of the annotators. Given the availability of
annotators and the estimated time needed to tag one entire
text file, it was decided to entrust each annotator with
tagging 50 full texts in a month, giving an average of one
file annotated per week. Each bundle was saved in the txt
format and labeled with a unique sequence number. The
first month was intended to be an introductory period, as
there was provision for students involved in annotation to
continue their involvement in the project after the first
month. However, due to the insufficient annotators willing
to do so, the work had to be terminated at 450 texts.
Each of the nine annotators involved was a third-year
student of Linguistics and Information Science at Adam
Mickiewicz University. The annotators were provided with
two extensive text files covering the guidelines for the
annotation. Additionally, an introductory meeting was
organized to train the annotators and clarify matters of
concern in the Q&A format. Due to the aforementioned
linguistic background of the students involved, it was
possible to commence the operation swiftly after
conducting the introductory meeting. Annotators were in
constant contact with the coordinator throughout the entire
process.
The workspace was organized in the cloud. Every text
bundle was saved in the txt format and labeled with a
unique sequence number. Each annotator was given their
own identifier with a structure corresponding to “A<No.>”
(e.g., A1, A2, etc.). A file was created showing the text
allocation of each annotator. After completing the
annotation of a given text bundle, an annotator was to place
the file in a designated folder and mark the work progress
in a designated spreadsheet.

2 https://itcontent.eu/aktywne-strony-tor/

6226

The annotators were instructed to mark the beginning and
end of each identified named entity and to mark its
category. Entities of different categories could be nested.
One subset (A6) has been annotated by two independent
annotators. Figure 1 presents the scheme of conducted
annotation in a concise way.

3.3 Resulting Datasets

450 collected texts were split into fragments according to
line breaks. Each fragment consists of one to several
sentences or sentences equivalents. As a result, we obtained
a set of 6240 annotated text fragments. We will refer to this
whole set as A_all. Its subset A6, annotated by two
independent annotators, contained 554 fragments. We used
it to evaluate the quality of the manual annotation, as
described in Section 5. Additionally, in some experiments,
we used sets A_train and A_aug. The set A_train was
created as the difference of sets A_all and A6 (i.e., A_train
:= A_all – A6). The set A_aug was created from A_train
using data augmentation techniques, as described in
Section 4.3. The details of the datasets are summarized in
Table 1.

Dataset A_all A6 A_train A_aug

Number of texts 450 50 400 N/A

Number of text

fragments

6240 554 5686 34960

Num. of sentences 6674 637 6037 41955

Number of words 44391 5070 39321 468708

Number of entity

instances

11695 1949 9746 75891

 Identifier 398 32 366 1446

Object 4658 807 3851 34094

 Person 79 4 75 678

Thing 4579 803 3776 33416

Action 1188 192 996 9630

Organization 163 0 163 518

Location 124 43 81 1408

Time 320 38 282 3618

Measure 3020 662 2358 12495

Description 1824 175 1649 12682

Table 1: The details of the collected datasets.

3 https://flask.palletsprojects.com

4. Named Entity Recognition

4.1 System Overview

The named entity recognition system described in this
paper is a part of the Context module, developed as a part
of the AISearcher software (Demenko et al., 2022). The
purpose of the AISearcher system is to support the
operation of the Polish Border Guard by facilitating the
analysis of Internet resources in terms of crime-related
contents, using natural language processing and artificial
intelligence.
AISearcher system consists of several modules. In brief,
the usage scenario for collecting and analyzing Web texts
is the following. First, the user initiates the search, entering
a query in a source language (e.g., Polish). The Query
Expansion module expands the search term with
synonymic expressions. The expanded query is translated
to target languages (Russian, Ukrainian, Belorussian) by
the Translator module (Nowakowski and Jassem, 2021)
and entered into search engines. The search results are
translated back to the source language. Then, the Context
module is responsible for multi-layer linguistic analysis of
the collected texts. The translated and analyzed results are
presented to the user. The crucial part of the Context
module is the named entity recognition submodule,
accountable for the semantic analysis of texts.
The Context module has been developed as a RESTful Web
service built upon the Flask web framework3 to facilitate
integration with other AISearcher modules. We also used
the Sacred tool (Greff et al., 2017) to manage experiments
and the Gonito platform (Graliński et al., 2016) for
comparing experiment results.
The Context’s NER submodule has a modular structure that
allows for testing various NER algorithms, as well as
creating ensembles and buckets of multiple algorithm
variants. Algorithms are encapsulated in classes following
the principles of object-oriented programming so different
classes can use the same utility tools, e.g., POS tagger,
lemmatizer, or spellchecker.
For POS tagging, we use the Multilingual Universal Part-
of-Speech Tagging model (flair/upos-multi-fast) – a
multilingual model based on Flair embeddings (Akbik et
al., 2018) and LSTM-CRF. For morphological analysis, we
use the Morfeusz morphological analyzer for Polish
(Kieraś and Woliński, 2017). For spellchecking we use the
GNU Aspell spellchecker4.
We implemented various NER algorithms, both
lexicon/rule-based and machine-learning-based, to see
which one best performs.

