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Geographical Distance Is The New Hyperparameter:
A Case Study Of Finding The Optimal Pre-trained Language For

English-isiZulu Machine Translation.

Muhammad Umair Nasir1, Innocent Amos Mchechesi2

1 Ominor AI, 2 University of the Witwatersrand, South Africa

Abstract

Stemming from the limited availability of
datasets and textual resources for low-resource
languages such as isiZulu, there is a signif-
icant need to be able to harness knowledge
from pre-trained models to improve low re-
source machine translation. Moreover, a lack of
techniques to handle the complexities of mor-
phologically rich languages has compounded
the unequal development of translation models,
with many widely spoken African languages be-
ing left behind. This study explores the poten-
tial benefits of transfer learning in an English-
isiZulu translation framework. The results indi-
cate the value of transfer learning from closely
related languages to enhance the performance
of low-resource translation models, thus provid-
ing a key strategy for low-resource translation
going forward. We gathered results from 8 dif-
ferent language corpora, including one multi-
lingual corpus, and saw that isiXhosa-isiZulu
outperformed all languages, with a BLEU score
of 8.56 on the test set which was better from
the multi-lingual corpora pre-trained model by
2.73. We also derived a new coefficient, Nasir’s
Geographical Distance Coefficient (NGDC)
which provides an easy selection of languages
for the pre-trained models. NGDC also indi-
cated that isiXhosa should be selected as the
language for the pre-trained model.

1 Introduction

Neural machine translation aims to automate the
translation of text or speech from one language to
another utilising neural networks (Nyoni and Bas-
sett, 2021). Consequently, the performance of neu-
ral machine translation (NMT) models is highly de-
pendent on the availability of large parallel corpora
to provide sufficient training data. Low-resource
languages which are under-represented in internet
sources lack suitable training corpora and there-
fore suffer from limited development, obtaining
poor translation performance. This phenomenon is
exacerbated by a lack of content creators, dataset

curators and language specialists, resulting in barri-
ers at many stages in the translation process (Lakew
et al., 2020; Zoph et al., 2016; Sennrich and Zhang,
2019).

Therefore, due to the historical focus on domi-
nant languages such as English in the development
of neural machine translation (NMT) models, low-
resource and morphologically complex languages
remain a challenge for current translation systems
(Haddow et al., 2021; Koehn and Knowles, 2017).
Due to limited resources in terms of both compu-
tational expense and available datasets, it is vital
to be able to leverage knowledge from current pre-
trained models to provide more effective solutions.
Therefore, in this investigation, the effects of trans-
fer learning from closely related languages, as well
as comparison with high-resourced languages for
pre-trained scenario, is explored in the context of
English to Zulu translation.

Furthermore, this study derives the Nasir’s Geo-
graphical Distance coefficient. Geographical Dis-
tance (GD) (Holman et al., 2007) has been stud-
ied for various scientific research areas (Bei et al.,
2021; Krajsa and Fojtova, 2011; Riginos and Nach-
man, 2001) as it provides deep insights in many
aspects. We will also use GD as a hyperparameter
for an attempt to get a language for a pre-trained
model in an effective and with a O(n) complexity.
Although there are many ways to find GD, we will
use literal approximation of distance in kilometers
and suggest the techniques in future directions.

1.1 Background

Previous studies have indicated poor translation
performance for the isiZulu languages due to its
morphological complexity and limited available
data (Martinus and Abbott, 2019). The challeng-
ing nature of English-isiZulu translation is high-
lighted in a benchmark of five low-resource African
languages by Martinus and Abbott (2019), where
isiZulu obtains a much poorer BLEU score in
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comparison to other evaluated languages. The
study suggests that the collection of higher quality
datasets for isiZulu would greatly benefit transla-
tion performance.

Furthermore, the challenges associated with the
morphological complexity of Nguni languages
such as isiZulu are tackled in a study by Moeng
et al. (2021). The investigation explores the use
of supervised sequence-to-sequence models to to-
kenize isiZulu, isiXhosa, isiNdebele and siSwati
sentences, demonstrating promising results for im-
proved segmentation of morphologically complex
Nguni languages.

A notable study by Nyoni and Bassett (2021)
compares the use of zero-shot learning, transfer
learning and multi-lingual learning on three Bantu
languages, namely isiZulu, isiXhosa and chiS-
hona. The results indicate that multi-lingual learn-
ing where a many-to-many model was trained us-
ing three different language pairs, English-isiZulu,
English-isiXhosa and isiXhosa-isiZulu led to opti-
mal results on their custom dataset.

In addition, the study found that transfer learn-
ing from a closely related Bantu language is highly
effective for low resource translation models, with
statistically significant results being obtained when
transfer learning to isiZulu using the pretrained
English-to-isiXhosa model (Nyoni and Bassett,
2021). In contrast, transfer learning from the
English-to-Shona model did not yield any statisti-
cally significant improvement, indicating the role
of morphological similarity in the transfer learning
process.

There has been a lot of work in providing as-
sistance to low-resourced languages for machine
translation focus of the area. Neubig and Hu (2018)
trained multilingual models as seed models and
then continued training on low-resourced language.
Sennrich et al. (2015) looks into training monolin-
gual data with automatic back-translation (Edunov
et al., 2018; Caswell et al., 2019; Edunov et al.,
2019) to improve scores through only a mono-
lingual data. Another work that utilizes back-
translation for effecctive NMT training is done by
Dou et al. (2020). Koneru et al. (2022) proposes
a cost-effective training procedure to increase the
performance of models on NMT tasks, utilizing a
small number of annotated sentences and dictio-
nary entries. Park et al. (2020) looked into decod-
ing strategies for low-resourced languages in an
attempt to improve training. Nguyen and Chiang

(2017) looked into related languages to a target
language for low-resourced languages to prove ef-
fectiveness of similar languages.

Similarly, this study aims to investigate whether
transfer learning from a morphologically simi-
lar language will be effective on the novel, high-
quality Umsuka English-isiZulu parallel corpus
and if so, how does it perform when we use high-
resourced mono- and multi-lingual corpora. This
study will also derive a formula which will ease
the way for selecting a language for a pre-trained
model.

2 Methodology

This investigation evaluates several models pre-
trained on different language pairs, both low- and
high-resourced, on a recently release English-Zulu
parallel corpus. The dataset utilized to fine-tune
and benchmark the models is discussed below.

2.1 Dataset
The Umsuka English-isiZulu Parallel Corpus
(Mabuya et al., 2021) provides a novel, high-quality
parallel dataset for machine translation, containing
English sentences sampled from both News Crawl
datasets which were then translated into isiZulu,
and isiZulu sentences from the NCHLT monolin-
gual corpus and UKZN isiZulu National monolin-
gual corpus, which were then translated into En-
glish. Each translation was performed twice, by
two differing translators, due to the high morpho-
logical complexity of the isiZulu language. This
also serves the purpose of considering one trans-
lation as a reference and the other as target. This
can be validated as both have been translated by
human annotators and are different from each other.
The dataset is publicly available from the Zenodo
platform1.

