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Abstract
The detection and extraction of abbreviations from unstructured texts can help to improve the performance of Natural Language
Processing tasks, such as machine translation and information retrieval. However, in terms of publicly available datasets, there
is not enough data for training deep-neural-networks-based models to the point of generalising well over data. This paper
presents PLOD, a large-scale dataset for abbreviation detection and extraction that contains 160k+ segments automatically
annotated with abbreviations and their long forms. We performed manual validation over a set of instances and a complete
automatic validation for this dataset. We then used it to generate several baseline models for detecting abbreviations and long
forms. The best models achieved an F1-score of 0.92 for abbreviations and 0.89 for detecting their corresponding long forms.
We release this dataset along with our code and all the models publicly in this Github Repository.
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1. Introduction
A pervasive characteristic of scientific reports and re-
search papers is their frequent use of abbreviations (Wu
et al., 2011). For submitting to various journals, au-
thors are also required to submit an abbreviation glos-
sary, i.e., a list of short forms with their expanded long
forms. Such a glossary is essential for the reader to un-
derstand the domain-specific terminology used in the
reported work.
From a linguistic point of view, there are different ty-
pologies of abbreviations, and often authors disagree in
relation to a common classification system (Fabijanić,
2015). As Tchiotashvili et al. (2021) explain, there
are authors advocating for the distinction between ini-
tialisms and acronyms1, and others that defend a sepa-
ration between shortening abbreviations and initial ab-
breviations. Considering that a typology of abbrevia-
tions is not our focus in this paper, we will use the terms
“short form”, “abbreviation” and “abbreviated token”
interchangeably and as umbrella terms to denote any
token(s) that can be expanded into a longer token or
into a sequence of tokens that corresponds to its long
form. As such, unless explicitly stated, we will not
differentiate between, for instance, abbreviations and
acronyms, and nor does our dataset.
From a Natural Language Processing (NLP) point of
view, abbreviations are problematic for automatic pro-
cessing, and the presence of short forms might hinder

1According to those authors, initialisms and acronyms are
both short forms that are created using the initial letter(s)
from a sequence of tokens, and are differentiated according
to how they are pronounced.

the machine processing of unstructured text. For ex-
ample, a machine translation system may not provide
a suitable translation for such tokens. Abbreviated to-
kens can pose a problem for almost any NLP system,
because they often contain important information, such
as names of diseases, drug names, or common proce-
dures which must be recognisable in the translated doc-
ument. The performance of information retrieval can
also be affected in terms of both precision and recall
due to incorrect abbreviation expansion (Toole, 2000).
Therefore, the detection and extraction of accurate ab-
breviated tokens and their corresponding long forms
is an important task that can significantly impact NLP
systems’ output.
Any NLP system which attempts to extract such infor-
mation from unstructured text faces several challenges,
because abbreviations:

• are domain-specific (e.g., BMI can mean “Body
Mass Index” or “Bilinear Matrix Inequalities”, de-
pending on the domain or the context);

• often have ambiguous connotations (e.g., CI can
mean “conditional independence”, “confidence
interval”, or “compound interest”; all from the
same domain);

• can often contain sub-abbreviations which are not
fully expanded in the immediate context (e.g.,
NMT might only contain the expansion “Neural
MT”, where MT can be found expanded earlier in
the document);

• can have multiple letters that are a part of the same

https://github.com/surrey-nlp/AbbreviationDetRepo
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word (e.g., subsequence kernel (SSK) or maxi-
mum entropy (MaxEnt)); and

• can often appear in a text unaccompanied by their
respective long forms.