4.2 Approaches Based on Lexicons and Rules

Our rule-based algorithm for recognizing named entities
uses carefully prepared lexicons and hand-crafted regular
expressions. It also uses hand-crafted rules to assign
confidence scores for different entities. These scores are
further used in the disambiguation procedure.

4.2.1 Lexicons

For the lexicon-based approach, we prepared domain
vocabulary lexicons, as described by Jankowska,
Pieniowski, and Demenko (2022). The lexicons contain
3135 lexical units related to different kinds of criminal
activity, including the illegal trade of drugs, alcohol,

4 http://aspell.net

Figure 1: Graphic representation of the annotation process.

6227

cigarettes, cars, machines, weapons, and explosives, as
well as document forgery, human trafficking, and sexual
offenses. The identified lexical units are categorized
according to the classification described in Section 2.1.
The lexicon files are not used by the algorithm as-is but are
pre-processed first. We distinguish several kinds of source
lexicon files that are treated somewhat differently:

• Most lexicons are just lists of expressions that are
to be marked as a particular category. Each of
these word lists is assigned a specific category
and a specific confidence value.

• Some lexicon files have a frequency value
assigned to each contained expression. E.g. the
lexicon of towns is a list of town names and their
population. A confidence score is calculated
based on the population value according to the
following rule: the larger population, the more
likely the town name should be recognized by the
algorithm. A similar method is used for lexicons
of given names and family names.

• Some lexicons include inflected terms. The
confidence score is calculated taking into account
the term’s morphological form. For example,
nouns in nominative are given a higher score than
nouns in other cases.

• There are also lexicons of ambiguities. These
files contain expressions that can be interpreted
differently depending on the context, e.g.,
Warszawa – ‘the city of Warsaw’ – should be
recognized as location, but Warszawa – a car
brand – should be recognized as object–thing.

Multi-word expressions in the source lexicon files are
treated specially. A dedicated multi-lexicon object is
created for them, taking into account the dependencies
between the constituent words of the expressions. This is
done because the process of matching the multi-word
expressions should take into account the proper inflection.
The street names lexicon file is also treated specially.
During its pre-processing, various common variants of
address expressions are added to the target lexicon object,
e.g., locative case.
The pre-processing of disambiguation lexicon files consists
of creating a dedicated disambiguation dictionary that
stores the information about the expression, its category,
and the sets of positive and negative context words.
Other lexicons are pre-processed by adding the relevant
terms and, if necessary, their inflected forms to the so-
called pre-lexicon. Then, to speed up the lexicon lookup
procedure, this pre-lexicon is converted to an automaton
using the pyahocorasick5 implementation of the Aho-
Corasick algorithm (Aho and Corasick, 1975). Finally, all
the pre-processed lexicons and the automaton are dumped
onto the disk to accelerate the process of loading lexicons
when the service starts.
Other lexical resources used in the system are:

5 https://github.com/WojciechMula/pyahocorasick
6 from https://github.com/stopwords-iso/stopwords-iso
7 ([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]
+)[.,!?*)]?
8 ((https?://)?(www[.])?[a-zA-Z0-9.-]+[.][a-z]{2
,5})

• the word frequency list created from the one-
million-word subcorpus of the National Corpus of
Polish (National Corpus of Polish, 2012;
Przepiórkowski et al., 2012) for disambiguation
purposes,

• the stop words list6.

They are also stored on the disk.

4.2.2 Regular Expressions

Hand-crafted regular expressions are used to recognize
entities belonging to the following categories:

• identifier: e-mail addresses7, URLs8, phone
numbers9,

• location: postal addresses10,
• time: date and time expressions,
• measure: expressions of numbers with units of

measurement and currencies, percentages11.