2.2 Models
The three models tested are based on the MarianMT
model (Junczys-Dowmunt et al., 2018) which is
constructed using a Transformer architecture. Each
model is pretrained on a different set of language
pairs from the Helsinki Corpus.

MarianMT (Junczys-Dowmunt et al., 2018) is
a toolkit for neural machine translation written in
C++ with over 1000 models trained on different
language pairs from OPUS2, available at the Hug-

1https://zenodo.org/record/5035171#
.YZvn1fFBy3J

2https://opus.nlpl.eu/
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gingFace Model Hub3. Each model is based on a
Transformer encoder-decoder structure with 6 lay-
ers in each component (Junczys-Dowmunt et al.,
2018). From the available models, 8 pre-trained
models were selected4, representing pre-training on
a closely related language, pre-training on a more
distantly related language within the same family
and pre-training on multiple unrelated languages,
with less and more data, respectively. Since each
model was based on the same architecture, this al-
lowed for a controlled comparison of the language
pairs used for pre-training, as any discrepancies
due to architectural differences were discounted.

Since isiXhosa and isiZulu are both part of the
Nguni branch of Bantu languages, isiXhosa is
closely related to isiZulu in the Bantu language
family tree (Nyoni and Bassett, 2021). As well
as Shona, or chiShona, is selected as it is also a
part of Southern Bantu language group (Nyoni and
Bassett, 2021). Another Bantu language, Kiswahili
was explored to determine the effects of transfer
learning from another language within the Bantu
family which is not as closely related to the target
isiZulu language. While isiZulu is classified as a
Southern Bantu and Nguni language, Kiswahili is
part of the Northeast Bantu and Sabaki languages
(Nurse et al., 1993).

Twi, or Akan-kasa, is spoken in Ghana, has been
selected to have a representation from Western
Africa and to explore the effects a dialect of the
Akan language on fine-tuning isiZulu. Luganda
is selected as a representation from Niger-Congo
family of languages and is spoken in East-African
Country of Uganda. This will able us to explore
the fine-tuning regime in Niger-Congo languages.

Arabic and French are selected as they are mor-
phologically very different and are considered to
be high-resourced (Ali et al., 2014; Besacier et al.,
2014). We explore effects of fine-tuning high-
resourced languages with different morphologies.
As the notion of having more and multi-lingual
data will be better for fine-tuning, we select a cor-
pus of Romance languages, which is created by
joining 48 Romance languages including French,
Italian, Spanish, Walloon, Catalan, Occitan, Ro-
mansh etc. We include Romance languages so that
we can cover the aspect of big multi-lingual cor-
pora being fine-tuned on low-resourced isiZulu and
to prove our hypothesis.

3https://huggingface.co/
4https://github.com/umair-nasir14/NGDC

2.3 Implementation Reproducibility
We believe all experiments must be Reproducible.
To achieve this we are open-sourcing our code on
GitHub (added in the footnote previously).

3 Results

Each model was benchmarked on the test set us-
ing the BLEU(Papineni et al., 2002) score as tabu-
lated in Table 1 below. It can be observed that the
optimal model is given by the MarianMT model
pre-trained on the English-Xhosa dataset. This con-
firms our hypothesis that transfer learning from
a geographically distant language would result in
poor performance. Here GD is in Kilometers (Km)
and corpus size is in Number Of Sentences in mil-
lions (M).

In Fig. 1 below, we can observe that the Mar-
ianMT model pre-trained on the English-Xhosa
dataset outperforms all other models by a good
margin, obtaining a final BLEU score of 8.56. This
result suggests that the morphological similarities
between the isiZulu and isiXhosa languages plays
a strong role in the benefits attained through fine-
tuning.

Following identification of the optimal model,
the MarianMT model pre-trained on the En-Xh
dataset was further fine-tuned for 75 epochs on
Umsuka dataset, giving a final optimal BLEU score
of 17.61 on training set and 13.73 on test.

4 Analysis

We now present an analysis of the results in light
of both the underlying theory and previous liter-
ature. In order to further understand the effects
of pre-training on different languages, the datasets
used for pre-training of the MarianMT models were
inspected. Notably, although the number of sen-
tences in English-Xhosa dataset is in order of mag-
nitudes less than Romance languages corpus but
still performs better. This justifies our hypothesis
and opens up a path to effective fine-tuning through
the knowladge of morphologies and not by adding
multiple languages into a single corpus. Arabic and
French having approximately 5 and 23 times more
data also suggests the above mentioned hypothesis
that with closer GD and lesser data is much better,
in many ways, than larger data and farther GD.

Other Bantu languages that were selected,
Kiswahili and chiShona performed almost simi-
lar to Arabic and French with order of magnitudes
of lesser data which suggests that even if they are

3



Language(s) BLEU(Val) BLEU(Test) Corpus Size(NOS) GD(KM)
isiXhosa 10.20 8.56 20.7 1000
Romance 7.76 5.83 1232.7 13094.4
Arabic 5.76 3.07 102.8 5205
French 5.42 3.91 479.1 13094
Kiswahili 5.28 3.97 9.1 3783.1
chiShona 4.32 2.83 0.1 1584
Twi 1.91 1.34 0.047 7962
Luganda 0.94 0.55 0.039 4883.7

Table 1: BLEU scores, GD and corpora size

Figure 1: BLEU scores per epoch according to different pre-training languages, indicates high performance of
morphologically similar isiXhosa, which outperforms a model trained on a very large corpora and rest of corpora.

not as similar to isiZulu, the distance being very
close to where isiZulu is spoken tends to have a
great impact. We speak similar languages in neigh-
bouring cities and countries which should have an
effect on the model and so the result suggests. Twi
and Luganda, having very less data and higher GD,
gives us very poor results.

From Table 1, we also observe that distance be-
tween the target language and the language from a
pre-trained model is a very important factor. Alone,
to a good extent it can serve the purpose of choos-
ing the language of pre-trained model but we want
to look one step deeper as one can argue that Ro-
mance languages corpora, French and Arabic per-
form relatively better but the distances are larger.
Thus we also look into Size of Corpus (Table 1).
Which forces us to think about deriving a relation-

ship that involves both distance and the size. This
will be explained in the upcoming sub-section.

4.1 Nasir’s Geographical Distance Coefficient

In Figure 2 we can observe that there is a sensible
relationship between BLEU scores and distance,
and as a rule of thumb there should always be a
relationship with corpus size (Lin et al., 2019).
With further analysis we can deduce that neither
distance alone nor corpus size alone can be
taken for granted when selecting a language for
pre-trained model. Thus, we derive a formula
which takes into account both distance and corpus
size in account. This formula is intended to be
used before training to know which language
corpora to select.

4



Figure 2: Relationship between BLEU scores and distance (KM) of places where languages are spoken from the
place where isiZulu is spoken.

z =
cD

(1− c)S

δ =

{
1, if D ≥ Dmax

exp(z)

1+exp(z)
, otherwise

where D is the distance between language to
fine-tune and language of the pre-trained model,
S is the size of corpus, c is the weight coefficient,
set to 0.4, which could act as hyperparameter.
Dmax is also hyperparameter to be tuned when it
is being used in different languages in different
parts of the world. δ is the coefficient we are
introducing, Nasir’s Geographical Distance
Coefficient (NGDC). The goal here is to minimize
NGDC.