The challenges discussed here also show that rule-
based approaches will fail to perform well at this task
as they will try to generalise over a pattern or a regular
expression to detect abbreviations from a text. Multi-
ple outliers cannot be detected with the help of such
approaches. Therefore, it is important to create robust
NLP systems that can detect and extract abbreviations
with their corresponding long forms. The detection of
short and long forms can help automate glossary gener-
ation for researchers. Similarly, it can help the expan-
sion of the abbreviations in a free text, thus enabling
downstream NLP tasks like Machine Translation (MT)
or Information Retrieval (IR) to perform better.
In this paper, we describe our efforts to collect a large
dataset of abbreviations from online open-source jour-
nals and create baseline NLP systems for the task of
abbreviation detection. We present our new PLOD
dataset for abbreviation detection and provide a de-
tailed analysis of its main features. We also describe
steps for dataset crawling and cleaning, and for its man-
ual and automatic validation. With the help of various
publicly available language models, we perform fine-
tuning to create baseline models for abbreviation de-
tection based on the PLOD dataset. We also test our
baseline models performance on another publicly avail-
able acronym-extraction dataset to show their efficacy
on this sister task. Our contributions with this paper are
summarised below:

• We present PLOD, a large dataset for the detection
and extraction of short and long forms.

• We provide several pre-trained baseline models
that are readily available to use.

The rest of this paper is organised as follows: in Sec-
tion 2 we discuss existing efforts for the extraction of
abbreviations; Section 3 describes the methodology ap-
plied for the creation and validation of the new dataset
and also presents some of its main statistics at the end;
Section 4 contains an extrinsic evaluation of the re-
source, where we created several baseline models to
test the dataset for automatically detecting short and
long forms; in Section 5 we detail the results of each
baseline model; finally, Section 6 briefly summarises
what was achieved with this research and presents an
overview of future steps.

2. Related Work
For many years, researchers have employed machine-
learning-based methods to detect abbreviations from
generic English texts. Toole (2000) introduces a hy-
brid two-stage approach for the identification and ex-
pansion of abbreviations based on a dataset from the

Air Safety Reporting System (ASRS) database. The
author proposes various features and utilises a binary
decision tree to model the characteristics of an abbre-
viation. Similarly, Vanopstal et al. (2010) use Support
Vector Machine (SVM) to classify abbreviations based
on various features and on a dataset in the medical do-
main. Abbreviation detection has been more popular in
the clinical and the medical domains as a lot of unstruc-
tured free text is prevalent in these areas which also
contains multiple abbreviations. Xu et al. (2009) also
propose a decision-tree-based approach for the classi-
fication of abbreviations from clinical narratives. An-
other research paper (Wu et al., 2011) shows a more
exhaustive comparison of various machine-learning-
based methods like decision tree, random forests, and
SVM and utilise over 70 patient discharge summaries
to perform the task. Kreuzthaler et al. (2016) use an
unsupervised learning approach to detect abbreviations
in clinical narratives, and show a decent performance
on a small German language dataset (1696 samples).
More recently, the CLEF shared task for short form
normalisation propelled the efforts in this area (Wu et
al., 2013). Another recent approach to detect abbrevia-
tions in clinical text utilises a semi-supervised learning
approach to do the task (Vo and Cao, 2019) for a clini-
cal text dataset (Moon et al., 2014).
The more specific task of acronym extraction, where
the focus lies on abbreviations formed by initial let-
ter(s), has also been of interest to the NLP community
and has been performed for different domains in En-
glish. Early approaches for this task were primarily
rule-based (Taghva and Gilbreth, 1999; Yeates, 1999;
Park and Byrd, 2001; Larkey et al., 2000; Schwartz
and Hearst, 2002), but there are instances of machine
learning being used for the task (Nadeau and Turney,
2005; Kuo et al., 2009).
Recently, various deep learning-based approaches have
been used for acronym extraction (Rogers et al., 2021;
Li et al., 2021). Similarly, Zhu et al. (2021; Kubal and
Nagvenkar (2021) use the fine-tuning approaches based
on the recent transformer-based architectures. Ehrmann
et al. (2013) show how acronym recognition patterns
initially developed for medical terms can be adapted to
the more general news domain. Their efforts led to au-
tomatically merging long-form variants referring to the
same short form, while maintaining non-related long
forms separately. Their work is based on the algorithm
developed by Schwartz and Hearst (2002), but they per-
form the task of acronym extraction for 22 languages.
In fact, the acronym extraction and disambiguation
shared task (Veyseh et al., 2022b) has encouraged
more participants in the area while also releasing a
large-scale dataset for multilingual and multi-domain
acronym extraction (Veyseh et al., 2022a). However,
none of the abbreviation datasets discussed can be con-
sidered significantly large for deep-learning-based ap-
proaches to generalise well enough and show decent
task performance. With this work, we release a much
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larger dataset containing tagged abbreviations and their
corresponding long forms. Although we do not make
an explicit distinction, our dataset does contain, among
the abbreviations, acronyms, so that the models that
we present here can also help in the more specific task
of acronym extraction. With the help of fine-tuning,
our evaluation also shows that this dataset can help ex-
tract abbreviations and acronyms with a decent perfor-
mance.

