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Abstract

Transformer-based language models are able
to capture several linguistic properties such
as hierarchical structures like dependency or
constituency trees. Whether similar structures
for mathematics are extractable from language
models has not yet been explored. This work
aims to probe current state-of-the-art mod-
els for the extractability of Operator Trees
from their contextualized embeddings using
the structure probe designed by (Hewitt and
Manning, 2019). We release the code and our
data set for future analyses1.

1 Introduction

Transformer-based Language Models have not only
a high impact on all domains in Natural Language
Understanding but also on related fields that be-
sides natural language try to model artificial lan-
guages such as programming code or mathemat-
ical notation written in LATEX (Feng et al., 2020;
Peng et al., 2021). The knowledge or linguistic
properties that models like BERT or RoBERTa
capture have been the subject of several studies:
According to recent research, BERT encodes infor-
mation about part-of-speech tags, roles, and syntac-
tic features such as constituency and dependency
trees (Rogers et al., 2020). Since transformer-
encoder-based models were applied successfully
for mathematical question answering or notation
prediction (Reusch et al., 2022b; Jo et al., 2021),
these models must have also acquired mathematical
knowledge. However, the field of interpretability
for mathematical information has not been a topic
of research so far. Therefore, this work aims to
analyze the prevalence of one type of mathematical
knowledge: Operator Trees, a type of parse trees
that can be generated from LATEX formulas.

Generally, whether a model encodes a certain
property is evaluated by applying a probe, i.e., a

1https://github.com/AnReu/
extracting-opts

classifier that is trained on top of the contextualized
embeddings. The performance of this classifier is
used as an indicator whether the information about
the property was encoded in the contextualized
embeddings. To analyze whether it is possible to
reconstruct an Operator Tree from the contextual-
ized embeddings of a transformer-encoder model,
we apply the structural probe introduced by (He-
witt and Manning, 2019). This probe approximates
the distance between nodes in the trees using the
distance of two embeddings.

In total, we train the structural probe on the em-
beddings of each layer of nine models for math and
science and show that in most cases it is possible to
reconstruct Operator Trees from the models’ con-
textualized embeddings. The highest correlation
between the learned tree distance and the gold stan-
dard is reached in the middle layers, e.g., around
layer 6 for models based on bert-base and roberta-
base. As Hewitt et al. also found for dependency
trees, most models follow a similar pattern of infor-
mation spreading among layers.

2 Related Work

Within the last years, several transformer-encoder-
based models for mathematics have been developed
with different applications in mind. The recent
ARQMath Lab 3 (Mansouri et al., 2022) included
several teams that applied models pre-trained on
math: MIRMU used mathBERTa, a model based on
roberta-base (Novotnỳ and Štefánik, 2022; Geletka
et al., 2022), (Reusch et al., 2022a) adapted albert-
base-v2 and roberta-base for math, and (Zhong
et al., 2022) further pre-trained a BERT model. In
ARQMath Lab 1, the team PSU also released a
further pre-trained model based on RoBERTa (Ro-
hatgi et al., 2020). In addition, (Jo et al., 2021)
fine-tuned a BERT model for notation prediction
tasks based on scientific documents. MathBERT
(Peng et al., 2021) leverages operator trees during
pre-training for several tasks such as formula topic
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classification and information retrieval. Related to
mathematics is also the domain of scientific doc-
uments for which SciBERT was trained (Beltagy
et al., 2019).

However, little is known so far about what
BERT-based models learn about mathematics. In
contrast, their learning capacities on natural lan-
guage received large attention in recent research
(for a survey see (Rogers et al., 2020)). Several
probes and classifiers were employed to analyze
whether BERT captures grammatical structures like
dependency or constituency trees (Tenney et al.,
2019; Hewitt and Manning, 2019; Coenen et al.,
2019) or which layer attends to which linguistic
feature (Clark et al., 2019). Visual frameworks
like bertviz by (Vig, 2019) support the analysis of
BERT’s inner working by visualizing the attention
weights of trained models. Also ALBERT was
shown to capture part-of-speech tags in different
places as reported by (Chiang et al., 2020), but
most studies were performed using BERT.

