Annotation Study of Japanese Judgments on Tort for Legal Judgment Prediction with Rationales

Hiroaki Yamada¹, Takeobu Tokunaga¹, Ryutaro Ohara²
Keisuke Takeshita³, Mihoko Sumida³
Tokyo Institute of Technology¹, Nakamura, Tsunoda & Matsumoto¹, Hitotsubashi University³
Tokyo, Japan

(yamada@c.titech.ac.jp, take@c.titech.ac.jp, r.ohara@ntmlo.com
kei.takeshita@r.hit-u.ac.jp, m.sumida@r.hit-u.ac.jp)

Abstract
This paper describes a comprehensive annotation study on Japanese judgment documents in civil cases. We aim to build an annotated corpus designed for Legal Judgment Prediction (LJP), especially for torts. Our annotation scheme contains annotations of whether tort is accepted by judges as well as its corresponding rationales for explainability purpose. Our annotation scheme extracts decisions and rationales at character-level. Moreover, the scheme can capture the explicit causal relation between judge’s decisions and their corresponding rationales, allowing multiple decisions in a document. To obtain high-quality annotation, we developed an annotation scheme with legal experts, and confirmed its reliability by agreement studies with Krippendorff’s alpha metric. The result of the annotation study suggests the proposed annotation scheme can produce a dataset of Japanese LJP at reasonable reliability.

Keywords: Annotated corpus, Annotation scheme, Agreement study, Legal judgment prediction, Rationale extraction

1. Introduction
One of the objectives in legal information processing is to provide computational aid in the legal procedures in court cases. Legal Judgment Prediction (LJP), which predicts the outcome of a court case (Figure 1), is a crucial task to realise such a system. The automated LJP system can help not only legal professionals but also the general public who are not legal specialists. The system allows everyone to predict and foresee the outcome of litigation when involved in legal disputes. People can access the system wherever, whenever. Also, the anticipated cost of LJP will be much lower than that of human legal professionals. The system is expected to provide broader access to justice for people who have limited or no access to justice.

Although LJP has been a longstanding research topic in Artificial Intelligence, most large-scale datasets for LJP have been proposed only recently. With the increasing popularity of machine learning (ML) based approaches, various studies proposed larger datasets to train ML models. Unfortunately, the available resources are still limited to certain languages and jurisdictions. Xiao et al. (2018) proposed a dataset for Chinese Criminal cases (2.6M cases), which consist of annotations on applicable laws, charges, and prison terms. Chalkidis et al. (2019) presented 11.5K cases from the European Court of Human Rights. Their dataset was designed for violation article detection and case importance prediction. Katz et al. (2017) constructed a dataset from 28K cases of the Supreme Court of the United States. Chalkidis et al. (2021b) proposed a collection of datasets for evaluating model performance across different legal tasks including LJP in English.

To train and assess LJP models, it is necessary to develop the LJP tasks and their datasets reflecting differences in jurisdictions. Here, we construct the first dataset of LJP for the Japanese judgments to provide a reliable dataset for the Japanese LJP research. As a first step, we develop an annotation scheme for the Japanese judgment in this paper.

Our primary objective is to provide an annotation scheme, which allows us to produce a reliable large-scale dataset for LJP and its rationale extraction. Our main contributions are the following. First, we introduce a novel annotation scheme designed for Japanese judgment documents. The scheme identifies the judicial decisions and their rationales. Rationales are extracted not only from facts but also from allegations and argumentations of parties involved in the proceedings. Our scheme can associate each rationale with its corresponding decision in a document with more than one issues. Hence, our scheme can provide direct causal relations between the court decisions and arguments from the parties allowing multiple court decisions in a case. Second, we conduct three annotation experiments featuring torts, which is an important subject in civil cases dealing with infringement of rights or legal interests that causes a plaintiff to suffer loss or harm. In this
annotation study, we use torts cases of defamation, privacy infringement and reputation injury. We describe our findings from the experiments and our revisions to improve the scheme. Third, we show that the final version of our scheme provides reliable annotations, tested on 25 documents with five annotators.

2. Background and Related Work

The approaches of LJP are roughly classified into two: symbolic systems and ML-based systems. Although symbolic systems require human experts’ intervention in construction and maintenance, their behaviour is easy to understand. On the other hand, ML-based systems can automatically learn how judges make decisions from a large number of instances (e.g. judgment documents).

Recent studies of LJP actively employ ML-based models. A generic ML-based LJP model takes fact descriptions as input and predicts its outcomes or its relevant laws. Particularly, cases from the European Court of Human Rights are the popular subject for LJP (Alétrás et al., 2016) [Medvedeva et al., 2018] [Chalkidis et al., 2019]. Katz et al. (2017) proposed a dataset of cases from the Supreme Court of the United States and trained their ML models. Moreover, LJP on Chinese Criminal cases is another big venue of machine learning based LJP models (Luo et al., 2017) [Zhong et al., 2018] [Hu et al., 2018] [Long et al., 2019] [Xu et al., 2020].