Journal Publication
Period

Number
of Files

PLOS Biology 2003-present 6,072
PLOS Medicine 2004-present 4,494
PLOS Computational
Biology 2005-present 8,473

PLOS Genetics 2005-present 9,251
PLOS Pathogens 2005-present 9,148
PLOS Clinical Trials* 2006-2007 68
PLOS ONE 2006-present 257,854
PLOS Neglected
Tropical Diseases 2007-present 9,388

PLOS Currents 2009-2018 697
*Later merged with PLOS ONE.

Table 1: PLOS Journals publication period and number
of files.

3. Proposed Resource
In this section, we discuss the new PLOD dataset that
we built from research articles published in PLOS Jour-
nals2. We first describe the corpus that was used and
the methodology for collecting data from the journals.
We then describe some automatic and manual meth-
ods applied for cleaning and validating the dataset. We
conclude the section with statistics of the resource we
developed.

3.1. Dataset Description and Creation
The PLOD dataset was extracted from open access ar-
ticles published in PLOS journals. The articles from
these journals are freely distributed along with the
PMC Open Access Subset3 and can be downloaded
from their FTP server4. The corpus contains several
journals, mostly from the Biomedical domain, since
2003. All articles from these journals are written in
English. Table 1 presents the areas, publication time
span and number of files that we have for each PLOS
journal in the corpus5.

2https://plos.org/.
3https://www.ncbi.nlm.nih.gov/pmc/

tools/openftlist/.
4https://ftp.ncbi.nlm.nih.gov/pub/pmc/

oa_bulk/.
5The data used in this research was downloaded on 16

October 2021.

The full corpus contains 305,445 files (31GB) di-
vided into several types of articles. We used only the
main category, Research Articles, which accounts for
283,874 files. All articles are presented in XML for-
mat, and most of them contain a section called “Abbre-
viations”. We used Python’s BeautifulSoup package
to process the XML files and, for each file, extracted
short and long forms from the “Abbreviations” section
and then processed all < p > tags from the XML struc-
ture. The textual content inside < p > tags was split
into sentences using a simple regular expression, for
the sake of brevity, and then each sentence was anal-
ysed to match for the occurrence of any short forms
present in the paper’s glossary. Where an abbrevia-
tion was found, we also looked for its long form in the
same segment/textual extract. During this annotation
process, we identified the indexes of the beginning and
ending character in the segment. In the search for ab-
breviations, we used the exact same case format as it
appeared in the “Abbreviations” section of the article,
using word boundaries as delimitation (e.g., punctua-
tion, brackets, spaces, apostrophes). However, for the
long forms, we converted both the textual extract and
the long form to lower case. We also allowed for cer-
tain plural forms in the abbreviations and in the last
token of the long form (e.g., addition of lower cased
“s”), but these were not included in the annotation pro-
cess (i.e., the extracted indexes and forms do not reflect
these extra characters).
This resulted in a huge collection of 1,348,357 seg-
ments with annotated abbreviations. Although most pa-
pers have a glossary with abbreviations and long forms,
we only found 13,883 articles in which long forms ap-
peared together with abbreviations. This means that all
of the 1.3M+ extracted segments have abbreviations,
but not all of them contain long forms. When we fil-
tered the textual extracts that had at least one long form
corresponding to one of the abbreviations present in the
segment, we ended up with 162,658 segments. Consid-
ering only these textual extracts that contain both short
and long forms, we had a vocabulary of 56,810 unique
combinations of abbreviations with their corresponding
long form. This dataset was then further validated and
cleaned, as we discuss in the next subsection.