4.2.3 Recognizing Named Entities with Rules

In our rule-based named entity recognizer, named entities
are recognized in three ways: from regular expressions, the
automaton, the lexicons. Recognizing entities from regular
expressions is straightforward: a text fragment is marked as
a particular named entity category if it matches the
corresponding regular expression. Identifying entities from
the automaton is similar, but it takes into account word
boundaries because the automaton only deals with whole-
word phrases. Recognizing entities directly from the
lexicons consists of iterating over the lexicon entries (one-
word lexicon, multi-word lexicon, and disambiguation
lexicon), using the lemmatizer to check for inflected forms,
checking grammatical agreement for multi-word entries,
checking context for disambiguated entries, and
prioritizing obtained matches with confidence scores.
The results are then filtered, rejecting stop words and one-
letter words. For some entity types, a recognized entity is
rejected if the frequency list indicates that it should be
considered a common word rather than a proper name.
Finally, the results from all three sources are gathered and
disambiguated before being returned to the user.

4.3 Machine-learning-based Approaches

In addition to the rule-based named entity recognizer, we
decided to train a neural network model. To achieve this
goal, we needed a large set of text fragments annotated with
categories described in Section 2.1. This means that none
of the publicly available general-purpose NER datasets
would meet our needs.
Due to these constraints, we decided to use the text
fragments from the A_all set, except those contained in the
A6 subset. We will refer to this dataset as A_train (i.e.,
A_train := A_all – A6). The dataset A_train contains 5686
annotated text fragments.
Furthermore, we created an additional dataset using data
augmentation techniques (Shorten and Khoshgoftaar,
2019). For this purpose, we used the Query Expansion

9 ([+]?[0-9-]{9,15})[.,!?*)]?
10 ([aApPuU]l[.]([A-ZĄĆĘŁŃÓŚŹŻ][a-ząćęłńóśźż]+)
+([1-9][0-9]*[a-zA-Z]?(([\/]| m[.]? ?)[1-9][0-
9]*)?)?)[.,!?*)]?
11 ([+-]?[0-9]+([.,][0-9]+)?[]?%)

6228

module of the AISearcher system (Nowakowski and
Jassem, 2021). This way, we obtained a set of 34960
annotated text fragments. We will refer to this dataset as
A_aug.
The neural network architecture is based on the sequence
tagger implemented in the Flair framework (Akbik et al.,
2019). The input layer is followed by a stack of Flair
contextual string embeddings (Akbik, Blythe, and Vollgraf,
2018) for Polish (from both forward and backward
language models). The hidden layer size is 512.
Additionally, a conditional random field (Lafferty,
McCallum, and Pereira, 2001) is used to obtain predictions
from the network because the research shows that CRFs are
useful in NER-like tasks (Settles, 2004).
This way, we built two neural network models: one trained
on the A_train set and the other trained on the A_aug set.

4.4 Statistical Approach

We experimented with using some text statistics from the
A_train set to improve the rule-based recognizer. This way,
we developed a series of “statistically adjusted” rule-based
models. The models are parameterized by two parameters:
gt (“general feasibility threshold”) and st (“specific
feasibility threshold”).
We gathered the statistics from the annotated A_train
corpus: for every token (wordform) and its lemma in the
corpus, we counted how many times it was marked as a
named entity of each category. The file with these statistics
is used to filter out the output from the rule-based entity
recognizer the following way.
For every returned entity (w, e), where w denotes a word
and e denotes the entity category, two values are calculated:
the “general feasibility” g(w), and the “specific feasibility”
s(w, e), defined as:

𝑔(𝑤) ≔
∑ 𝑐(𝑤, 𝑒′)𝑒′∈𝐸 − 𝑐(𝑤, ∅)

∑ 𝑐(𝑤, 𝑒′)𝑒′∈𝐸

,

𝑠(𝑤, 𝑒) ≔
𝑐(𝑤, 𝑒)

∑ 𝑐𝑒′ ∈𝐸 (𝑤, 𝑒′)
,

where c(w, e) denotes the number of occurrences of word
w annotated as category e in the corpus, c(w, ∅) denotes the
number of occurrences of word w not marked as a named
entity in the corpus, and E denotes the set of all entity
categories and ∅. An entity (w, e) is rejected if g(w) < gt or
s(w, e) < st.