On the other hand, in the Japanese LJP researches, most approaches heavily depended on symbolic systems. They infer outcomes of legal reasoning using rules and logic programming [Nitta et al., 1993b] [Nitta et al., 1993a]. One of the reasons why the Japanese LJP work have hardly employed ML-based approaches was the lack of a reliable dataset. Although there is a Japanese dataset for legal tasks provided for COL- IEE (Rabelo et al., 2020), their dataset is designed for legal QA on the Japanese bar exam. We aim to construct a dataset with real Civil Code judgment documents to facilitate the LJP tasks. Therefore, we develop an annotation scheme to construct a dataset that facilitates the ML-based approach for the Japanese LJP.

Another reason ML approaches were not popular in the Japanese LJP was that the symbolic approaches had good compatibility with the rules of the Japanese Civil Code which define legal requirements. Prolog (Satoh et al., 2011) demonstrated the feasibility of logic programming based systems for the Japanese legal system. Prolog is a legal reasoning system based on Prolog implementing a decision-making theory used in civil litigation in Japan. However, there is still an open-ended problem, how to extract and transform natural language to logical clauses which are recognisable by reasoning engines [Navas-Loro et al., 2019]. Moreover, some rules of the Japanese Civil Code do not specify the natural facts that must be proved to decide whether specific requirements for legal effects are fulfilled or not. They only provide general concepts as requirements, and judges often need to evaluate relevant natural facts in a comprehensive manner to determine whether those requirements are satisfied or not. Such a rule is called general clause, and they cannot be explicitly expressed in rules or logic programming. On the other hand, ML-based approaches, which inductively learn standards of the general clause from many precedents, should perform better. Thus, constructing a dataset of Japanese judgment documents featuring general clause type rules at a large scale is indispensable.

In this paper, we use torts cases to test our annotation scheme since their basic rules are provided by general clause rules in the Japanese Civil Code. The success stories of deep learning methods across a broad range of tasks have called for the explainability issue [Jacovi and Goldberg, 2020] because the deep learning methods tell us little about the reasoning process leading to the output. The importance of explainability especially has to be taken more seriously in the legal domain than in other domains. Even though LJP systems are intended to be used as assistant tools for humans, they can affect people’s behaviours concerning the use of the judicial system. The LJP system can indirectly influence people’s social status and assets. Thus, an ideal LJP system has to explain the reason for output predictions. To this end, recent LJP studies introduced explanation tasks including court view generation [Ye et al., 2018], rationale paragraph extraction [Chalkidis et al., 2021a], and case features extraction as rationales [Ferro et al., 2019] [Branting et al., 2021]. Following the prior work, we include annotations of rationales similar to Chalkidis et al. (2021a), but our annotation is at character-level instead of paragraph-level. In addition, our annotation scheme can record explicit causal relations between judge’s conclusions and their corresponding rationales, allowing multiple issues in a document.

3. Annotation Target

3.1. Japanese Judgment Documents

The Japanese judges are career judges, who are trained as judges right after passing the bar examination. The judges follow guidelines for writing judgment documents of civil cases. The style and structure of judgment documents are well-stabilised in the Japanese legal system (Kozuka, 2020). As a result, there is a high level of similarities in structure across judgment documents, most easily observed in a common section structure, often with similar headlines used. This section structure is as follows: The Main Text is the first section covering main judgments, which render a final decision in a few sentences. The Facts and Reasons section takes up most of the document and is therefore the target of our annotation. Facts and Reasons consists of causes of action, followed by a summary of the case, facts not disputed among the parties to the proceedings, issues to be contested during the trial, and claims from the parties. The last part of Facts
and Reasons section contains the judicial decision in detail. We can extract gold labels for the LJP task from the judge’s reasoning and concluding sentences in the judicial decision part. At the same time, we can obtain input sentences from the neutral facts and alleged claims in the other parts. We leverage the section structure of the judgment documents to distinguish the court’s decision from the other parts in designing our annotation scheme.

3.2. Subject of Annotation

We construct a dataset of judgment documents on civil cases about torts (Civil Code, Article 709). Tort is one of the common subjects in civil cases, and rules on torts are considered to be general clause. Under the Japanese law, tort liability is affirmed with infringement of rights or legal interests that causes a plaintiff to suffer loss or harm. Torts play an important role in disputes on the internet (e.g. defamation and privacy infringement on social media) because there is usually no contract between the parties in such a situation. Furthermore, torts in such disputes are emerging topics in the field of law since psychological and social damage online is an important issue in modern society (Sumida and Steffek, 2022). Our dataset may also provide useful material for law research.