3 Probing for Mathematical Structures

We analyze whether it is possible to reconstruct
mathematical parse trees from the models’ contex-
tualized embeddings. It was already shown that
BERT is able to learn grammatical structures of
natural languages which could be extracted in the
form of constituency and dependency trees (Tenney
et al., 2019; Hewitt and Manning, 2019). There-
fore, we apply the same type of probe to test for
Operator Trees.

3.1 Structural Probe
The goal of the structural probe as introduced
by (Hewitt and Manning, 2019) is to learn a
matrix B, such that the distance dB defined by
dB(Ui, Uj) :=

√
(Ui − Uj)TBTB(Ui − Uj) ap-

proximates a given tree distance dT , i.e., the length
of the path between the node of word si and the
one of word sj in the tree of example s. Ui and Uj

are the contextualized embeddings of the words si
and sj in s. B is learned by minimizing the loss
function over each examples s ∈ S in the training
corpus:

min
B

∑

s∈S

1

|s|2
∑

i,j

|dT (si, sj)− dB(Ui, Uj)|

Originally, Hewitt et al. applied the structural probe
to demonstrate that dependency structures of the
English language are, to some extent, contained in
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Figure 1: Operator Tree of the formula m = r
v2

BERT’s contextualized embeddings. In this work,
we will train a structure probe to evaluate whether
the models’ inner workings have learned about
mathematical structures, i.e., operator trees.

3.2 Operator Trees

Formulas possess a hierarchical structure, which is
encoded in Content Math ML 2, defining an opera-
tor tree (OPT). An example OPT for the equation
m = r

v2
is shown in Fig. 1. Nodes of this tree rep-

resentation can be individual or multiple symbols
such as numbers, variables, text fragments indi-
cating certain functions, fractions, radicals, LATEX
style expressions, or parentheses and brackets. This
definition is similar to the one found in (Mansouri
et al., 2019), but we added parentheses and brack-
ets to investigate the way the models capture open
and closed bracket relationships. OPT edges in-
dicate an operator-argument relationship between
parent and child nodes. Left and right brackets
and parentheses have each an edge to the parent
of the tree inside them. LATEX style expressions
like \mathbb can be simply seen as an operator
applied on the argument inside. Hence, the original
OPT stays intact.

4 Experimental Setup

We evaluated in total 13 models which are publicly
available on the Huggingface Model Hub3. We
chose the eight mathematical models by searching
the Model Hub for transformer-encoder models that
were (further) pre-trained on mathematics. We also
added the popular model SciBERT as its domain,
science, is close to mathematics. In addition, the
four models which served as a base for pre-training
were evaluated. A summary of the models can be
found in Tab. 1. Of particular interest would have
been an evaluation of MathBERT by (Peng et al.,
2021), a model that relied on Operator Trees during

2https://w3c.github.io/mathml/#contm
3https://huggingface.co/models
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Model Identifier Base Model Data Set

albert-base-v2 - Books and Wikipedia
AnReu/math_albert albert-base-v2 ARQMath

bert-base-cased - Books and Wikipedia
allenai/scibert-scivocab-cased - Scientific documents
AnReu/math_pretrained_bert bert-base-cased ARQMath
tbs17/MathBERT - Math text books, curricula, paper abstracts
tbs17/ MathBERT-custom - Math text books, curricula, paper abstracts

roberta-base - Books, Wikipedia, news, websites, stories
roberta-large - Books, Wikipedia, news, websites, stories
AnReu/math_pretrained_roberta roberta-base ARQMath
shauryr/arqmath-roberta-base roberta-base ARQMath
uf-aice-lab/math-roberta roberta-large Math discussion posts
witiko/mathberta roberta-base ARQMath, ArXiv documents

Table 1: Summary of the evaluated models, their base models and the data sets used for pre-training.

pre-training. However, neither the model nor the
code are publicly available.