Table 2, Figures 3 and 4 shows the results and
effectiveness of our introduced NPC. We can ob-
serve that without imposing penalty we have Ro-
mance languages, Arabic and French as desired
pre-trained model languages along with isiXhosa
and Kiswahili, which makes absolute sense as some
have more data and others are near to target lan-
guage but we want to have morphologically closer
languages which will get better results. It would
also be better if lesser carbon footprint is left and
lesser training resources are used. Thus, with the
penalty we only get isiXhosa and Kiswahili as de-
sired ones, which will eventually be better in all
perspectives.

5 Impact Statement

The potential impacts of this investigation can be
explored in light of the possible contributions, risks
and societal impact.

5.1 Applications and Benefits

The study poses potential benefits to further re-
search into low-resource languages as it motivates
careful choice of the pre-trained model used for
transfer learning in order to improve performance
on low resource languages. This could provide a vi-
tal tool to improve the efficiency and performance
of low resource translation pipelines, especially in
resource-constrained environments. In addition,
this principle could be applied more broadly to
other language groups with morphologically simi-
lar languages.

Moreover, effective transfer learning provides
the additional advantage of promoting decreased
computational expense since prior knowledge from
previously trained networks can be leveraged effec-
tively. This could work to mitigate the substantial
detrimental environmental impact stemming from
the intensive GPU training required to train neu-
ral machine translation models. This is critical to
ensure sustainable development of machine trans-
lation models by minimising resource waste.

5.2 Limitations and Drawbacks

It should be noted that any conclusions drawn from
the study are based on the BLEU score as the sole

5



Language(s) BLEU NGDC(With Penalty) NGDC(Without Penalty)
isiXhosa 10.20 0.5080 0.5080
Romance 7.76 1.0000 0.5007
Arabic 5.76 1.0000 0.5084
French 5.42 1.0000 0.5045
Kiswahili 5.28 0.5688 0.5688
chiShona 4.32 0.9999 0.9999
Twi 1.91 1.0000 1.0000
Luganda 0.94 1.0000 1.0000

Table 2: NGDC with and without Penalty.

Figure 3: NGDC with Penalty

Figure 4: NGDC without Penalty

evaluation metric. This may provide a limited view
of the true translation performance as it is based on
n-gram similarity and does not necessarily measure

whether the meaning of a sentence has been cap-
tured. A further improvement could be to conduct
a similar study with additional expertise from a

6



linguistic specialist to verify whether the output of
the translation models is valid.

5.3 Social Impact

Societal impacts of low resource neural machine
translation include furthering accessibility of in-
formation to under-represented languages and
working to close the digital divide between high-
resource and low-resource languages. Machine
translation is an essential component of applica-
tions ranging from voice-assisted smart-phone ap-
plications that provide healthcare to rural communi-
ties to ensuring multi-lingual access to educational
materials. Therefore it is vital that machine trans-
lation technology is accessible and functional for
low-resource languages to be able to build valuable
tools which could have a beneficial societal impact.

6 Conclusion and Future Directions

English-isiZulu translation has historically ob-
tained poor results on translation benchmarks due
to a lack of high-quality training data and appro-
priate tokenization schemes able to handle the ag-
glutinative structure of isiZulu sentences. In this
investigation, the challenges of isiZulu translation
in terms of both morphological complexity and a
lack of textual resources are explored using the re-
cently released Umsuka English-isiZulu Parallel
Corpus. In order to investigate the effects of the
impact of the pre-trained model selected for trans-
fer learning, several models were fine-tuned and
benchmarked on the Umsuka dataset.

MariantMT models pre-trained on English-
Xhosa, English-Swahili, English-Shona, English-
Twi, English-Luganda, English-Arabic, English-
French and English-Multilingual Romance lan-
guages, respectively. The study found that the pre-
trained English-Xhosa model attained the optimal
results with a handsome margin. Thus, the results
indicate that transfer learning is particularly effec-
tive when languages are within the same sub-family
while transfer learning is less effective when the
model is pre-trained on a more distantly related lan-
guage, no matter the size of the data to an extreme
extent. We have also introduced a novel Nasir’s
Geographical Distance Coefficient which will help
researchers find a language for pre-trained model
effectively and will result in using less resources.

Therefore, this study motivates careful choice
of the pre-trained model used for transfer learning,
utilising existing knowledge of language family

trees, to promote improved performance of low
resource translation. In addition, we have open-
sourced5 our best model which was fine-tuned for
75 epochs using the original MarianMT model pre-
trained on the English-Xhosa language pair, ob-
taining a final BLEU score of 17.61 on train while
13.73 on test set. We have also gathered all model
cards for the models that were used for further ex-
perimentation.

This study yeilds promising future directions as
the experiment was done on only 8 corpora. We
suggest to increase the number and observe the
derivation of the result. We also suggest to com-
bine Bantu language as one multi-lingual corpora
and observe the result. The experiment has been
done on a novel Umsuka parallel corpora, the study
should extend to more common benchmarks. This
study should extend to different low-resourced lan-
guages of different continents of our world. We
have derived a formula that takes into the account
just the distance and the size of corpora, a promis-
ing research would be to derive a formula that takes
morphologies and/or phonologies and fives a dis-
tance based on that. With NGDC at hand, it mo-
tivates to create a framework where one enters a
target language, a Dmax and a value for weight
coefficient c and gets desirable models to train on.
There are many precise ways of finding GD, such
as Lambert’s formula (Lambert, 1942) and Vin-
centy’s formula (Vincenty, 1975) which may en-
hance NGDC’s performance. It also opens up ways
to introduce morphology in the formula, which we
expect it to improve the overall selection of the
models.
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Abstract

The modes of discourse aid in comprehend-
ing the convention and purpose of vari-
ous forms of languages used during com-
munication. In this study, we introduce a
discourse mode annotated corpus for the
low-resource Bengali (also referred to as
Bengali) language. The corpus consists
of sentence-level annotation of three dis-
course modes, narrative, descriptive, and
informative of the text excerpted from a
number of Bengali novels. We analyze
the annotated corpus to expose various lin-
guistic aspects of discourse modes, such
as class distributions and average sentence
lengths. To automatically determine the
mode of discourse, we apply CML (clas-
sical machine learning) classifiers with n-
gram based statistical features and a fine-
tuned BERT (Bidirectional Encoder Rep-
resentations from Transformers) based lan-
guage model. We observe that fine-tuned
BERT-based model yields better results
than CML classifiers. Our created dis-
course mode annotated dataset, the first of
its kind in Bengali, and the evaluation, pro-
vide baselines for the automatic discourse
mode identification in Bengali and can as-
sist various downstream natural language
processing tasks.