Disputes related to the internet are often discussed in Disclosure of Identification Information of the Sender (DIIS) cases. DIIS is a mechanism provided by the Law on Limitation of Liability of Providers to enable an Internet user to demand the Internet Service Providers to disclose the sender’s information (e.g. address and name) through trials. We cover torts from DIIS cases in this case study. In addition to DIIS cases, we collected general tort cases which deal with defamation, privacy infringement and reputation injury. They include the same topics as DIIS cases but their subjects are not contents on the internet but, for example, contents on magazines and newspapers. Our data source of the judgment documents is a legal database “Hanreiishido” provided by LIC Co., Ltd. We curate documents from the first instances of Civil Code cases. As a result, we collected 5,188 documents in total. 709 documents are from DIIS cases, and 4,478 cases are from general torts cases. Note that the database search system retrieves documents based on keywords queries, so there might be cases among the retrieved documents that in fact do not deal with the issue of tort. We, therefore, implement document screening to exclude such irrelevant documents.

To reduce bias in document curation, we should have collected all judgments from every court in Japan. However, not all Japanese judgments are provided in the machine-readable format from the courts. The current largest available source is the legal databases provided by publishing companies. We believe that the databases are still the best and the most reasonable data source among all possible options for now.

4. Concerns on sensitive data

As our target documents describe court cases, the documents can contain personal information, sensitive information of parties or legally protected information such as trade secrets. Leins et al. (2020) sheds light on potential ethical issues on constructing datasets from a sensitive data source like judgments. In the Japanese legal system, the judgment document is an important legal document that is the direct output from court proceedings and contains the judgment, the facts and the grounds (Code of Civil Procedure, Article 252). Article 91 of Code of Civil Procedure guarantees anyone can inspect a case record, including the judgment itself. However, if documents on a case contain sensitive information about the parties’ private life or technical/business information valuable for business activities, the judge can restrict access to the record upon the petition from interested parties (Code of Civil Procedure, Article 92).

In principle, the judgment documents are already in the public domain, and the parties may request to opt out of giving others access to their judgment documents. Therefore, theoretically, the sensitive secrets should not be contained in the database we use as our data source. Moreover, the publishing companies pseudonymise the documents before publishing a case in journals or databases. Nevertheless, we still worry about the risk that some sensitive information might accidentally slip through many safety measures and the risk of dual-use. Considering the balance between the potential risks of sharing the data and the reproducibility of the study, we plan to share data only with researchers who agree with our strict terms of use.

5. Pilot Study

Chalkidis et al. (2021a) presented a task of paragraph-level rationale extraction for alleged violation prediction on cases from the European Court of Human Rights (ECtHR). Their tasks are multilabel classification to identify which European Convention on Human Rights (ECHR) articles are alleged in a case, and extraction of its rationales. They constructed a dataset of 11K ECHR cases with annotations of alleged ECHR articles.
articles and rationale paragraphs. In their dataset, rationales are annotated by human experts only in 50 cases out of 1,000 cases from their test dataset without an agreement study, and rationales in the rest cases are automatically extracted leveraging references to facts of the cases. The references are, for example, “See paragraphs 2 and 4”. They can be easily recognised by regular expressions. As the references are not available in our target documents, we need to annotate the rationales manually.

We conducted a pilot annotation on five documents to check the feasibility of manual annotation to extract rationales from the Japanese judgment documents. Also, we assessed the reliability of annotations among multiple annotators by inter-annotator agreement (IAA), which was not conducted in the previous work.

In the pilot study, we implement a simple annotation scheme to extract rationales that support court decisions on torts. This pilot version of the scheme has only one type of span, called Rationales.

The rationale spans identify important arguments (including factual allegations, legal arguments) from parties, which provide grounds for the judicial decision. In all versions of our annotation schemes, including the final version we describe later in 6, annotators are instructed to identify spans at character-level. We use a web-based annotation tool “tagto” [782] in all of our annotation studies.

We randomly selected five judgment documents from our collected dataset for the pilot annotation study. We asked four experts in law to annotate the documents. The annotators are one lawyer and three professors of law. The lawyer and two of the professors are the authors of this paper. We measured the reliability of annotation with Krippendorff’s α [782], which was designed for unifying annotation tasks. We used an implementation provided by Meyer et al. [782]. In the rationale extraction task, we obtained $\alpha = 0.407$. This result indicates much lower reliability of the annotation than we expected.