BERT, ALBERT and RoBERTa were trained on
a general natural language corpus and serve as base-
lines. Six models were further pre-trained from a
base model like BERT or RoBERTa, while three
were developed from scratch. The data sources the
models were trained on are rather diverse: Five
models use ARQMath, others use math text books,
school curricula, paper abstracts, or other discus-
sion posts apart from ARQMath. SciBERT is the
only model what was not specifically trained on
mathematical content, but on scientific publications.
All models can be found on Huggingface by using
their model identifier.

4.1 Data

Our probe is trained on formulas, which were
parsed to OPTs by a custom LATEX parser writ-
ten in Python adapted from the parser rules of the
mathematical formula search engine Approach0
(Zhong and Zanibbi, 2019; Zhong et al., 2020). We
could not use existing parsers because it is neces-
sary to associate each LATEX token with its node in
the OPT and existing parsers only output the entire
parse tree without annotation of a node’s token in
the formula. We selected 50k training examples
by chance from the corpus of all formulas from
ARQMath 2020 (Mansouri et al., 2020), which
contains question and answer posts from the Q&A
community Mathematics StackExchange4. From

4https://math.stackexchange.com

the remaining set we chose 10k for development,
and an additional set of 10k as test set. The average
number of nodes in all three sets is 16.5, while the
average tree depth is 4.8. The most common node
types are variables and numbers, followed by LATEX
braces and relation symbols. Among the relation
symbols, the equal sign "=" occurs most often.

4.2 Metrics

We follow Hewitt et al. and evaluate the perfor-
mance using UUAS (Undirected Unlabeled Attach-
ment Score), which denotes the percentage of cor-
rectly identified edges in the predicted tree and, dis-
tance Spearman (DSpr.), which is determined by
first calculating the Spearman correlation between
the predicted distances dB and the gold-standard
distances dT . These correlations are then averaged
among all formulas of a fixed length. Finally, the
average across formulas of lengths 5–50 is reported
as DSpr. We decided to include both metrics since
it was shown that their scores can result in opposite
trends (Hall Maudslay et al., 2020).

4.3 Setup

To train and evaluate the probing classifier, we used
the original code provided by Hewitt et al.5 and
adapted it to the transformers library6. We used the
L1 loss and a maximum rank of the probe of 768,
as reported by the authors. We trained the probes

5https://github.com/john-hewitt/
structural-probes

6https://pypi.org/project/
transformers/
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using one A100 GPU with 40 GB GPU memory.
Depending on the base model, the training of a
probe took between 15 min and 1.5h. Each model
was trained on five different random seeds.

5 Results

Tab. 2 summarizes the highest values from all lay-
ers. We report our results using UUAS and DSpr.
where higher values indicate a larger percentage
of correctly reconstructed edges and a higher cor-
relation between the predicted and gold-distances,
respectively. Each value is the mean of the five
runs. It is visible that almost all adapted models
improve over their natural language baselines. The
highest performance overall is demonstrated by An-
Reu/math_pretrained_bert. Only the performance
of MathBERT-custom drops in comparison to bert-
base-cased. The DSpr. scores of the best models
in comparison to their baselines are visualized in
Fig. 2.

In general, the models pre-trained on ARQMath
demonstrated a better performance across both met-
rics compared to models pre-trained on other data
sets. A possible reason could be that this data set
contains a large variety of formulas written in LATEX
while this is unclear for the other data sets since
they are not publicly available. We validated these
results also using a second OPT data set based on
the MATH data set (Hendrycks et al., 2021), which
contains formulas written in LATEXextracted from
competition math problems. Since there was no
drop in performance among the models pre-trained
on ARQMath, we can conclude that models did not
benefit from the overlap between the pre-training
data and the probing formulas.