1 Introduction

Discourse is the notion of conversation that is
expressed through language. Based on Web-
ber et al. (2012), discourse indicates the re-
lationship between states, events, or beliefs
manifested within one or multiple sentences
in a given mode of communication. Under-
standing discourse structures and identifying
relationships between various modes can help
downstream natural language processing tasks
including text summarization (Li et al., 2016),
question answering (Verberne et al., 2007),

anaphora resolution (Hirst, 1981), and ma-
chine translation (Li et al., 2014).
The modes of discourse, also referred to as

rhetorical modes, represent the variety, con-
ventions, and purposes of the dominant types
of language used in communication (both oral
and written). The discourse modes have high
importance while writing composition because
they attribute to several factors that would
affect the quality and coherence of a text.
The combination and interaction of various
discourse modes make a text organized and
unified (Smith, 2003). To give an example,
the writer may start an expressing an event
through narration, then provide details re-
garding using descriptive modes and establish
ideas with argument. Discourse modes have
also importance in rhetorical research as they
are closely related to rhetoric (Connors, 1981)
that provides guidelines for effectively express-
ing content.
Researchers categorized modes of discourse

into various categories (Rozakis, 2003; Song
et al., 2017; Dhanwal et al., 2020). Based
on Rozakis (2003), discourse modes can be
classified into four categories, narration,
description, exposition, and argument. Nar-
ration mode primarily focuses on governing
the progression of the story by presenting
and connecting events; exposition mode
instructs or explains; the argument aims to
provide a convincing or persuasive state-
ment; description tries to provide detailed
mentions of characters, objects, and scenery,
in a figurative language. Song et al. (2017)
categorized the mode of discourse into five
categories, narration, exposition, description,
argument and emotion expressing sentences in
narrative essays, while Dhanwal et al. (2020)
annotated discourse mode of short story into
argumentative, narrative, descriptive, dialogic
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and informative categories. Although a piece
of text can be labeled as a specific mode of
discourse, it is not uncommon to have text
snippets with multiple modes of discourse
Song et al. (2017) where one of them possesses
the dominant role.

Although discourse structure and mode
have a significant role in various downstream
natural language processing tasks, research
in this area is largely unexplored in Bengla.
Although Bengali is the 7th most spoken
language in the world 1, NLP resources are
scarcely available except few areas such as
sentiment analysis (Sazzed and Jayarathna,
2019; Sazzed, 2020) or inappropriate tex-
tual content detection (Sazzed, 2021a,b,c).
Regarding discourse analysis, only a lim-
ited number of works performed research
(Chatterjee and Chakraborty, 2019; Banerjee,
2010; Sarkar and Chatterjee, 2013; Das and
Stede, 2018; Das et al., 2020). However, to
the best of our knowledge, no study related
to automatic discourse mode identification
has been carried out yet. Thus, in this
study, we introduce an annotated dataset and
present a set of techniques for the automatic
identification of discourse modes.

Following the rough guidelines provided by
Smith (2003) and Dhanwal et al. (2020) for
discourse mode annotation, we manually cat-
egorize a dataset of 3310 sentences from Ben-
gali Novels into various discourse modes. The
sentences are annotated in three modes of dis-
course, narrative, descriptive and informative.
For automatic identification of the discourse
mode, we extract word n-gram based features
from the text and then employ several clas-
sical machine learning (CML) classifiers such
as logistic regression (LR), support vector ma-
chine (SVM), random forest (RF). In addition,
the transformer-based multilingual BERT lan-
guage model is leveraged and fine-tuned for
discourse mode determination. We observe
that the multilingual BERT model yields bet-
ter performance than the CML classifiers, al-
though the difference is not substantial com-
pared to LR or SVM.

1https://www.babbel.com/en/magazine/
the-10-most-spoken-languages-in-the-world

1.1 Contributions
The main contributions of this study can be
summarized as follows-

• We create a Bengali discourse mode cor-
pus by collecting and annotating texts
from a number of Bengali novels. Cur-
rently, no discourse mode annotated
dataset is available in Bengali; therefore,
a key contribution of this study is the de-
velopment of such a resource that is pub-
licly available for researchers 2.

• We analyze the annotated corpus to re-
veal attributes of text representing vari-
ous discourse modes.

• We employ CML classifiers with n-gram
based statistical features and a fine-tuned
pre-trained language model for automat-
ically identifying various modes of dis-
course.

2 Data Annotation and Collection
The data collection process starts with iden-
tifying a set of novels from Bengali litera-
ture. We select six 20th-century Bengali nov-
els েগালেমেল েলাক, পেথর পাঁচািল, আরণয্ক,পটাশগেড়র
জঙ্গ,নি ত নরেক, িহমু ) written by three famous
Bengali novelists, ’Shirshendu Mukhopad-
hyay’, ’Bibhutibhushan Bandyopadhyay’, and
’Humayun Ahmed’. Unlike English, the elec-
tronic versions (i.e., eBooks) of Bengali books
are hardly available as eBooks are not popular
among Bengali readers. Moreover, we notice
that most of the eBooks available in PDF for-
mat were created by scanning images of the
print versions; therefore, they are not suitable
for text extraction. We find a website that pro-
vides a set of Bengali fiction in EPUB format.
From there, we manually download the above-
stated six Bengali novels and extract the text
for annotation.
Three native Bengali speakers with

university-level education perform the anno-
tation. Annotating the mode of discourse in
a piece of text (i.e., sentence) is often chal-
lenging since a sentence may have multiple
modes, or the distinction is often not obvious.
Thus annotators are provided a set of online

2https://github.com/sazzadcsedu/
DiscourseBangla.git

10



resources and guidelines from a number of
publications.
The discourse modes are selected based on

the existing works of Song et al. (2017) and
Dhanwal et al. (2020). Song et al. (2017) cate-
gorized modes of discourse into five categories,
narration, exposition, description, argument
and emotion in narrative essays, while Dhan-
wal et al. (2020) annotated discourse modes
into argumentative, narrative, descriptive, di-
alogic and informative categories. As our an-
notated content (i.e., excerpted sentences of
Bengali novels) are more similar to the content
(i.e., short stories) of Dhanwal et al. (2020),
our annotated discourse modes are more sim-
ilar to their annotation. However, we notice
that the presence of the argumentative mode
in a fictional novel is rare as instead of es-
tablishing any opinion, a novel tells a story
in chronological order. Besides, it is observed
that the dialogic category itself does not com-
prise any new mode. Instead, it echoes the
narrative or descriptive or other modes from
a third-person point of view; thus, we do not
include it as a separate mode.

2.1 Discourse Modes
In this study, the following three discourse
modes are considered for annotation.

Narrative: Narrative sentences relate to en-
tities performing particular actions, often in
chronological order as a part of storytelling.

Bengali: সবর্জয়া েছেলর কা েদিখয়া অবাক হইয়া রিহল
English Translation: ”Sarvajaya was sur-

prised to see the boy’s actions”

Descriptive: Descriptive statements illus-
trate specific entities with some kind of de-
scription so that reader can imagine this in
his mind. It enables readers to visualize char-
acters, settings, and actions. For example, it
tells how entities look, sound, feel, taste, and
smell.