3.2. Dataset Cleaning and Validation
Since the process of collecting abbreviations and long
forms, and annotating them in textual extracts was done
automatically, we did some manual checks to validate
the data. In this section we describe this process of
validation, elaborating on the different steps that were
taken to improve the quality of our released dataset.
One of the first steps that we took was to go through
500 random examples to check overall issues with the
data. During this process, we identified two main is-
sues: one-character abbreviations were resulting in
several lines where, even though both the abbreviation
and long form were present in the segment, they were

https://plos.org/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
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Journal Number of
Segments

Annotated
Abbreviations

Annotated
Long Forms

PLOS Biology 50975 165099 97002
PLOS Medicine 33036 83549 54237
PLOS Computational Biology 2124 4380 2540
PLOS Genetics 2740 5659 3152
PLOS Pathogens 2394 6225 2814
PLOS Clinical Trials 325 709 410
PLOS ONE 69217 183358 106031
PLOS Neglected Tropical Diseases 121 287 165
Total 160932 449266 266351

Table 2: Number of annotated segments, abbreviations and long forms per journal in the PLOD dataset.

not connected as a textual co-reference (see Example
1); and there were missing annotations of abbrevia-
tions and/or long forms, either because they were not
coded in the “Abbreviations” section of the article or
because they were written differently in the text (see
Example 1).

• Example 1: The reaction of an oligonucleotide
substrate bearing a S P-phosphorothioate at the
cleavage site (SSp, Table 1) also experiences Cd2+
stimulation with the WT ribozyme.

In Example 1, it is possible to see that although the
abbreviated token S and its long form oligonucleotide
substrate are present in the segment, they are not being
used as co-referents in this particular textual extract.
We also see in the same example that SSp and P were
not identified as abbreviations, because they were not
present in the article’s “Abbreviations” section.
To solve the first issue, after further investigation of
other similar cases, we decided to filter one-character
abbreviations out of the dataset, as they were indeed
a source of many issues. This resulted in the re-
moval of 705 unique long forms from the dataset, to-
talling 3,877 occurrences across 1,698 segments (the
filtered dataset at this point has 160,969 segments).
As it will be explained in Sections 4 and 5, we con-
ducted our experiments using both PLODUnfiltered Dataset
and PLODFiltered Dataset (which does not have any anno-
tated one-character abbreviations). As for the second
issue, where there is missing annotation, we decided
not to act upon it, and we accepted that there will be
some segments where some of the abbreviations (with
or without their long forms) and/or long forms are not
identified.
In a second step of validation, we used spaCy6 to create
a language model specific for the annotated long forms.
In this language model, any token that was not a stop-
word was replaced by either a placeholder for punctua-
tion or for content word7. This step reduced the amount

6https://spacy.io/
7For the purpose of this simple language model, numbers

were replaced with the same placeholder used for content
words.

of different long forms to 3,592, which allowed us to
identify some oddly formed sequences, and also long
forms that were too long, and possibly wrong. Based
on this analysis, we annotated each segment with a
number indicating whether it contains a long form that
either begins or ends with stop-words or is very long
(i.e., longer than 12 tokens), or both. This generated
an extra annotation on 5,671 segments, which were not
automatically excluded from the dataset, but are read-
ily identifiable because of this annotation. In terms of
the long forms that were very long, we did perform a
validation among all long forms that had more than 12
tokens, and, among the 344 unique combinations of ab-
breviation and long form, only 17 were not correct, to-
talling 36 instances in the dataset. The 22 segments that
contained these incorrect instances were completely re-
moved from the final dataset. After this validation, the
longest valid long form contains 26 tokens: Multicen-
ter, Randomized, Parallel Group Efficacy and Safety
Study for the Prevention of Venous Thromboembolism
in Hospitalized Acutely Ill Medical Patients Compar-
ing Rivaroxaban with Enoxaparin; and its associated
abbreviation is MAGELLAN.
We also applied a similar validation based on the length
of the abbreviations. By going through 141 instances of
abbreviations that were longer than 15 characters (with
spaces), we were able to identify 11 incorrect abbrevi-
ations, all of which with 19+ characters, which led to
the removal of 15 segments from the final dataset. This
helped us remove instances that had up to 145 charac-
ters and were clearly an error in the glossaries of the
research papers from the PLOS corpus. After this val-
idation of the long abbreviations, the longest abbrevia-
tion in the dataset has a total of 33 characters: pos regul
transcr RNA pol II prom; and it stands for positive reg-
ulation of transcription from RNA pol II promoter.
After these two validation steps, we analysed a sample
of a thousand random segments from the dataset, and
there we observed that 5.5% of the segments presented
wrong annotation (i.e., at least one long form did not
have its abbreviation as a co-reference, as we show in
Example 2, where paroxon and Pxn are, respectively,
long form and abbreviation denoting the same sub-