To identify the source of disagreement, we manually checked the annotation and interviewed the annotators. Our findings are the followings: First, instructions to directly extract rationales cause disagreements. Although we instructed the annotators to extract only the accepted argument as rationale, some annotators mistakenly extract both accepted and rejected arguments. This is because a judgment describes accepted and rejected arguments from different parties, and both types of arguments can be relevant to decisions on torts. In the later version of our scheme (6.2.2), to make the annotation task clear, we split annotation on rationales into two tasks: extracting relevant arguments, and checking if each of the arguments is accepted or not. All extracted spans are just relevant arguments and facts. Of the spans, those annotated as accepted are the rationales. Second, rationales consist of multiple types of content: not only factual findings but also abstract norms such as tests established by the precedent. As the pilot scheme mainly considered factual allegations as rationales, the annotators got confused in annotating such abstractive arguments. In later versions of our scheme, we split rationale spans into several types (Factual Claims, Claims of Norms, and Major Claims).

Third, a scheme has to express which rationale corresponds to which tortious act when there are multiple alleged actions as torts. We implement this as the task of span association (6.3).

6. Our Scheme

Given the pilot annotation study results, we have compiled our annotation scheme. The scheme consists of three stages: 1. Document screening, 2. Span extraction, and 3. Span association. This section summarises our annotation scheme and its guideline, which are written in Japanese.

6.1. Document Screening

In this paper, we focus on annotating legal argumentation on torts. We collected documents from the legal database with queries excluding documents not concerning torts. However, some irrelevant documents can still be in our documents set, and we have to filter them out manually. The document screening is a simple task to filter out such non-tort judgments. We ask annotators to read through the judicial decision part in a judgment and check if the court considers an issue of torts and makes any decisions on it. If annotators find a judgment has nothing to do with torts, they are instructed to flag the judgment and stop annotating it.

6.2. Span Extraction

Once annotators confirm that the judgment contains legal discussions on torts, we are asked to identify the text span describing the court’s conclusion on torts from the judicial decision part. And then, they also extract rationales from the parts of the parties’ claims and facts.

This stage consists of two tasks, identifying the court’s conclusions and rationales as text spans and assigning attributes to them. There are five different types of spans for rationales and the court’s conclusion.

6.2.1. Spans

We instructed annotators to extract spans according to the following definitions. The span length ranges from a single character to a single sentence. Annotators might identify no span for a type if there is no corresponding text in a document.

Court Decisions (CD): This type of span describes a judges’ decision on tort. Annotators must find Court Decisions spans from the part of the judicial decision. One span identifies one tort. We ask annotators to extract the most concrete and finest-grained description if multiple texts refer to the same subject in a document.
Factual Claims (FC): This span describes important claims from parties, which are relevant to judgment on torts. Annotators must find Factual Claims spans from the parts other than the judicial decision part. The Factual Claims contain factual allegations, an assertion of opposing facts against them, and rebuttals against one’s factual allegations.

Claims of Norms (NC): Claims of Norms describes abstract legal arguments regarding torts. Annotators must find Claims of Norms spans from the parts other than the judicial decision part. This type of span often consists of references to past precedents, in particular the Japanese Supreme Court judgments.

Major Claims (MC) *Removed in the final version: Major Claim spans describes important major claims from parties, which summarise and conclude based on Factual Claims. Annotators must find Major Claims spans from the parts other than the judicial decision part. The Major Claim spans are often found in the last sentence of a series of Factual Claims.

Undisputed Facts (UF): Undisputed Facts spans describes facts that play important roles in judging torts. The facts covered with these spans are undisputed by any parties. The annotators find the spans from the parts other than the judicial decision part in principle. However, annotators are allowed to annotate text describing facts in the judicial decision part only if they are indispensable in the legal reasoning on torts and if they are described as “undisputed” or “easily recognised from evidences.” Undisputed Fact often identifies the subject of the plaintiff’s original allegation.

6.2.2. Attributes
@Accepted Claim (@AC): Spans of FC, NC and MC have this attribute. When annotators identify these types of spans from the part of parties’ claims, they are asked to check if the claim is accepted by judges in the court decision part or not. Annotators can choose either True or False.

@Who (@W): Spans of FC, NC and MC have this attribute. Parties to legal proceedings, often plaintiffs and defendants, submit their claims to the court. Annotators are instructed to identify whose claim it is. Annotators choose one from Plaintiff, Defendant, Other.

@Decision (@D): Only spans of CD have this attribute. Annotators interpret the identified span and annotate if the torts are affirmed by judges or not. Annotators can choose either True or False.

6.3. Associating spans
In the court case trials, we can find more than one CD span, and we have to identify which CD span non CD spans are related to. In the span association task, annotators are instructed to associate all Factual Claims, Major Claims, Claims of Norms, and Undisputed Facts spans with their corresponding CD spans. Annotators can associate a span with multiple CD spans.