Bengali: একমাথা ঝাঁকড়া ঝাঁকড়া চুল, ভাির শা ,
সু র েচাখমুখ, কুচকুেচ কােলা গােয়র রং।

English Translation: ”She has curly hair,
heavy, calm, beautiful eyes, and a sleek black
complexion”

Informative: Informative sentences provide
information regarding entities or circum-
stances.

Bengali: এটা পটাশগেড়র এক রাজা বািনেয়িছল।
English Translation: It was made by a

king of Potashgarh.

2.2 Annotation Task
The annotation guidelines consist of the for-
mal and informal descriptions of three differ-
ent types of discourse modes, examples of vari-
ous modes with the explanation, and examples
of co-occurrence of various modes with mode
dominance. Although the annotation is per-
formed at the sentence level, the annotators
are instructed to consider the surrounding sen-
tences to get a better idea about the context
of the sentence for better annotation. In case
of the presence of multiple modes in a sen-
tence, the annotators are asked to determine
the most dominant discourse mode based on
the provided guidelines and their own judg-
ment and label accordingly.

2.3 Annotation and Dataset Statistics
The final dataset consists of 3310 sentences
annotated by the three annotators, where two
annotators label all the sentences and the third
annotator acts only if there is any disagree-
ment between the first two annotators for any
case. Note that to include varied types of
events and description sentences are randomly
selected from the various sections of the nov-
els by annotators (around 50% by each of the
annotators). We observe an annotator agree-
ment of 0.78 based on a Cohen’s kappa (Co-
hen, 1960) for the label assignment between
the first two annotators.

Table 1: Statistics of various discourse modes in
the annotated corpus

Classifier #Sentence #Words/
Sentence

Narrative 2282 14.62
Descriptive 782 23.43
Informative 246 11.73

Table 1 depicts the distributions of various
modes of discourse in the annotated dataset.
As shown in Table 1, the annotated dataset
is class imbalanced. We notice that the most
dominant mode in the novels is narrative since
the progression of a novel involves a lot of nar-
rative events. Overall, almost 70% of the sen-
tences in the annotated corpus represent nar-
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rative mode. The descriptive mode has 782
instances, while the informative mode is less
prevalent and has only 246 samples.
We observe that the most frequently co-

occurring modes are narrative and descriptive,
as often chronological events are described
with some details. We find that over 20% of
narrative sentences convey description to some
extent. This observation is consistent with the
findings of Song et al. (2017). In the presence
of multiple discourse modes within the same
sentence, it is often challenging to identify the
dominant one.
As seen by Table 1, the average sentence

lengths of different discourse modes vary to
some extent. For example, the lengths of the
sentences representing the descriptive mode
are much higher than the other two modes.
A higher length of descriptive sentences is ex-
pected since they elucidate particular entities
or events with some details.

3 Machine Learning Based
Approaches

3.1 Classical ML Classifier
We employ four classical supervised ML clas-
sifiers: logistic regression (LR), support vec-
tor machine (SVM), random forest (RF), and
extra trees (ET) for determining the modes of
the discourse of sentences. For SVM, we apply
all three types of kernels, linear, polynomial,
and Gaussian radial basis function (RBF). We
find the linear kernel performs best for our
classification problem (reported results).
The word n-gram features are utilized as in-

put for the CML classifiers. An n-gram is a
contiguous sequence of n items from a piece of
text. We extract the word-level unigrams and
bigrams from the text, compute corresponding
tf-idf scores, and then feed those values to the
CML classifiers.
For the CML classifiers, the default pa-

rameter settings of the scikit-learn (Pedregosa
et al., 2011) library are used. A class-balanced
weight is set for all CML classifiers.

3.2 Deep Learning Based Classifier
The transformer-based pre-trained contextual
embedding such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) have achieved
state-of-the-art results in various text classi-

fication tasks with limited labeled data. As
these language models have been trained with
a large amount of unlabelled data, they pos-
sess contextual knowledge; thus, fine-tuning
them utilizing a small amount of problem-
specific labeled data can attain satisfactory re-
sults.
BERT utilizes the transformer architec-

ture to learn contextual relationships between
words (or sub-words) in a piece of text. Be-
fore feeding text sequences into BERT, 15% of
the words in each sequence are replaced with
a [MASK] token. The BERT model then tries
to infer the original value of the masked words
utilizing the contextual meaning provided by
the surrounding non-masked words present in
the sequence.
The multilingual BERT (M-BERT) (De-

vlin et al., 2019) is the multilingual version
of BERT, which was pre-trained with the
Wikipedia content of 104 languages (Bengali
is one of them). It consists of twelve-layer
transformer blocks where each block contains
twelve head self-attention layers and 768 hid-
den layers that result in approximately 110
million parameters.

3.2.1 Fine Tuning
We fine-tune M-BERT for categorizing sen-
tences into the three classes, narrative, de-
scriptive, informative. Since this is a classi-
fication task, we utilize the classification mod-
ule of the M-BERT. The hugging face library
(Wolf et al., 2019) is used to fine-tune M-
BERT.
Since the initial layers of M-BERT only

learn very general features, we keep them un-
touched. Only the last layer of the M-BERT
is fine-tuned for our binary-level classification
task. We only add one layer on top of the
M-BERT for classification that acts as a clas-
sifier. We tokenize and feed our input training
data to fine-tune M-BERT model; Afterward,
the fine-tuned model is used for classifying the
testing data.
A mini-batch size of 8 and a learning rate

of 4*10 -5 are used. The validation and train-
ing split ratio is set to 80% and 20%. The
model is optimized using the Adam optimizer
(Kingma and Ba, 2014), and the loss param-
eter is set to sparse-categorical-cross-entropy.
The model is trained for 3 epochs with early
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Table 2: Performance of various approaches for discourse mode prediction

Type Classifier Narrative Descriptive Informative
F1/Acc. F1/Acc. F1/Acc.

LR 0.8857/0.9708 0.6796 /0.5896 0.064/0.0333
SVM 0.8739/0.9787 0.6126/0.4909 0.0328/0.0167

CML RF 0.8433/0.9911 0.3773/0.2416 0.0165/0.0083
ET 0.8458/0.9938 0.4/0.2571 0.0328/0.0167

DL Multilingual 0.912/0.957 0.66/0.6875 0.0468/0.024
BERT

Table 3: An example of the confusion matrix yielded by the LR classifier

Class Narrative Descriptive Informative
Narrative 2213 69 0

Descriptive 337 438 7
Informative 184 50 12

stopping enabled.