BERT and RoBERTa-based models show that
the best extractability for Operator Trees lies in the
middle layers, between layer 4 and 7 for base mod-
els and between layer 9 and 13 for large models.
This pattern is consistent with the results reported
by Hewitt et al. for dependency structures. Notably,
the same pattern does not emerge for ALBERT and
AnReu/math_albert. Here, the highest scores are
in layers 2 and 3. Overall, the scores for both
ALBERT-based models are significantly lower,
even after training on ARQMath. Interestingly,
this model was among the best for the ARQMath
Lab 3 on Mathematical Answer Retrieval and out-
performed also AnReu/math_pretrained_roberta,
which is the second best model for UUAS in this
study. A similar mismatch between the perfor-

Model DSpr. UUAS

albert-base-v2 0.631 (3) 0.477 (3)
AnReu/math_albert 0.680 (2) 0.513 (2)

bert-base-cased 0.713 (7) 0.532 (6)
allenai/

scibert-scivocab-cased
0.727 (7) 0.545 (7)

AnReu/
math_pretrained_bert

0.815 (7) 0.700 (6)

tbs17/MathBERT 0.718 (6) 0.550 (5)
tbs17/
MathBERT-custom

0.686 (5) 0.530 (5)

roberta-base 0.703 (5) 0.526 (5)
roberta-large 0.706 (9) 0.536 (13)
AnReu/
math_pretrained_roberta

0.746 (5) 0.576 (5)

shauryr/
arqmath-roberta-base

0.715 (5) 0.541 (4)

uf-aice-lab/
math-roberta

0.711 (9) 0.547 (11)

witiko/mathberta 0.752 (5) 0.574 (5)

Table 2: Results of reconstruction of OPTs using UUAS
and DSpr., displaying only the best results across all
layers, best layer indicated by (layer number).

mance in downstream natural language tasks and
syntactic parsing was also found by (Glavaš and
Vulić, 2021). Therefore, this finding casts a doubt
on whether the models rely on their OPT knowl-
edge when solving the downstream task of Mathe-
matical Answer Retrieval. However, the limitations
of probing classifiers as the one used in this work
do not allow conclusions about the models usage
of the knowledge. Hence, further research in this
direction is required to investigate whether and
how these models use structural knowledge during
downstream tasks. In addition, Appendix A shows
examples of reconstructed Operator Trees, while
Appendix B contains the mean scores and standard
deviation for each model in each layer.

6 Conclusion

This work aims to answer the question: Are Oper-
ator Trees extractable from the models’ contextu-
alized embeddings? We trained a structural probe
that learns to approximate the distances between
nodes in the trees. The results show that models
(further) pre-trained on mathematical data sets out-
perform their natural language baselines. The high
correlation of the trained probe suggests that the

43



0 2 4 6 8 10
Layer

0.6

0.7

0.8

D
Sp

r.
AnReu/math_pretrained_bert
AnReu/math_albert
witiko/mathberta

roberta-base
albert-base-v2
bert-base-cased

Figure 2: Results of reconstruction of OPTs across lay-
ers of the best models and all baselines, results for DSpr.,
the same pattern emerges for UUAS.

models indeed encode useful information about
Operator Trees in their contextualized embeddings.
Given that the models have never been trained on
Operator Trees, but only using masked-language
modeling on string-based representation such as
LATEX, explicitly proving Operator Trees during a
downstream task such as Mathematical Retrieval
might not even be necessary.

Furthermore, we notice differences between
model classes: While BERT and RoBERTa-based
models demonstrate a higher extractability for the
structural probe, both ALBERT-based models fall
behind. In contrast, their performance on mathe-
matical answer retrieval is on par with the other
evaluated models. Further research is required to
investigate this issue. We are open to offer other
researchers the re-use of our work by making our
source code and data set fully publicly available on
GitHub7.
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A Examples of Reconstructed Operator Trees
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Figure 3: Operator Trees calculated from the predicted squared distances between the tokens. The black edges
above each formula are the gold edges from the OPT parser, while the red edges are the predicted ones by each
model, taken from one seed of the best layer by DSpr. In a large majority of cases the models correctly identified
the edges of the displayed formula. Most differences can be seen from the second part of the left hand side of the
equation, where the models mostly struggle with the parent-child relationships of the equal sign.
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B Results for all layers