https://spacy.io/
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(a) Length of long forms in tokens. (b) Length of short forms in characters (with spaces).

Figure 1: Distribution of short and long forms by length in the PLOD dataset. (Internal pie charts show number of
unique forms, while the external, exploded doughnut charts display the total frequency.)

stance, but they are not co-referents in the segment),
and 26.7% had missing annotation (i.e., at least one ab-
breviation and/or one long form were missing from the
annotated data, as we presented before in Example 1).

• Example 2: Km value of paraoxon towards se-
lected rh-PON1 mutants was nearly same while
Kcat values differs however, correlates with the
Pxn-hydrolyzing activity of the mutants as in Fig
2.

Although there are these few issues with the dataset, it
does present very useful information for abbreviation
and long form detection (which is the main focus of
this paper), as we will show with an extrinsic evalu-
ation in Sections 4 and 5, but it can also be used for
typological studies related to abbreviation description.
The dataset is mainly focused on biomedical texts, but
it contains a representation of different types of abbre-
viations that can be further studied from a linguistic
point of view. Besides the usual abbreviations com-
posed by the initial letter(s) from the long form, such
as CI (confidence interval) and GFP (green fluorescent
protein), there are also those formed by suppressing
some letters from one word, such as TB (tuberculosis)
and IFN (interferon). Some short forms contain other
abbreviations inside them and have a mix of upper- and
lower-cased letters, such as siRNA (small interfering
RNA) and qPCR (quantitative PCR), while others in-
clude parts that are not abbreviated, such as cryo-EM
(cryo-electron microscopy). These are only a few ex-
amples of correctly annotated abbreviations that co-
occur with their respective long forms in the dataset,
and there are many more types and forms that can be
further studied, for instance, from a Corpus Linguistics
point of view. More information about quantities and
types of long forms and abbreviations will be discussed
in the next subsection.

3.3. Dataset Statistics
In this section, we describe the main statistics of the
dataset that we are releasing. These statistics refer to
the final PLODFiltered Dataset after all the data was re-
moved in the validation steps described in the previous
subsection.
Table 2 presents information regarding annotated seg-
ments and the amount of abbreviations and long forms
divided by journal from the original PLOS corpus. It
also shows the distribution of the extracted information
over the different subject areas covered by the PLOS
journals. As it can be seen in comparison to Table 1,
the journal PLOS Currents is missing, as no segment
was extracted from its files.
In Figure 1a, it is possible to have an idea of the distri-
bution of long forms in terms of token length (split by
space). Most of the long forms in the PLOD dataset
have between 2 and 3 tokens, and, even though the
number of unique 1- and 4-token-long long forms is
representative, these forms are less frequently repeated
in the texts.
A similar distribution can be seen in Figure 1b. It
shows a higher concentration of 2- and 3-character ab-
breviations in terms of frequency. However, there is
also an even higher number of unique 4-character ab-
breviations that are not as frequently used as the shorter
abbreviations.
Another interesting figure from the dataset is that the
number of unique long forms is 18k+ larger than the
number of unique abbreviations. This serves as an
indicative of the ambiguity among the existing short
forms.
After all the validation steps, the PLOD dataset was
ready for an extrinsic evaluation. We then moved on
to an experiment for detecting abbreviations and long
forms using several pre-trained language models. The
setup for this experiment is explained in the following
section.
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PLODtest-unfiltered SDU@AAAI-22 Shared Tasktrain + dev