6.4. Procedure
We instructed annotators to conduct the whole annotation process as follows. First, annotators read through a document and understand the flow of arguments. Next, annotators perform the document screening. If a document passes the screening, annotators start the annotation. In the span extraction, annotators extract CD spans and assign the @D attribute to them. Once all CD spans are extracted, annotators start to identify other types of spans that are rationales of the extracted CD spans. For each span, annotators assign necessary attributes. Finally, annotators associate every rationale span with their corresponding CD spans.

Figure 2: Product of annotation

7. Annotation Study
To check the reliability of our annotation scheme, we conducted three annotation studies. In the first annotation study (Study 1), we have employed six annotators, who are law school graduates and lawyers. The objective of Study 1 is to check the feasibility of our proposed annotation scheme and improve our annotation guidelines. The second annotation study (Study 2) involved five annotators. They are students in law who have not yet graduated from law school (most of them are undergraduates). Study 2 is designed to confirm that law students can perform our annotation. They have expert knowledge in law; however, they have less experiences in interpreting judgment documents than Study 1 annotators. As we plan to conduct our annotation at a large scale by employing many annotators,
In span extraction and association, we calculate other tasks. We exclude the document in calculating agreement in marked as non-tort by more than half of the annotators, result of IAA on document screening. If a document isrics provided by Meyer et al. (2014). Table 2 shows the (Fleiss, 1971). We use implementations of the met-κ

ment screening, we use the agreement ratio and Fleiss's α

α

κ

krippendorff, 1995) as the main metric. As for the doc-

ument screening, we use the agreement ratio and Fleiss’s

We use implementations of the metrics provided by Meyer et al. (2014). Table 2 shows the result of IAA on document screening. If a document is marked as non-tort by more than half of the annotators, we exclude the document in calculating agreement in other tasks.

In span extraction and association, we calculate α_U with the offset of spans (i.e. positions of spans) and their “labels”. What we use as “labels” in the calculation are different in tasks. We use their span types (e.g. CD, FC) as labels for the spans. Table 3 shows the result of IAA on span extraction. Note that Major Claim is removed after Study 2 annotation and its IAA is not available in Study 3. The column of Overall α_U calculated over all span types, and it is not an average of a row. Other columns show α_U calculated only with its corresponding span type. For the attributes, we regard values of attributes (e.g. True/False, Plaintiff/Defendant/Other.) as labels. We calculate the agreement metrics on each attribute type. Table 4 shows the result of IAA attributes.

In the associating spans task, we use associated CD spans for each span as labels to calculate α_U. Note that the spans are not pre-defined units like span types and attributes. Thus, CD spans are not guaranteed to be identical among annotators. To make a consistent set of CD spans, we merge CD spans from different annotators if they overlap.

7.1. Agreement Metrics

As our tasks except document screening are extract-

ing different types of spans, in other words, “unitising” tasks, we decide to use Krippendorff’s α_U (Krippendorff, 1995) as the main metric. As for the document screening, we use the agreement ratio and Fleiss’s κ (Fleiss, 1971). We use implementations of the metrics provided by Meyer et al. (2014). Table 2 shows the result of IAA on document screening. If a document is marked as non-tort by more than half of the annotators, we exclude the document in calculating agreement in other tasks.

In span extraction and association, we calculate α_U with the offset of spans (i.e. positions of spans) and their “labels”. What we use as “labels” in the calculation are different in tasks. We use their span types (e.g. CD, FC) as labels for the spans. Table 3 shows the result of IAA on span extraction. Note that Major Claim is removed after Study 2 annotation and its IAA is not available in Study 3. The column of Overall α_U calculated over all span types, and it is not an average of a row. Other columns show α_U calculated only with its corresponding span type. For the attributes, we regard values of attributes (e.g. True/False, Plaintiff/Defendant/Other.) as labels. We calculate the agreement metrics on each attribute type. Table 4 shows the result of IAA attributes.

In the associating spans task, we use associated CD spans for each span as labels to calculate α_U. Note that the spans are not pre-defined units like span types and attributes. Thus, CD spans are not guaranteed to be identical among annotators. To make a consistent set of CD spans, we merge CD spans from different annotators if they overlap.

7.2. Annotation Study 1

In Study 1, we asked six annotators to annotate ten judgment documents (Table 1). The agreement ratio of document screening is at 0.83, and Fleiss’s Kappa was at -0.09 (Table 2). The reason for a high agreement ratio but a lower Fleiss’s Kappa is an imbalance between non-tort and torts documents, i.e. the torts documents are dominant in the document set. Therefore, annotators rarely found non-tort documents. We did not exclude any documents in the IAA calculation according to the result of document screening.