bert-base-cased tbs17/MathBERT tbs17/MathBERT-custom

mean stdev mean stdev mean stdev

0 0.6525 0.00126 0.6455 0.00040 0.6468 0.00058
1 0.6759 0.00116 0.6481 0.00110 0.6492 0.00035
2 0.6851 0.00075 0.6540 0.00084 0.6530 0.00078
3 0.6949 0.00078 0.6834 0.00047 0.6785 0.00080
4 0.7008 0.00045 0.7047 0.00083 0.6824 0.00049
5 0.7082 0.00027 0.7145 0.00036 0.6863 0.00073
6 0.7106 0.00019 0.7175 0.00036 0.6832 0.00009
7 0.7134 0.00037 0.7092 0.00044 0.6772 0.00024
8 0.7121 0.00042 0.6987 0.00026 0.6703 0.00016
9 0.7079 0.00033 0.6842 0.00028 0.6609 0.00027
10 0.6965 0.00013 0.6646 0.00021 0.6531 0.00031
11 0.6759 0.00046 0.6495 0.00026 0.6425 0.00031

allenai/scibert_scivocab_cased AnReu/math_pretrained_bert

0 0.6578 0.00094 0.7167 0.00020
1 0.6835 0.00122 0.7639 0.00032
2 0.6962 0.00110 0.7848 0.00041
3 0.7061 0.00033 0.7985 0.00030
4 0.7200 0.00040 0.8015 0.00011
5 0.7263 0.00046 0.8070 0.00017
6 0.7267 0.00009 0.8110 0.00005
7 0.7261 0.00016 0.8154 0.00012
8 0.7150 0.00063 0.8116 0.00006
9 0.6938 0.00008 0.8007 0.00018
10 0.6792 0.00019 0.7839 0.00008
11 0.6764 0.00031 0.7647 0.00010

Table 3: DSpr. Results of BERT, BERT-based and similar models.
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bert-base-cased tbs17/MathBERT tbs17/MathBERT-custom

mean stdev mean stdev mean stdev

0 0.4585 0.00169 0.4832 0.00113 0.4891 0.00053
1 0.4947 0.00107 0.4845 0.00129 0.4927 0.00061
2 0.5109 0.00068 0.4845 0.00059 0.4929 0.00043
3 0.5178 0.00027 0.5171 0.00028 0.5162 0.00049
4 0.5216 0.00059 0.5393 0.00051 0.5255 0.00074
5 0.5315 0.00064 0.5496 0.00037 0.5300 0.00059
6 0.5323 0.00019 0.5491 0.00039 0.5248 0.00044
7 0.5321 0.00053 0.5363 0.00038 0.5169 0.00050
8 0.5283 0.00040 0.5202 0.00043 0.5074 0.00042
9 0.5221 0.00051 0.5017 0.00018 0.4973 0.00045
10 0.5032 0.00018 0.4756 0.00022 0.4854 0.00038
11 0.4779 0.00035 0.4560 0.00028 0.4725 0.00034

allenai/scibert_scivocab_cased AnReu/math_pretrained_bert

0 0.4655 0.00036 0.5458 0.00069
1 0.4984 0.00150 0.6336 0.00054
2 0.5151 0.00103 0.6686 0.00034
3 0.5244 0.00037 0.6825 0.00030
4 0.5363 0.00038 0.6790 0.00043
5 0.5450 0.00038 0.6920 0.00032
6 0.5421 0.00066 0.7000 0.00043
7 0.5453 0.00018 0.6952 0.00041
8 0.5308 0.00087 0.6852 0.00043
9 0.5101 0.00036 0.6694 0.00046
10 0.4925 0.00033 0.6415 0.00030
11 0.4865 0.00038 0.6028 0.00046