4.5 Ensemble Models

An ensemble of models is a classifier that combines
individual predictions of constituent models in some way
(Dietterich, 2000; Dzeroski and Zenko, 2002). Ensembles
are created to benefit from the advantages of constituent
classifiers.
Our experimental setup allows for building ensembles of
models in two ways:

• A bucket classifier uses different models for
different named entity categories. We expect that
such a bucket model will better reflect the variety
of entity categories.

• A weighted ensemble is a classifier that gathers
results from constituent models and gives them
different weights. These weights are multiplied by
obtained confidence scores. The resulting scores

are used to prioritize and disambiguate the results
by rejecting lower-score entities.

Because ensemble models are implemented so that they all
inherit from a model base class, they can be further
combined, creating mixed ensembles, e.g., weighted
ensembles of buckets.

5. Evaluation

For evaluation, we used the multi-label precision p, recall r
and Fβ-score metric defined as follows:

𝑝 =
|𝑇 ∩ 𝑃|

|𝑃|
 ,

𝑟 =
|𝑇 ∩ 𝑃|

|𝑇|
 ,

𝐹𝛽 = (1 + 𝛽2) ⋅
𝑝 ⋅ 𝑟

(𝛽2 ⋅ 𝑝) + 𝑟
 ,

where P and T are sets of predicted labels and true labels,
respectively. The F1-score is the harmonic mean of the
precision and recall. If 𝛽 < 1, then the 𝐹𝛽-score values the
precision more than the recall. In addition to the widely
used F1-score, we chose the F0.5-score for evaluation
because we expected users to be more concerned with
precision than recall.
We evaluated many models and their combinations
(ensembles) and modifications. For comparison, we used
the Nerf general-purpose named entity recognizer for
Polish (Waszczuk et al., 2013). Nerf is a statistical NER
based on linear-chain conditional random fields.
Because the A6 set has been annotated by two independent
annotators, we used this to evaluate the quality of manual
annotation, calculating the multi-label F1-score of one
annotation versus the other annotation.
Table 2 shows evaluation results for selected classifiers,
metrics, and test sets.

Classifier

F1-score on

A6 A_all

nerf 0.00512 0.01670

rules 0.45998 0.20874

rules + multiword agreement 0.45904 0.20830

rules + spellcheck 0.39489 0.17865

rules + spellcheck + multiword

agreement

0.39419 0.17797

rules + spellcheck + threshold 0.1 0.48718 0.21943

rules + spellcheck + threshold 0.3 0.48020 0.22331

rules + spellcheck + multiword

agreement + threshold 0.2

0.48425 0.22119

bucket 1 (rule-based only) 0.47263 0.22128

bucket 2 (rule-based only) 0.45319 0.21482

rules + statistics (0.5, 0.3) 0.49059 N/A

rules + spellcheck + threshold 0.1 +

statistics (0.5, 0.3)

0.51383 N/A

neural 0.37364 N/A

neural augmented 0.35335 N/A

bucket 3 0.52232 N/A

ensemble 1 0.52100 N/A

manual 0.62138 N/A

Table 2: Multi-label F1-score on both test sets for
different classifiers

6229

Classifiers trained on the A_train set or the A_aug set were
not evaluated on the A_all set but only on the A6 set.
Selected classifiers are:

• nerf – the Nerf tool described above,
• rules – the basic rule-based classifier, as

described in Section 4.2, but without spelling
correction or checking the grammatical agreement
of multi-word named entities,

• rules + multiword agreement – the rule-based
classifier with checking the grammatical
agreement of multi-word named entities,

• rules + spellcheck – the rule-based classifier with
spelling correction,

• rules + spellcheck + multiword agreement – the
rule-based classifier with a spelling correction and
checking the grammatical agreement of multi-
word named entities,

• rules + threshold t – rule-based classifier but
results with confidence c below given threshold
(i.e., c < t) are filtered out,

• rules + statistics (gt, st) – rule-based classifier
enhanced with statistical information, as
described in Section 4.4, with general feasibility
threshold gt and specific feasibility threshold st,

• neural – a neural model trained on the A_train set,
as described in Section 4.3,