The IAA of span extraction is at α_U = 0.427 (Table 3). It indicates a moderate agreement, and there is much room for improvement. NC shows the lowest score when we look at IAA by categories. It is because NC spans are rare, and the annotators did not identify any spans of NC in some documents during the Study 1 annotation. If no one identifies any NC spans in a document, NC’s α_U of the document falls to zero. If we define that α_U of a document is 1 when all annotators identify no NC span in the document, α_U of NC becomes 0.576.

The primary source of disagreement is UF and MC. After the Group 1 annotation, we reviewed the definitions of UF and MC and found them still ambiguous. In the Study 1 version of the annotation guideline, there were no clear guidance to find a specific type of span. The judgment documents can be segmented into three parts: a part presenting judge’s evaluation and conclusions, a part of facts, and a part describing claims from the parties. For example, annotators can find similar text describing facts from both the part of the fact parts and the judge’s part, and they are confused in extracting UF spans. As UF spans identify only undisputed facts, annotators primarily scan and find UF spans from the fact part or the judge’s part but not from the parties’

Table 1: Statistics of annotation studies

<table>
<thead>
<tr>
<th># of Spans (macro-avg. over rators)</th>
<th>misc</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>NC</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Study 1</td>
<td>88.2</td>
</tr>
<tr>
<td>Study 2</td>
<td>44.0</td>
</tr>
<tr>
<td>Study 3</td>
<td>252.4</td>
</tr>
</tbody>
</table>

Table 2: IAA on document screening

<table>
<thead>
<tr>
<th>Agreement Ratio</th>
<th>Fleiss’s Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>0.83</td>
</tr>
<tr>
<td>Study 2</td>
<td>1.00</td>
</tr>
<tr>
<td>Study 3</td>
<td>0.96</td>
</tr>
</tbody>
</table>

7.3. Annotation Study 2

In Study 2, we asked all annotators to annotate ten judgment documents. The agreement ratio of document screening is at 1.00 (Table 2). The reason for a high agreement ratio is the clear guidance and the exact definitions provided to annotators. The judgment documents can be segmented into three parts: a part presenting judge’s evaluation and conclusions, a part of facts, and a part describing claims from the parties. For example, annotators can find similar text describing facts from both the part of the fact parts and the judge’s part, and they are confused in extracting UF spans. As UF spans identify only undisputed facts, annotators primarily scan and find UF spans from the fact part or the judge’s part but not from the parties’
In the span extraction. Therefore, we expect disagreements of the CD span extraction are amplified dependency on the CD span extraction. Moreover, the agreements on CD spans impact rationale association. The lower α_U was at 0.301. They are lower than @D but still moderate agreement. Similarly to @D, their annotations are dependent on their assigned spans (FC, NC, MJ). As FC is the dominant type of span, the IAA scores of @W and @AC tend to be close to the IAA score of FC. To sum up, the reliability of attributes itself does not have major flaws. Further improvement should be achieved when we improve the span extraction reliability.

The IAA scores for associating spans are at $\alpha_U = 0.301$ (Table 5). The score shows a lower value than those of other tasks. The span association task requires that CD spans has been correctly annotated. Thus, disagreements on CD spans impact rationale association. The lower α_U of the rationale association reflects its dependency on the CD span extraction. Moreover, the disagreements of the CD span extraction are amplified in associating spans. For example, suppose one of the annotators extracts an extra CD span that other annotators do not extract in a document, all the spans associated with the extra CD span cause association disagreement. In contrast, only the extra CD span is penalised in the span extraction. Therefore, we expect α_U of the association task become lower than the span extraction.

There is much room to be improved for better reliability. As we discussed above, improving the reliability of annotation on CD spans should contribute to the reliability of span association. When we review the disagreement of CD spans, we observe annotators can agree on the content of CD spans but disagree with where they extract it. There can be multiple candidates for a CD span. They describe the almost same content but in different levels of abstraction. In a case where the plaintiff claimed that defendant committed torts, for example, “Defendant A’s action X cannot be considered as torts”, “Plaintiff’s allegations are not acceptable.”, and “Reject”, all of these suggest judges did not find any torts. To avoid confusion, we added a guide to extract CD spans in Study 2 annotation: annotators are instructed to choose the most concrete description as CD span if multiple candidates indicate the same content (torts).

The annotators gave us feedback that fully annotated sample documents are necessary before starting annotation. In the Study 1 annotation, we only provided the annotation guideline and a few examples for each span type, but we did not provide fully annotated documents. The annotated sample documents will provide clear and instant clues to annotators. We provide the sample documents from Study 2 annotation. Another remarkable observation was that some annotators accidentally forgot to complete the document screening and the span association. We develop an automated tool to detect the missing annotation and report the status of each document online so that annotators can review their annotation by themselves. This tool was provided from Study 2 annotation.