Abbreviations Long-forms Abbreviations Long-forms
P R F P R F P R F P R F

ALBERTbase 0.845 0.898 0.871 0.758 0.812 0.784 0.682 0.638 0.659 0.462 0.154 0.231
BERTbase-cased 0.855 0.906 0.880 0.781 0.826 0.803 0.691 0.650 0.670 0.461 0.151 0.228
DeBERTabase 0.877 0.910 0.893 0.817 0.874 0.845 0.682 0.638 0.659 0.462 0.154 0.231
DistillBERTbase 0.845 0.900 0.872 0.772 0.798 0.785 0.700 0.641 0.670 0.467 0.139 0.214
MPNetbase 0.846 0.899 0.872 0.782 0.823 0.802 0.691 0.606 0.645 0.466 0.145 0.221
RoBERTabase 0.860 0.919 0.889 0.805 0.862 0.833 0.707 0.641 0.672 0.516 0.163 0.248
ALBERTlarge 0.895 0.920 0.907 0.848 0.898 0.872 0.476 0.607 0.534 0.397 0.160 0.228
RoBERTalarge 0.911 0.935 0.922 0.876 0.921 0.898 0.515 0.650 0.575 0.423 0.191 0.264
BERTlarge-cased 0.899 0.928 0.913 0.866 0.909 0.887 0.532 0.645 0.583 0.362 0.173 0.234

Table 3: Results of the fine-tuning-based abbreviation detection task where Unfiltered data was used for training
and testing. The table also shows results where we used the same trained models, but tested them on the SDU
Shared Task dataset.

4. Experiment Setup for Evaluation
In this section, we describe the experimental proce-
dures for generating baseline models for detecting ab-
breviations and long forms. This methodology also
serves as an extrinsic evaluation of the PLOD dataset.
We used a customised NER pipeline from spaCy v3.2 8

that utilises transformers for performing a sequence la-
belling task to detect abbreviations and long forms.
SpaCy-transformer interoperates with PyTorch 9 and
the HuggingFace transformers library 10, allowing us
to access a series of pre-trained models based on state-
of-the-art transformer architectures that were applied
for generating our baseline models. In order to per-
form training with spaCy’s pipeline, we annotated the
PLOD dataset with an I-O-B scheme, where abbrevi-
ations were annotated as B-AB (i.e. Begin ABbrevi-
ation), and the words which were a part of the long
forms were assigned B-LF (i.e. Begin Long Form) at
the beginning, and I-LF (i.e. Inside Long Form) in the
middle and end. This resulted in a one-token-per-line
training file with the I-O-B annotation which amounted
to 7,150,008 annotated tokens. We release the I-O-B-
annotated dataset via a GitHub repository 11 along with
the same dataset in the TSV format for researchers who
wish to reproduce our experiment. We randomised and
split our dataset into 70% instances for training, 15%
for validation, and the remaining 15% as test data. To
perform comparative evaluation, we trained models on
both filtered and unfiltered data (as discussed in Sec-
tion 3.2).
We utilised the following pre-trained Language Mod-
els (LMs) for the task of abbreviation detection:
RoBERTa (Liu et al., 2019), BERT (Devlin et al.,
2019), ALBERT (Lan et al., 2019), DeBERTa (He
et al., 2020), DistilBERT (Sanh et al., 2019). For

8spaCy Transformers.
9PyTorch

10HuggingFace
11PLOD Dataset Github repository.