3.3 Evaluation Settings
To evaluate the performances of various ap-
proaches, 5-fold cross-validation is applied.
The 5-fold cross-validation split the dataset
into 5-mutually independent subsets. It con-
sists of 5 iterations; in each iteration, one of
the new subsets is used as a testing set, and
the other two subsets are used as a training
set.
The F1 score and accuracy of all three

classes are reported separately. The F1
score of each class is computed based on its
precision and recall scores. Let c represents
a particular class and c′ refer to all other
classes. The TP, FP, and FN for the class c
are defined as follows-
TP = both true label and prediction refer a
sentence to class c
FP = true label of a sentence is class c′, while
prediction says it is class c
FN = true label marks a sentence as class c,
while prediction refers to it class c′

4 Results and Discussion
Table 2 provides the F1 scores and accu-
racy of various CML-based classifiers and
transformers-based M-BERT model for dis-
course mode identification.
The results reveal that all the four CML

classifiers, LR, SVM, RF, and ET, yield high
performance for the narrative class prediction;

they achieve F1 scores between 0.84-0.89 and
an accuracy of around 97%. For the descrip-
tive class prediction, LR and SVM perform
better than the RF and ET; they obtain f1
scores over 0.60 compared to 0.4 scores of de-
cision tree-based classifiers. However, we ob-
serve that for informative class prediction all
the classifiers perform poorly.
We observe that the performances of CML

classifiers are affected by the class distribu-
tion of the dataset. Since the narrative class
contains close to 70% of the instances in the
dataset, the classifiers are biased towards it
(Table 3). All the CML classifiers fail to pro-
vide an acceptable level of performance for the
minor informative class even after using class-
balanced weights. We also employ SMOTE
(Chawla et al., 2002) oversampling techniques
for class balancing; however, we do not notice
any noticeable performance improvement us-
ing SMOTE.
The transformer-based multilingual lan-

guage model yield slightly better performance
than the CML classifiers. For the dominant
narrative class, it attains an f1 score of 0.912.
For other classes, it obtains similar f1 scores
of the LR and SVM, around 0.67 and 0.05, re-
spectively. It is noticed that all the classifiers
perform poorly for the minor informative class
prediction.
The results suggest that the transformer-

based multilingual BERT model can be effec-
tive for discourse mode classification in Ben-
gali text. Although we do not notice signif-
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icant improvement compared to CML clas-
sifiers in this study, it could be attributed
to limited labeled data. With more labeled
data incorporated, the improvement could be
higher ( transformer-based models have shown
state-of-the-art performances for various NLP
tasks across languages). Low resource lan-
guage such as Bengali suffers from data anno-
tation issues, as there are not enough resources
to create a large labeled dataset. Thus, incor-
porating a pre-trained model can help address
the scarcity of annotated data in the Bengali
language to some extent.

5 Summary and Future Work
In this study, we introduce a corpus consisting
of sentences level annotation of various modes
of discourse. The corpus consists of excerpted
text from Bengali novels annotated with three
different discourse modes: narrative, descrip-
tive and informative. We provide details of
the annotation procedure, such as annota-
tion guidelines and annotator agreements, and
investigate the characteristics of various dis-
course modes. Finally, we employ CML and
deep learning-based classification approaches
for automatic discourse mode identification.
We observe that transformer-based fine-tuned
language models yield the best performance.
Our future work will expand the size of the
corpus and demonstrate the usefulness of dis-
course mode annotated data for downstream
tasks such as automated essay scoring and
sentiment analysis in the low-resource Bengali
language.

References
Sanjoy Banerjee. 2010. Context in communi-
cation: analysis of bengali spoken discourse.

Rajoshree Chatterjee and Jayshree
Chakraborty. 2019. Analyzing discourse
coherence in bengali elementary choras
(children’s nursery rhymes). Rupkatha
Journal on Interdisciplinary Studies in
Humanities, 11(3).

Nitesh V Chawla, Kevin W Bowyer,
Lawrence O Hall, and W Philip Kegelmeyer.
2002. Smote: synthetic minority over-
sampling technique. Journal of artificial
intelligence research, 16:321–357.

Jacob Cohen. 1960. A coefficient of agreement
for nominal scales. Educational and psycho-
logical measurement, 20(1):37–46.

Robert J Connors. 1981. The rise and fall of
the modes of discourse. College Composition
and Communication, 32(4):444–455.

Debopam Das and Manfred Stede. 2018. De-
veloping the bangla rst discourse treebank.
In Proceedings of the Eleventh Interna-
tional Conference on Language Resources
and Evaluation (LREC 2018).

Debopam Das, Manfred Stede,
Soumya Sankar Ghosh, and Lahari
Chatterjee. 2020. Dimlex-bangla: A lexicon
of bangla discourse connectives. In Proceed-
ings of the 12th Language Resources and
Evaluation Conference, pages 1097–1102.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. Bert: Pre-
training of deep bidirectional transformers
for language understanding.

Swapnil Dhanwal, Hritwik Dutta, Hitesh
Nankani, Nilay Shrivastava, Yaman Kumar,
Junyi Jessy Li, Debanjan Mahata, Rakesh
Gosangi, Haimin Zhang, Rajiv Shah, et al.
2020. An annotated dataset of discourse
modes in hindi stories. In Proceedings of
the 12th Language Resources and Evalua-
tion Conference, pages 1191–1196.

Graerne Hirst. 1981. Discourse-oriented
anaphora resolution in natural language un-
derstanding: A review. American journal of
computational linguistics, 7(2):85–98.

Diederik P Kingma and Jimmy Ba. 2014.
Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

Junyi Jessy Li, Marine Carpuat, and Ani
Nenkova. 2014. Assessing the discourse fac-
tors that influence the quality of machine
translation. In Proceedings of the 52nd An-
nual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Pa-
pers), pages 283–288.

Junyi Jessy Li, Kapil Thadani, and Amanda
Stent. 2016. The role of discourse units in

14



near-extractive summarization. In Proceed-
ings of the 17th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dia-
logue, pages 137–147.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly op-
timized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning
Research, 12:2825–2830.

Laurie Rozakis. 2003. The complete idiot’s
guide to grammar and style. Penguin.

Abhishek Sarkar and Pinaki Sankar Chatter-
jee. 2013. Identification of rhetorical struc-
ture relation from discourse marker in ben-
gali language understanding.

Salim Sazzed. 2020. Cross-lingual sentiment
classification in low-resource bengali lan-
guage. In Proceedings of the sixth work-
shop on noisy user-generated text (W-NUT
2020), pages 50–60.

Salim Sazzed. 2021a. Abusive content detec-
tion in transliterated bengali-english social
media corpus. In Proceedings of the Fifth
Workshop on Computational Approaches to
Linguistic Code-Switching, pages 125–130.

Salim Sazzed. 2021b. Identifying vulgarity in
bengali social media textual content. PeerJ
Computer Science, 7:e665.

Salim Sazzed. 2021c. A lexicon for profane
and obscene text identification in bengali. In
Proceedings of the International Conference
on Recent Advances in Natural Language
Processing (RANLP 2021), pages 1289–
1296.

Salim Sazzed and Sampath Jayarathna. 2019.
A sentiment classification in bengali and
machine translated english corpus. In 2019

IEEE 20th international conference on in-
formation reuse and integration for data sci-
ence (IRI), pages 107–114. IEEE.

Carlota S Smith. 2003. Modes of discourse:
The local structure of texts, volume 103.
Cambridge University Press.