7.3. Annotation Study 2

In Study 2, we employed five students, who had not yet graduated from law school, to annotate five documents (Table 1). None of them participated in Study 1 annotation. Considering the feedback from Study 1, we provide the annotators with fully annotated sample documents together with the guidelines. The author of the papers annotated five documents to prepare the sample

Table 3: IAA on span extraction (α_U)

<table>
<thead>
<tr>
<th>Target Spans:</th>
<th>C, NC, MJ</th>
<th>C, NC, MJ</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute types:</td>
<td>@Accepted Claim</td>
<td>@Who</td>
<td>@Decision</td>
</tr>
<tr>
<td>Study 1</td>
<td>0.521</td>
<td>0.526</td>
<td>0.629</td>
</tr>
<tr>
<td>Study 1 (5 docs)</td>
<td>0.563</td>
<td>0.587</td>
<td>0.428</td>
</tr>
<tr>
<td>Study 2</td>
<td>0.605</td>
<td>0.516</td>
<td>0.438</td>
</tr>
<tr>
<td>Study 3</td>
<td>0.629</td>
<td>0.641</td>
<td>0.608</td>
</tr>
</tbody>
</table>

Table 4: IAA on attributes of spans (α_U)

<table>
<thead>
<tr>
<th>Attribute types:</th>
<th>Study 1</th>
<th>Study 1 (5 docs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@Accepted Claim</td>
<td>0.301</td>
<td>0.209</td>
</tr>
<tr>
<td>@Who</td>
<td>0.321</td>
<td></td>
</tr>
<tr>
<td>@Decision</td>
<td>0.430</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: IAA on span association (α_U)
documents. Furthermore, we compiled step-by-step tutorials using the samples. In the tutorial, each annotator is first asked to annotate the documents without consulting the provided sample annotation. They can only look up the sample annotation when they are unsure of their annotation. The sample documents are given in the order of difficulties so that annotators can learn the annotation process step by step from principles to their advanced applications. The difficulties are determined according to the consensus among authors of this paper, considering levels of complication in legal reasoning, the number of tortious acts claimed, and the length of the document.

The IAA of document screening is at 1.0 according to the agreement ratio. All of the annotators agreed that all five documents deal with torts. Row of Study 2 on Table 3 shows IAA scores of span extraction. As the five documents used in Study 2 are also used in Study 1, we show IAA scores of Study 1 calculated only with the same five documents as Study 2 in “Study 1 (5 docs)” on the Table. They provide a clear comparison between Study 1 and 2 and suggest if the improvements on the guidelines and the tutorials work as expected. The IAA of span extraction is now αU = 0.498 (Overall) improved from 0.344 in Study 1. Undisputed Facts is remarkably improved among the span types, suggesting the revised guideline works as intended. On the other hand, Major Claim became worse in Study 2 despite the revision. Major Claims are introduced initially to identify text concluding and summarising multiple FC spans. They often contain summaries of actual claims and arguments, which are already identified by FC spans. This nature of Major Claims makes it hard to distinguish FC from Major Claims. We removed Major Claim from our scheme after Study 2 annotation since FC spans should be sufficient to provide rationales. The score of NC is 0 since all annotators agreed that there is no NC span in the documents. The reliability of attributes stays at a reasonable level as shown in Table 4. As for span association, αU = 0.321 is much improved from Study 1 (0.209). We can attribute this improvement to the improvement in CD spans extraction (from 0.438 to 0.457).

Even though annotators of Study 2 have less experience in interpreting judgment documents than those of Study 1, scores of IAA show reasonable reliability and are even better than Study 1. This encouraging result shows that our improved guidelines and tutorials using the annotation samples effectively train annotators.

7.4. Annotation Study 3

We improved our scheme through the two iterations of annotation studies. In addition to the changes we described above, we elaborated on what to extract for each span type for better agreement in the span extraction. In the Study 3, we assess the reliability of our final annotation scheme, including the guidelines, tutorials with samples. We ask five annotators to annotate 25 documents (Table 1). The 25 documents have no overlap with the documents used in Study 1 and 2. We observed good agreement overall in Study 3. The agreement ratio of document screening is at 0.96, and Fleiss’s κ = 0.77. They indicate stable annotation for this task. The IAA of span extraction finally achieves αU = 0.654 (overall). Every span type shows better αU from Study 2 annotation. The αU of attributes are at 0.629(αW), 0.641(αW), 0.608(αD) showing improvement from Study 2 annotation. Span association αU is now at 0.430 improved from Study 2 annotation. The IAA score of span association is still lower than that of span extraction. The task delivers errors from span extraction so that αU get penalised from both the association task itself and the span extraction task as we discuss in 7.2. Although αU of the span association was not successful as other tasks, numerical improvement of αU through three annotation studies suggests our scheme revision has worked as intended.