Table 4: UUAS Results of BERT, BERT-based and similar models.

albert-base-v2 AnReu/math_albert

mean stdev mean stdev

0 0.6192 0.00072 0.6693 0.00017
1 0.6290 0.00133 0.6783 0.00022
2 0.6279 0.00039 0.6805 0.00043
3 0.6312 0.00030 0.6791 0.00024
4 0.6310 0.00049 0.6759 0.00015
5 0.6291 0.00029 0.6743 0.00031
6 0.6255 0.00067 0.6706 0.00014
7 0.6221 0.00082 0.6649 0.00017
8 0.6168 0.00053 0.6583 0.00017
9 0.6115 0.00041 0.6516 0.00041
10 0.6028 0.00037 0.6397 0.00033
11 0.5919 0.00040 0.5991 0.00025

(a) DSpr. Results

albert-base-v2 AnReu/math_albert

mean stdev mean stdev

0 0.4620 0.00128 0.5095 0.00039
1 0.4727 0.00132 0.5130 0.00040
2 0.4746 0.00054 0.5125 0.00025
3 0.4771 0.00055 0.5127 0.00038
4 0.4742 0.00063 0.5090 0.00032
5 0.4747 0.00059 0.5062 0.00023
6 0.4699 0.00088 0.5030 0.00062
7 0.4652 0.00091 0.4975 0.00048
8 0.4563 0.00070 0.4891 0.00032
9 0.4470 0.00049 0.4811 0.00024
10 0.4343 0.00088 0.4671 0.00056
11 0.4144 0.00075 0.4082 0.00046

(b) UUAS Results

Figure 4: Results of ALBERT and math albert.
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roberta-base
shauryr/
arqmath-roberta-base

witiko/mathberta
AnReu/
math_pretrained_roberta

mean stdev mean stdev mean stdev mean stdev
0 0.6066 0.00085 0.6219 0.00054 0.6051 0.00024 0.6179 0.00036
1 0.6561 0.00022 0.6682 0.00048 0.6824 0.00065 0.6917 0.00038
2 0.6691 0.00039 0.6841 0.00049 0.7123 0.00117 0.7195 0.00057
3 0.6840 0.00044 0.7014 0.00085 0.7363 0.00043 0.7345 0.00038
4 0.6930 0.00027 0.7114 0.00045 0.7475 0.00021 0.7422 0.00027
5 0.7025 0.00026 0.7146 0.00027 0.7519 0.00065 0.7464 0.00030
6 0.6986 0.00053 0.7102 0.00019 0.7487 0.00069 0.7409 0.00005
7 0.6937 0.00067 0.7038 0.00015 0.7501 0.00022 0.7366 0.00041
8 0.6881 0.00093 0.6997 0.00027 0.7456 0.00035 0.7331 0.00020
9 0.6843 0.00058 0.6961 0.00018 0.7399 0.00015 0.7274 0.00027
10 0.6677 0.00061 0.6798 0.00050 0.7207 0.00020 0.7094 0.00026
11 0.6538 0.00036 0.6616 0.00031 0.7049 0.00034 0.6942 0.00024

Table 5: DSpr. Results of RoBERTa-base and small RoBERTA-based models.