Wei Song, Dong Wang, Ruiji Fu, Lizhen Liu,
Ting Liu, and Guoping Hu. 2017. Discourse
mode identification in essays. In Proceedings
of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume
1: Long Papers), pages 112–122.

Suzan Verberne, Lou Boves, Nelleke Oostdijk,
and Peter-Arno Coppen. 2007. Evaluating
discourse-based answer extraction for why-
question answering. In Proceedings of the
30th annual international ACM SIGIR con-
ference on Research and development in in-
formation retrieval, pages 735–736.

Bonnie Webber, Markus Egg, and Valia Ko-
rdoni. 2012. Discourse structure and lan-
guage technology. Natural Language Engi-
neering, 18(4):437–490.

Thomas Wolf, Lysandre Debut, Victor Sanh,
Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault,
Rémi Louf, Morgan Funtowicz, et al. 2019.
Huggingface’s transformers: State-of-the-
art natural language processing. arXiv
preprint arXiv:1910.03771.

15



Proceedings of the Workshop on Multilingual Information Access (MIA), pages 16 - 28
July 15, 2022 ©2022 Association for Computational Linguistics

Pivot Through English: Reliably Answering Multilingual Questions
without Document Retrieval

Ivan Montero♠ Shayne Longpre♣
Ni Lao♣ Andrew J. Frank♣ Christopher DuBois♣

♠Paul G. Allen School of Computer Science & Engineering, University of Washington
♣Apple Inc.

ivamon@cs.washington.edu
{slongpre, ni_lao, a_frank, cdubois}@apple.com

Abstract

Existing methods for open-retrieval question
answering in lower resource languages (LRLs)
lag significantly behind English. They not
only suffer from the shortcomings of non-
English document retrieval, but are reliant on
language-specific supervision for either the
task or translation. We formulate a task setup
more realistic to available resources, that cir-
cumvents document retrieval to reliably trans-
fer knowledge from English to lower resource
languages. Assuming a strong English ques-
tion answering model or database, we com-
pare and analyze methods that pivot through
English: to map foreign queries to English
and then English answers back to target lan-
guage answers. Within this task setup we
propose Reranked Multilingual Maximal Inner
Product Search (RM-MIPS), akin to seman-
tic similarity retrieval over the English train-
ing set with reranking, which outperforms the
strongest baselines by 2.7% on XQuAD and
6.2% on MKQA. Analysis demonstrates the
particular efficacy of this strategy over state-
of-the-art alternatives in challenging settings:
low-resource languages, with extensive dis-
tractor data and query distribution misalign-
ment. Circumventing retrieval, our analysis
shows this approach offers rapid answer gen-
eration to many other languages off-the-shelf,
without necessitating additional training data
in the target language.

1 Introduction
Open-Retrieval question answering (ORQA) has
seen extensive progress in English, significantly
outperforming systems in lower resource languages
(LRLs). This advantage is largely driven by the
scale of labelled data and open source retrieval
tools that exist predominantly for higher resource
languages (HRLs) — usually English.

To remedy this discrepancy, recent work lever-
ages English supervision to improve multilingual
systems, either by simple translation or zero shot

Figure 1: Cross-Lingual Pivots (XLP): We intro-
duce the “Cross Lingual Pivots" task, formulated as
a solution to multilingual question answering that cir-
cumvents document retrieval in low resource languages
(LRL). To answer LRL queries, approaches may lever-
age a question-answer system or database in a high re-
source language (HRL), such as English.

transfer (Asai et al., 2018; Cui et al., 2019; Charlet
et al., 2020). While these approaches have helped
generalize reading comprehension models to new
languages, they are of limited practical use without
reliable information retrieval in the target language,
which they often implicitly assume.

In practice, we believe this assumption can be
challenging to meet. A new document index can
be expensive to collect and maintain, and an ef-
fective retrieval stack typically requires language-
specific labelled data, tokenization tools, manual
heuristics, and curated domain blocklists (Fluhr
et al., 1999; Chaudhari, 2014; Lehal, 2018). Con-
sequently, we discard the common assumption of
robust non-English document retrieval, for a more
realistic one: that there exists a high-quality En-
glish database of query-answer string pairs. We mo-
tivate and explore the Cross-Lingual Pivots (XLP)
task (Section 2), which we contend will accelerate
progress in LRL question answering by reflecting
these practical considerations. This pivot task is
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Figure 2: Reranked Multilingual Maximal Inner Product Search (RM-MIPS): For the Cross-Lingual Pivots
task, we propose an approach that maps the LRL query to a semantically equivalent HRL query, finds the appro-
priate HRL answer, then uses knowledge graph or machine translation to map the answer back to the target LRL.
Specifically, the first stage (in blue) uses multilingual single encoders for fast maximal inner product search (MIPS),
and the second stage (in red) reranks the top k candidates using a more expressive multilingual cross-encoder that
takes in the concatenation of the LRL query and candidate HRL query.

similar to “translate test" and “MT-in-the-middle"
paradigms (Hajič et al., 2000; Zitouni and Florian,
2008; Schneider et al., 2013; Mallinson et al., 2017)
except for the availability of the high-resource lan-
guage database, which allows for more sophisti-
cated pivot approaches. Figure 1 illustrates a gen-
eralized version of an XLP, where LRL queries
may seek knowledge from any HRL with its own
database.

For this task we combine and compare state-of-
the-art methods in machine translation (“translate
test") and cross-lingual semantic similarity, in order
to map LRL queries to English, and then English
answers back to the LRL target language. In par-
ticular we examine how these methods are affected
by certain factors: (a) whether the language is high,
medium or low resource, (b) the magnitude of data
in the HRL database, and (c) the degree of query
distribution alignment between languages (i.e., the
number of LRL queries that have matches in the
HRL database).

Lastly we propose an approach to this task, mo-
tivated by recent dense nearest neighbour (kNN)
models in English which achieve strong results in
QA by simply searching for similar questions in
the training set (or database in our case) (Lewis
et al., 2020). We leverage nearest neighbor se-
mantic similarity search followed by cross-encoder
reranking (see Figure 2), and refer to the technique
as Reranked Multilingual Maximal Inner Product
Search (RM-MIPS). Not only does this approach
significantly improve upon “Translate Test" (the
most common pivot technique) and state-of-the-art
paraphrase detection baselines, our analysis demon-
strates it is more robust to lower resource languages,
query distribution misalignment, and the size of the
English database.

By circumventing document retrieval and task-
specific supervision signals, this straightforward ap-
proach offers reliable answer generation to many of
the languages present in pretraining, off-the-shelf.
Furthermore, it can be re-purposed to obtain re-
liable training data in the target language, with
fewer annotation artifacts, and is complementary
to a standard end-to-end question answering sys-
tem. We hope this analysis complements existing
multilingual approaches, and facilitates adoption
of more practical (but effective) methods to im-
prove knowledge transfer from English into other
languages.

We summarize our contributions as:

• XLP: We explore a more realistic task setup
for practically expanding Multilingual OR-
QA to lower resource languages.