• neural augmented – a neural model trained on
the A_aug set,

• bucket 1 – a bucket classifier composed of the
following rule-based classifiers:

o nerf for object–person and organization
categories,

o rules + spellcheck + threshold 0.1 for
object–thing category,

o rules + spellcheck + threshold 0.3 for
description category,

o rules + multiword agreement for time
and action categories,

o rules + multiword agreement +
threshold 0.4 for identifier and location
categories,

o rules + multiword agreement +
threshold 0.5 for measure category,

• bucket 2 – a bucket classifier composed of the
following rule-based classifiers:

o nerf for object–person and organization
categories,

o rules + multiword agreement +
threshold 0.4 for location, object–thing,
action, and time categories,

o rules + multiword agreement +
threshold 0.6 for identifier and measure
categories,

o rule + spellcheck + multiword
agreement + threshold 0.3 for
description category,

• bucket 3 – a bucket classifier composed of the
following classifiers:

o neural for identifier and object–person
categories,

o neural augmented for time category,
o rules + statistics (0.5, 0.3) for action,

measure, and description categories,

o rules + spellcheck + threshold 0.1 +
statistics (0.5, 0.3) for object–thing and
organization categories,

o rules + spellcheck + threshold 0.3 for
location category,

• ensemble 1 – a weighted ensemble of the rules +

spellcheck + threshold 0.1 + statistics (0.5, 0.3)

algorithm and the neural augmented model, where both

constituents are given the same weight,
• manual – manual annotation.

Tables 3, 4 and 5 show precision, recall, F1-score and F0.5-
score by category for manual annotation and for two select
algorithms with relatively high F1-scores: rules +
spellcheck + threshold 0.1 and rules + spellcheck +
threshold 0.1 + statistics (0.5, 0.3). Categories object –
person and object – thing were grouped together as object,
and the organization category was not included due to
insufficient data in the A6 set. Figures 2, 3 and 4 are
precision and recall plots for these three models.

Category Prec. F0.5 F1 Recall

Identifier 0.40678 0.44776 0.52747 0.75000

Object 0.75941 0.66851 0.56674 0.45205

Action 0.53521 0.39916 0.28897 0.19792

Location 0.10811 0.10471 0.10000 0.09302

Time 0.17500 0.17677 0.17949 0.18421

Measure 0.75772 0.67988 0.58910 0.48187

Description 0.20188 0.20935 0.22165 0.24571

Table 3: Multi-label precision, F0.5-score, F1-score, and
recall for rules + spellcheck + threshold 0.1 algorithm.

Category Prec. F0.5 F1 Recall

Identifier 0.52174 0.55556 0.61538 0.75000

Object 0.86375 0.72419 0.58292 0.43990

Action 0.70000 0.48611 0.33333 0.21875

Location 0.22222 0.12658 0.07692 0.04651

Time 0.12500 0.12048 0.11429 0.10526

Measure 0.80151 0.70763 0.60189 0.48187

Description 0.26562 0.24745 0.22442 0.19429

Table 4: Multi-label precision, F0.5-score, F1-score, and
recall for rules + spellcheck + threshold 0.1 + statistics

(0.5, 0.3) algorithm.

Category Prec. F0.5 F1 Recall

Identifier 0.38889 0.33654 0.28000 0.21875

Object 0.73378 0.72073 0.70200 0.67286

Action 0.48000 0.47085 0.45777 0.43750

Location 0.42857 0.21127 0.12000 0.06977

Time 0.46429 0.43333 0.39394 0.34211

Measure 0.91725 0.88787 0.84715 0.78701

Description 0.10302 0.11602 0.14311 0.23429

Table 5: Multi-label precision, F0.5-score, F1-score, and
recall for manual annotation. Note that precision scores
for the first annotator can be treated as recall scores for

the second annotator and vice versa.