RoBERTa, BERT, and ALBERT, we used both base
and large variants in our experiment. This resulted in
an extensive extrinsic evaluation that was performed
with the help of nine LM variants, and with different
datasets. We trained all our models with a batch size
of 128 and a hidden-layer size of 64. We used a spaCy
Span-Get function which transforms each batch into a
list of span objects for each sentence to be processed by
the transformer. This technique helps with long sen-
tences by cutting them into smaller sequences before
running the transformer and allows for overlapping of
the spans to cover both left and right context. We set
the span window to 128 tokens and the stride to 96 to
allow for overlapping of token windows. For tokeni-
sation we used spacy.Tokenizer.v1. For optimisation,
we used Adam optimiser with an initial learning rate
of 0.00001 and initial warm-up steps set to 250, with
up to a total of 20000 steps. We also chose 2 Maxout
units (Goodfellow et al., 2013) as an activation func-
tion to calculate the maximum of the inputs. These ar-
chitecture parameters were chosen because they have
performed well for NER tasks 12. The results obtained
with the help of our models are presented in Tables 3
and 4.
After training a total of 18 models both on filtered and
unfiltered data, we tested them on the test splits gener-
ated from PLOD and also on the English data provided
by Veyseh et al. (2022b) (SDU@AAAI-22 Shared
Task). Since the labelled test data from this shared
task has not yet been released, we combined both the
train and validation sets released by the organisers as
a combined test set. With this set of experiments, we
aimed to explore the efficacy of our models on a test set
that is from a different domain and that contains data
from other sources. Please note that the shared task
data belongs to the task of Acronym Detection (AD)
and our models do not make any specific distinction
for acronyms, as they were trained on all sorts of short

12spaCy: Facts and Figures

https://spacy.io/universe/project/spacy-transformers
https://pytorch.org/
https://huggingface.co/docs/transformers/index
https://github.com/surrey-nlp/AbbreviationDetRepo
https://v2.spacy.io/usage/facts-figures
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PLODtest-filtered SDU@AAAI-22 Shared Tasktrain + dev

Abbreviations Long-forms Abbreviations Long-forms
P R F P R F P R F P R F

ALBERTbase 0.842 0.899 0.870 0.734 0.819 0.774 0.716 0.629 0.670 0.485 0.146 0.225
BERTbase-cased 0.853 0.902 0.877 0.766 0.834 0.799 0.723 0.628 0.672 0.471 0.150 0.228
DeBERTabase 0.852 0.937 0.893 0.803 0.881 0.840 0.691 0.606 0.645 0.466 0.145 0.221
DistillBERTbase 0.842 0.904 0.872 0.763 0.805 0.783 0.709 0.642 0.674 0.456 0.140 0.215
MPNetbase 0.852 0.888 0.870 0.777 0.824 0.800 0.711 0.586 0.642 0.472 0.147 0.224
RoBERTabase 0.857 0.918 0.886 0.798 0.867 0.832 0.728 0.643 0.683 0.520 0.169 0.255
ALBERTlarge 0.840 0.918 0.877 0.770 0.830 0.799 0.532 0.651 0.585 0.373 0.174 0.237
RoBERTalarge 0.906 0.935 0.920 0.874 0.925 0.898 0.502 0.645 0.564 0.427 0.181 0.254
BERTlarge-cased 0.892 0.931 0.911 0.858 0.912 0.884 0.532 0.651 0.585 0.373 0.174 0.237

Table 4: Results of the fine-tuning-based abbreviation detection task where Filtered data was used for training and
testing. The table also shows results where we used the same trained models, but tested them on the SDU Shared
Task dataset.

forms.

5. Results and Discussion
Based on the experiment setup discussed in Section 4,
we performed the evaluation of the PLOD dataset in
various scenarios. Initially, we performed fine-tuning
with the PLODUnfiltered Dataset, and utilised nine vari-
ants of pre-trained LMs for the task. As can be seen in
Table 3, our models are able to achieve a decent perfor-
mance on both test sets, both in terms of precision and
recall. We observed that the RoBERTa models seem to
outperform the others, with the highest F1-scores in all
of the cases. We also note that the RoBERTalarge model
shows significantly higher precision and recall values
of 0.911 and 0.9335, with an F1-score of 0.922.
However, when testing this model trained on our data
with the train+dev set of the SDU Shared Task dataset,
we see a drop in performance. We attribute this drop
in performance to various reasons: (1) There were spu-
rious annotations in the SDU dataset which had been
pointed out to the task organisers earlier this year when
the dataset was released; (2) the domains used in the
SDU dataset are ‘legal’ and ‘scientific’ whereas our
dataset is mostly based on the Biomedical domain; (3)
the drop in performance of long forms, specifically,
can be attributed to incorrect classification of some to-
kens in the long forms which consist of many tokens.
When the models trained on the PLODUnfiltered Dataset are
tested with the SDU shared task data, however, the
RoBERTabase model seems to detect abbreviations bet-
ter (0.672) than the RoBERTalarge model; but for long
forms RoBERTalarge model outperforms (0.264) every
other model.
In Table 4, we present the results based on the
PLODFiltered Dataset. It seems that the RoBERTalarge
model and the RoBERTabase model again perform the
task with significantly higher F1-score than others. We
observed a similar performance on both the datasets,
and each language model is performing better individ-
ually when trained on the unfiltered datasets. Our filtra-

