@inproceedings{espasa-etal-2022-combination,
title = "Combination of Contextualized and Non-Contextualized Layers for Lexical Substitution in {F}rench",
author = "Espasa, K{\'e}vin and
Morin, Emmanuel and
Hamon, Olivier",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.747/",
pages = "6914--6921",
abstract = "Lexical substitution task requires to substitute a target word by candidates in a given context. Candidates must keep meaning and grammatically of the sentence. The task, introduced in the SemEval 2007, has two objectives. The first objective is to find a list of substitutes for a target word. This list of substitutes can be obtained with lexical resources like WordNet or generated with a pre-trained language model. The second objective is to rank these substitutes using the context of the sentence. Most of the methods use vector space models or more recently embeddings to rank substitutes. Embedding methods use high contextualized representation. This representation can be over contextualized and in this way overlook good substitute candidates which are more similar on non-contextualized layers. SemDis 2014 introduced the lexical substitution task in French. We propose an application of the state-of-the-art method based on BERT in French and a novel method using contextualized and non-contextualized layers to increase the suggestion of words having a lower probability in a given context but that are more semantically similar. Experiments show our method increases the BERT based system on the OOT measure but decreases on the BEST measure in the SemDis 2014 benchmark."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="espasa-etal-2022-combination">
<titleInfo>
<title>Combination of Contextualized and Non-Contextualized Layers for Lexical Substitution in French</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kévin</namePart>
<namePart type="family">Espasa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Morin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Hamon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lexical substitution task requires to substitute a target word by candidates in a given context. Candidates must keep meaning and grammatically of the sentence. The task, introduced in the SemEval 2007, has two objectives. The first objective is to find a list of substitutes for a target word. This list of substitutes can be obtained with lexical resources like WordNet or generated with a pre-trained language model. The second objective is to rank these substitutes using the context of the sentence. Most of the methods use vector space models or more recently embeddings to rank substitutes. Embedding methods use high contextualized representation. This representation can be over contextualized and in this way overlook good substitute candidates which are more similar on non-contextualized layers. SemDis 2014 introduced the lexical substitution task in French. We propose an application of the state-of-the-art method based on BERT in French and a novel method using contextualized and non-contextualized layers to increase the suggestion of words having a lower probability in a given context but that are more semantically similar. Experiments show our method increases the BERT based system on the OOT measure but decreases on the BEST measure in the SemDis 2014 benchmark.</abstract>
<identifier type="citekey">espasa-etal-2022-combination</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.747/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>6914</start>
<end>6921</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Combination of Contextualized and Non-Contextualized Layers for Lexical Substitution in French
%A Espasa, Kévin
%A Morin, Emmanuel
%A Hamon, Olivier
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F espasa-etal-2022-combination
%X Lexical substitution task requires to substitute a target word by candidates in a given context. Candidates must keep meaning and grammatically of the sentence. The task, introduced in the SemEval 2007, has two objectives. The first objective is to find a list of substitutes for a target word. This list of substitutes can be obtained with lexical resources like WordNet or generated with a pre-trained language model. The second objective is to rank these substitutes using the context of the sentence. Most of the methods use vector space models or more recently embeddings to rank substitutes. Embedding methods use high contextualized representation. This representation can be over contextualized and in this way overlook good substitute candidates which are more similar on non-contextualized layers. SemDis 2014 introduced the lexical substitution task in French. We propose an application of the state-of-the-art method based on BERT in French and a novel method using contextualized and non-contextualized layers to increase the suggestion of words having a lower probability in a given context but that are more semantically similar. Experiments show our method increases the BERT based system on the OOT measure but decreases on the BEST measure in the SemDis 2014 benchmark.
%U https://aclanthology.org/2022.lrec-1.747/
%P 6914-6921
Markdown (Informal)
[Combination of Contextualized and Non-Contextualized Layers for Lexical Substitution in French](https://aclanthology.org/2022.lrec-1.747/) (Espasa et al., LREC 2022)
ACL