6230

6. Discussion

Developing a specialized named entity recognition tool is
challenging. The results achieved by Nerf show that
general-purpose recognizers are not suitable for highly
specialized tasks of this kind. Analytic scores obtained
from comparing two independent annotators are much
lower than 1.0 - the annotators performed annotation
differently despite being given strict guidelines. That is
because we are not dealing here with a classical named
entity recognition task. Some categories, like identifiers or
locations, are named entities, but others, like descriptions
or actions, are less precisely defined. The annotators tended
to agree on the annotation of measures and objects, but
descriptions, identifiers, and, surprisingly, locations turned
out to be more ambiguous. The ambiguity of location
annotation resulted from the presence of the expressions
like na terenie Warszawy (‘on the territory of Warsaw’) or
do 50 km od Sandomierza (‘up to 50 km from
Sandomierz’), where it was not clear whether the whole
phrase or only the place name should be marked.
These issues were also reflected in the performance of our
models. As Tables 2–5 show, our best algorithms (i.e.,
bucket 3, rules + spellcheck + threshold 0.1 and similar)
scored comparably to humans for categories like identifier
or description, and only slightly worse for categories like
object, action, and measure. The time and location
categories proved to be the most challenging.
Rule-based algorithms that filtered out the least confident
results achieved one of the highest F1-scores. The use of
statistical data was helpful for this purpose. Neural models
performed significantly worse, probably due to a too-small
training set. Data augmentation did not mitigate this
problem. Carefully designed bucket ensembles proved to
be the best.
Another interesting remark is that the analytic measures of
NER performance like precision, recall, or F1-score do not
always coincide with the users’ experience. Although the
statistically enhanced models achieved better scores than
lexicon-based algorithms, the system users preferred the
simple rule-based algorithms. They perceived the statistical
and neural models as less “coherent” and “predictable”.
We plan to carry out an evaluation on a larger scale in the
future. We are systematically updating our named entity
recognition algorithms. For this purpose, users – the
employees of the Border Guard – constantly collect
original materials and provide valuable comments. We
analyze these materials and remarks to optimize the entire
NER process interactively. We also plan to collect more
training data, hopefully allowing us to train more accurate
neural models.

7. Acknowledgements

This research was carried out as a part of the project
“Advanced analysis of Internet resources to support the
detection of criminal groups (AISearcher)”, financed by the
National Centre for Research and Development (contract
number: DOB-BIO9/19/01/2018).

8. Bibliographical References

Aho, A.V., and Corasick, M.J. (1975). Efficient string
matching: an aid to bibliographic search.
Communications of the ACM, 18(6), 333-340.

Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual
String Embeddings for Sequence Labeling. COLING

2018, 27th International Conference on Computational
Linguistics, 1638–1649.

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter,
S., and Vollgraf, R. (2019). FLAIR: An easy-to-use
framework for state-of-the-art NLP. NAACL 2019, 2019
Annual Conference of the North American Chapter of the
Association for Computational Linguistics
(Demonstrations), 54–59.

Al-Moslmi, T., Gallofré Ocaña, M., Opdahl, A.L., and
Veres, C. (2020). Named Entity Extraction for
Knowledge Graphs: A Literature Overview. In IEEE
Access, vol. 8, pp. 32862-32881, DOI:
10.1109/ACCESS.2020.2973928

Baluja, S., Mittal, V.O., and Sukthankar, R. (2000).
Applying machine learning for high‐performance

Figure 2: Precision and recall by categories for rules +

spelllcheck + threshold 0.1 algorithm.

Figure 3: Precision and recall by categories for rules +

spellcheck + threshold 0.1 + statistics (0.5, 0.3) algorithm.

Figure 4: Precision and recall by categories for manual

annotation.

6231

named‐entity extraction. Computational Intelligence,
16(4), 586-595.

Borchmann, Ł., Gretkowski, A.; Graliński, F. (2018).
Approaching nested named entity recognition with
parallel LSTM-CRFs. In M. Ogrodniczuk and Ł.
Kobyliński (Eds.), Proceedings of the PolEval 2018
Workshop, Institute of Computer Science, Polish
Academy of Science, Warszawa, pp. 63-73.

Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R.
(1998). NYU: Description of the MENE named entity
system as used in MUC-7. In Seventh Message
Understanding Conference (MUC-7): Proceedings of a
Conference Held in Fairfax, Virginia, April 29-May 1,
1998.

Chau, M., Xu, J.J., and Chen, H. (2002). Extracting
meaningful entities from police narrative reports. In
Proceedings of the 2002 Annual National Conference on
Digital Government Research (pp. 1-5).

Demenko, G., Skórzewski, P., Kuczmarski, T., Pieniowski,
M. (2022). Linguistic Information Extraction from Text-
based Web to Discover Criminal Activity [Unpublished
manuscript].

Dietterich, T. (2000). Ensemble methods in machine
learning. In International workshop on multiple
classifier systems (pp. 1-15). Springer, Berlin,
Heidelberg.