8. Conclusion and Future work

Our three iterative annotation studies achieved good agreement, particularly for the span extraction and the attributes task, suggesting that our annotation scheme and training materials, including tutorials with the annotation samples, were successful. On the other hand, the span association agreement should be further improved. We will continue to improve the agreement of the span association by revising our guidelines.

In this study, we tested our scheme only on a certain type of torts cases. Although our annotation scheme is designed for general torts cases, it may require minor revision for different types of torts.

The next step of our project is deploying our annotation scheme to more legal experts and annotate judgments on torts at a larger scale. To produce a dataset capable of training and evaluating ML-based models of LJP, we aim to construct the dataset with 5,000 documents. In the production phase of annotation, we plan to provide tools to maintain the quality of annotation in addition to the tutorials and the guidelines. In the annotation studies, we prohibited the annotators from communicating with each other. In the production phase, however, online chat tools will provide a forum to exchange questions and ideas among annotators, which leads to more consistent and better annotation results. These tools should help annotators keep their annotation reliable and legitimate.

Acknowledgement

We appreciate Prof. Souichiro Kozuka at Gakushuin University and Prof. Kazuhiko Yamamoto at Hitotsubashi University for their helpful comments. The judgment documents data for this study was provided by LIC Co., Ltd. This work was supported by JST RISTEX Grant Number JPMJRX19H3 and JST ACT-X Grant Number JPMJAX20AM.
9. Bibliographical References

Rabelo, J., Kim, M., Goebel, R., Yoshioka, M., Kano,
Table 6: Examples for each span type

<table>
<thead>
<tr>
<th>Type</th>
<th>Text (English versions are our translation.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF</td>
<td>被告P2は、インターネット上で発見した黒猫のイラストをダウンロードし、同イラストの頭部を切り取り、同頭部にフラダンスの衣装等を組み合わせて、被告イラスト1を作成した。</td>
</tr>
<tr>
<td>FC</td>
<td>送信可能化されたファイルが本件各レコードの複製物であるかは客観的な証拠がなく、不確である。</td>
</tr>
<tr>
<td>NC</td>
<td>名誉感情に対する侵害を理由に不法行為が成立するのは、社会通念上許容される限度を超える侮辱行為が認められる場合に限られる（最高裁判決22年4月13日判決）</td>
</tr>
<tr>
<td>CD</td>
<td>本件記事1については、名誉毀損又は信用棄却による不法行為は成立しないというべきである</td>
</tr>
</tbody>
</table>

Concerning the article-1, no tort for defamation or damage to reputation is established.

Appendix: Annotation Examples

Table 6 provides examples for each span type. The examples are from different judgments. Figure 3 provides examples of our annotation. This case involves a request to disclose the sender’s information, alleging that a posting on a bulletin board system on the Internet has lowered the plaintiff’s social reputation and defamed the plaintiff. Table 7 lists the corresponding annotation artifacts based on Figure 3. In the table, Type column indicates span types. @W, @D and @AC mean @Who, @Decision, and @Accepted Claims, respectively. The last column, Assoc. shows IDs of associated CD spans for each span. In the examples, span 1 is Undisputed Facts (UF). Spans 2, 3, 4, 5 and 6 are Factual Claims (FC) from the plaintiff. Span 7 is also an FC but from the defendant. According to the judicial decisions, FC spans of the plaintiff 2 and 3 are accepted while FC spans 4, 5 and 6 are not. The defendant’s FC span 7 is accepted. All spans from 1 to 7 are associated with span 8, which is a CD span. Note that this example is one of the simplest judgments. There can be more than one CD span and much more spans from both the plaintiff and defendant in longer judgments.
Figure 3: Simplified annotation samples
At 11:46:17 PM, July 12, 2019, a posting “Mr X1, you should pay back the money” (the attached list of submitted articles) was made in the thread titled “F”, which was created in “D” and “E” on the bulletin board system “C” on the Internet, via IP address ***.***.***.***.

This posting, based on a viewer of ordinary prudence and his way of viewing, indicate the fact that a person named “X1,” who works at factory B, borrowed money from a certain individual but has not repaid it.

There are only two persons with the surname “X1” who work at factory B: the plaintiff and his cousin.

The viewers of this posting, who know the plaintiff but do not know the plaintiff’s cousin, would regard the plaintiff as the subject of the posting.

Some of people, who knows the plaintiff and the plaintiff’s cousin, can recall the plaintiff from the mention of “X1”.

It is possible to identify the subject of this posting as the plaintiff.

We do not admit all of the above (1) allegations of the plaintiff.

Given that we cannot find that the subject of this posting is really the plaintiff, we cannot recognize that the posting is defamatory to the plaintiff by diminishing the plaintiff’s social reputation.