tion process takes out many data points from the dataset
which impacts the performance of the task. Also, on
both the datasets BERTlarge-cased models also shows a
comparable performance with minor differences from
our best performing model.
When the models trained on the PLODFiltered Dataset
are tested with the SDU shared task data (Ta-
ble 4), however, it can be seen that the results are
more homogeneous in terms of model performance.
The RoBERTabase model shows a much better per-
formance for both long forms and abbreviations, at-
taining F1-scores of 0.255 and 0.683, respectively.
We also observe that these models have higher preci-
sion values compared to the other models, especially
RoBERTalarge, which leads to the next part of our dis-
cussion: confusion matrices. Since RoBERTalarge per-
forms well on our dataset, we show the confusion ma-
trices obtained by fine-tuning on both Filtered and Un-
filtered datasets in Figure 2.
Based on Figure 2a, we infer that there are a large num-
ber of abbreviations (AC tag) wrongly classified with
the ‘O’ tag (6.8%, i.e., 9631 tokens), when the Filtered
dataset is used. However, using the Unfiltered dataset
(Figure 2b, this number is reduced to 3.7%, i.e., 5158
tokens. The overall accuracy of correctly classified AC
tags is 93% and, for long forms, it is at 94.6%. The mis-
classified number of long forms stands at 2.2%, i.e., ∼
25k tokens, which is also a large number in a real-world
scenario. This clearly indicates that there is a need to
improve the model performance before we apply it to a
real-world Biomedical domain scenario. Again, on the
Unfiltered dataset, these language models show a bet-
ter performance and the misclassified long-form tokens
are reduced to 1%, i.e., ∼ 11k tokens.
From the tables and confusion matrices above, we can
conclude that overall, RoBERTa models perform the
best for the task of abbreviation detection. However,
given the current results, we also plan to conduct fur-
ther experiments which use an ensemble approach with
multiple models.
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(a) Confusion Matrix on PLODtest-filtered (b) Confusion Matrix on PLODtest-unfiltered

Figure 2: Confusion Matrices over test set predictions from our best models, i.e., RoBERTalarge

6. Conclusion and Future Work
In this study, we motivated the importance of abbre-
viation detection as an NLP task in the scientific do-
main and discussed the challenges one can encounter
while trying to perform this task. We collected a large
number of abbreviations and their corresponding long
forms from open-sourced PLOS Journals and described
the data collection process in detail. With some ef-
forts towards the validation of this data, we were able to
identify problems and further filter the dataset. Based
on an unfiltered and a filtered version of this dataset,
we performed an extensive evaluation of the abbrevia-
tion detection task by utilising various pre-trained lan-
guage models. These models were not only tested on
our test data but also on the SDU@AAAI-22 acronym
detection shared task dataset. By analysing the results,
we showed how some state-of-the-art transformer mod-
els fare at this task. With the hopes that these models
might be of importance to the NLP community, we re-
lease them publicly along with the code and the raw
datasets (both filtered and unfiltered).
In the future, we plan to extend this dataset with ad-
ditional sources, which can be added to our data. We
also plan to extend our experiments further with an en-
semble approach, which can utilise various language
models to perform the detection of abbreviations and
their corresponding long forms.
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