Dzeroski, S., and Zenko, B. (2002). Is combining
classifiers better than selecting the best one? In ICML
(Vol. 2002, p. 123e30).

Graliński, F., Jaworski, R., Borchmann, Ł., and Wierzchoń,
P. (2016). Gonito.net – Open Platform for Research
Competition, Cooperation and Reproducibility. In A.
Branco, N. Calzolari and K. Choukri (Eds.), Proceedings
of the 4REAL Workshop: Workshop on Research Results
Reproducibility and Resources Citation in Science and
Technology of Language, pp.13-20.

Greff, K., Klein, A., Chovanec, M., Hutter, F., and
Schmidhuber, J. (2017). The Sacred Infrastructure for
Computational Research. In Proceedings of the 15th
Python in Science Conference (SciPy 2017), Austin,
Texas, pp. 49–56.

Jankowska, K., Pieniowski, M., Demenko, G. (2022).
Domain Linguistics Resources for discovering criminal
activities in Polish Texts [Manuscript submitted for
publication].

Kieraś, W., and Woliński, M. (2017). Morfeusz 2 –
analizator i generator fleksyjny dla języka polskiego.
Język Polski, 97(1), 75-83.

Krupka, G., and Hausman, K. (1998). IsoQuest Inc.:
description of the NetOwl™ extractor system as used for
MUC-7. In Seventh Message Understanding Conference
(MUC-7): Proceedings of a Conference Held in Fairfax,
Virginia, April 29-May 1, 1998.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001).
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data.

Marcińczuk, M., Kocoń, J., Oleksy, M. (2017). Liner2 — a
Generic Framework for Named Entity Recognition. In
Proceedings of the 6th Workshop on Balto-Slavic

Natural Language Processing, Valencia, Spain, 4 April
2017. Association for Computational Linguistics, pp. 86-
91.

Marcińczuk, M., Kocoń, J., Gawor, M. (2018). Recognition
of Named Entities for Polish-Comparison of Deep
Learning and Conditional Random Fields Approaches.
In M. Ogrodniczuk and Ł. Kobyliński (Eds.),
Proceedings of the PolEval 2018 Workshop, Institute of
Computer Science, Polish Academy of Science,
Warszawa, pp. 63-73.

Miller, D.R., Leek, T., and Schwartz, R.M. (1999). A
hidden Markov model information retrieval system. In
Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in
information retrieval (pp. 214-221).

Krauz, A. (2017). Mroczna strona internetu – tor
niebezpieczna forma cybertechnologii. Dydaktyka
informatyki, strony 63-74.

Mider, D. (2019, Listopad 29). Czarny i czerwony rynek w
sieci The Onion Router – analiza funkcjonowania
darkmarketów. Przegląd Bezpieczeństwa
Wewnętrznego, strony 154-190.

Minkov, E., Wang, R.C., and Cohen, W. (2005). Extracting
personal names from email: Applying named entity
recognition to informal text. In Proceedings of human
language technology conference and conference on
empirical methods in natural language processing (pp.
443-450).

Nowakowski, A., and Jassem, K. (2021). Detection of
criminal texts for the Polish state border guard. arXiv
preprint arXiv:2108.10580.

Przepiórkowski, A., Bańko, M., Górski, R.L.,
Lewandowska-Tomaszczyk, B. (2012). Narodowy
Korpus Języka Polskiego. Wydawnictwo Naukowe
PWN, Warsaw.

Settles, B. (2004). Biomedical named entity recognition
using conditional random fields and rich feature sets. In
Proceedings of the International Joint Workshop on
Natural Language Processing in Biomedicine and its
Applications (NLPBA/BioNLP) (pp. 107-110).

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal of
Big Data, 6(1), 1-48.

Waszczuk, J., Głowińska, K., Savary, A., Przepiórkowski,
A., and Lenart, M. (2013). Annotation tools for syntax
and named entities in the National Corpus of Polish.
International Journal of Data Mining, Modelling and
Management, 5(2), 103-122.

Witten, I. H., Bray, Z., Mahoui, M., and Teahan, W. J.
(1999). Using language models for generic entity
extraction. In Proceedings of the ICML Workshop on
Text Mining (p. 14).

9. Language Resource References

National Corpus of Polish Consortium (2012). National
Corpus of Polish, http://nkjp.pl