roberta-base
shauryr/
arqmath-roberta-base

witiko/mathberta
AnReu/
math_pretrained_roberta

mean stdev mean stdev mean stdev mean stdev
0 0.4456 0.00127 0.4619 0.00044 0.4268 0.00078 0.4543 0.00068
1 0.4825 0.00042 0.5010 0.00083 0.5086 0.00068 0.5296 0.00084
2 0.4988 0.00053 0.5184 0.00053 0.5388 0.00065 0.5477 0.00095
3 0.5187 0.00015 0.5352 0.00059 0.5618 0.00065 0.5690 0.00063
4 0.5224 0.00042 0.5414 0.00061 0.5732 0.00027 0.5731 0.00043
5 0.5255 0.00041 0.5378 0.00017 0.5742 0.00084 0.5759 0.00026
6 0.5172 0.00053 0.5358 0.00026 0.5687 0.00057 0.5672 0.00024
7 0.5088 0.00035 0.5247 0.00059 0.5692 0.00038 0.5591 0.00029
8 0.5106 0.00033 0.5311 0.00061 0.5704 0.00055 0.5599 0.00026
9 0.5091 0.00057 0.5324 0.00016 0.5659 0.00025 0.5590 0.00041
10 0.4899 0.00032 0.5167 0.00033 0.5471 0.00043 0.5411 0.00027
11 0.4713 0.00051 0.4902 0.00030 0.5294 0.00035 0.5238 0.00037

Table 6: UUAS Results of RoBERTa-base and small RoBERTa-based models.
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roberta-large
uf-aice-lab/
math-roberta

mean stdev mean stdev

0 0.61374 0.00029 0.61387 0.00051
1 0.62816 0.00057 0.62524 0.00068
2 0.65153 0.00077 0.65213 0.00080
3 0.66078 0.00116 0.66054 0.00058
4 0.67341 0.00050 0.67043 0.00083
5 0.68048 0.00111 0.68125 0.00034
6 0.68313 0.00044 0.68719 0.00052
7 0.68996 0.00057 0.69613 0.00054
8 0.69757 0.00072 0.70321 0.00068
9 0.70602 0.00058 0.71079 0.00046
10 0.70484 0.00029 0.70922 0.00043
11 0.70425 0.00061 0.70943 0.00068
12 0.70255 0.00106 0.70796 0.00041
13 0.70144 0.00057 0.70940 0.00042
14 0.69807 0.00035 0.70646 0.00044
15 0.69522 0.00046 0.70268 0.00048
16 0.69463 0.00012 0.70220 0.00032
17 0.69444 0.00023 0.70017 0.00025
18 0.68966 0.00009 0.69823 0.00025
19 0.68492 0.00029 0.69437 0.00014
20 0.68087 0.00036 0.69277 0.00027
21 0.67582 0.00035 0.69129 0.00012
22 0.66197 0.00051 0.68796 0.00057
23 0.64475 0.00056 0.68602 0.00082
24 0.62023 0.00042 0.66011 0.00017

(a) DSpr. Results

roberta-large
uf-aice-lab/
math-roberta

mean stdev mean stdev

0 0.44171 0.000279 0.44210 0.000778
1 0.45419 0.001066 0.45024 0.001192
2 0.48857 0.000532 0.48968 0.001104
3 0.50158 0.000647 0.50030 0.000336
4 0.52109 0.000171 0.51772 0.000599
5 0.51957 0.001377 0.52384 0.000602
6 0.51196 0.000350 0.52088 0.000902
7 0.52005 0.000604 0.52933 0.000500
8 0.52343 0.001005 0.53698 0.000465
9 0.53249 0.000754 0.54388 0.000493
10 0.53287 0.000664 0.54576 0.000411
11 0.53620 0.000540 0.54715 0.000436
12 0.53255 0.001094 0.54254 0.000349
13 0.53622 0.000277 0.54502 0.000427
14 0.52932 0.000924 0.53911 0.000366
15 0.52427 0.000548 0.53527 0.000632
16 0.52411 0.000432 0.53579 0.000367
17 0.52099 0.000341 0.53276 0.000112
18 0.51146 0.000397 0.52748 0.000328
19 0.50598 0.000293 0.52150 0.000432
20 0.50340 0.000510 0.52375 0.000435
21 0.49970 0.000665 0.52158 0.000291
22 0.48542 0.000576 0.52027 0.000370
23 0.47364 0.000890 0.52066 0.000748
24 0.44753 0.000611 0.49027 0.000578

(b) UUAS Results

Figure 5: Results of RoBERTa-large and uf-aice-lab/math-roberta.
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