• Comprehensive analysis of factors affect-
ing XLP: (I) types of approaches (transla-
tion, paraphrasing) (II) language types, (III)
database characteristics, and (IV) query distri-
bution alignment.

• RM-MIPS: A flexible approach to XLP that
beats strong (or state-of-the-art) baselines.

2 Task: Cross-Lingual Pivots
The Open-Retrieval Question Answering
(ORQA) task evaluates models’ ability to answer
information-seeking questions. In a multilingual
setting, the task is to produce answers in the same
language as the query. In some cases, queries
may only find answers, or sufficient evidence,
in a different language, due to informational
asymmetries (Group, 2011; Callahan and Herring,
2011). To address this, Asai et al. (2020) propose
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Cross-Lingual Open-Retrieval Question Answer-
ing (XORQA), similar to the Cross-Lingual
Information Retrieval (CLIR) task, where a model
needs to leverage intermediary information found
in other languages, in order to serve an answer in
the target language. In practice, this intermediary
language tends to be English, with the most ample
resources and training data.

Building on these tasks, we believe there are
other benefits to pivoting through high resource lan-
guages that have so far been overlooked, and con-
sequently limited research that could more rapidly
improve non-English QA. These two benefits are
(I) large query-answer databases have already been
collected in English, both in academia (Joshi et al.,
2017) and in industry (Kwiatkowski et al., 2019),
and (II) it is often very expensive and challenging
to replicate robust retrieval and passage reranking
stacks in new languages (Fluhr et al., 1999; Chaud-
hari, 2014; Lehal, 2018). 1 As a result, the English
capabilities of question answering systems typi-
cally exceed those for non-English languages by
large margins (Lewis et al., 2019; Longpre et al.,
2020; Clark et al., 2020).

We would note that prior work suggests
even without access to an English query-answer
database, translation methods with an English docu-
ment index and retrieval outperforms LRL retrieval
for open-retrieval QA (see the end-to-end XOR-
FULL results in Asai et al. (2020)). This demon-
strates the persistent weakness of non-English re-
trieval, and motivates alternatives approaches such
as cross-lingual pivots.

To remedy this disparity, we believe attending
to these two considerations would yield a more
realistic task setup. Like multilingual ORQA, or
XORQA, the task of XLPs is to produce an an-
swer âLRL in the same “Target" language as ques-
tion qLRL, evaluated by Exact Match of F1 token-
overlap with the real answer aLRL. Instead of as-
suming access to a LRL document index or re-
trieval system (usually provided by the datasets),

1While it is straightforward to adapt question answering
“reader" modules with zero-shot learning (Charlet et al., 2020),
retrieval can be quite challenging. Not only is the underly-
ing document index costly to expand and maintain for a new
language (Chaudhari, 2014), but supervision signals collected
in the target language are particularly important for dense
retrieval and reranking systems which both serve as bottle-
necks to downstream multilingual QA (Karpukhin et al., 2020).
Additionally, real-world QA agents typically require human
curated, language-specific infrastructure for retrieval, such as
regular expressions, custom tokenization rules, and curated
website blocklists.

we assume access to an English database DHRL

which simply maps English queries to their English
answer text. Leveraging this database, and circum-
venting LRL retrieval, we believe progress in this
task will greatly accelerate multilingual capabilities
of real question answering assistants.

3 Re-Ranked Multilingual Maximal
Inner Product Search

For the first stage of the XLP task, our goal is to
find an equivalent English query for a LRL query:
“Query Matching". Competing approaches include
Single Encoders and Cross Encoders, described fur-
ther in section 4.2. Single Encoders embed queries
independently into a latent vector space, meaning
each query qEN from the English database QEN

can be pre-embedded offline. At inference time,
the low resource query qLRL is embedded, then
maximal inner product search (MIPS) finds the ap-
proximate closest query qEN among all QEN by
cosine similarity. By comparison, Cross Encoders
leverage cross-attention between qLRL and candi-
date match qEN at inference time, thus requiring
O(|QEN |) forward passes at inference time to find
the best paraphrase. While usually more accurate
this is computationally infeasible for a large set of
candidates.

We propose a method that combines both Single
Encoders and Cross Encoders, which we refer to
as Reranked Mulilingual Maximal Inner Product
Search (RM-MIPS). The process, shown in Fig-
ure 2, first uses a multilingual sentence embedder
with MIPS to isolate the top-k candidate similar
queries, then uses the cross encoder to rerank the
candidate paraphrases. This approach reflects the
Retrieve and Read paradigm common in OR-QA,
but applies it to a multilingual setting for semantic
similarity search.

The model first queries the English database us-
ing the Multilingual Single Encoder SE(qi) = zi
to obtain the k-nearest English query neighbors
NqLRL ⊆ QEN to the given query qLRL by cosine
similarity.

NqLRL
= argmax
{q1,...,qk}⊆QEN

k∑

i=1

sim(zLRL, zi)

Then, it uses the Multilingual Cross Encoder
CE(q1, q2) to score the remaining set of queries
NqLRL

to obtain the final prediction.

RM-MIPS(qLRL) = argmax
qEN∈NqLRL

CE(qEN , qLRL)
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RM-MIPS(qLRL) proposes an equivalent English
query qEN , whose English answer can be pulled
directly from the database.

XQuAD MKQA

High es, de, ru, zh de, es, fr, it, ja, pl, pt, ru, zh_cn
Medium ar, tr, vi ar, da, fi, he, hu, ko, nl, no, sv, tr, vi
Low el, hi, th km, ms, th, zh_hk, zh_tw

Table 1: We evaluate cross-lingual pivot methods by
language groups, divided into high, medium, and low
resource according to Wikipedia coverage Wu and
Dredze (2020). Note that due to greater language di-
versity, MKQA contains lower resource languages than
XQuAD.

4 Experiments
We compare systems that leverage an English QA
database to answer questions in lower resource lan-
guages. Figure 1 illustrates a cross-lingual pivot
(XLP), where the task is to map an incoming query
from a low resource language to a query in the
high resource language database (LRL → HRL,
discussed in 4.2), and then a high resource lan-
guage answer to a low resource language answer
(HRL→ LRL, discussed in 4.3).
4.1 Datasets
We provide an overview of the question answering
and paraphrase datasets relevant to our study.

4.1.1 Question Answering
To assess cross-lingual pivots, we consider mul-
tilingual OR-QA evaluation sets that (a) contain
a diverse set of language families, and (b) have
“parallel" questions across all of these languages.
The latter property affords us the opportunity to
change the distributional overlap and analyze its
effect (5.3).

XQuAD Artetxe et al. (2019) human translate
1.2k SQuAD examples (Rajpurkar et al., 2016)
into 10 other languages. We use all of SQuAD 1.1
(100k+) as the associated English database, such
that only 1% of database queries are represented
in the LRL evaluation set.

MKQA Longpre et al. (2020) human trans-
late 10k examples from the Natural Questions
(Kwiatkowski et al., 2019) dataset to 25 other lan-
guages. We use the rest of the Open Natural Ques-
tions training set (84k) as the associated English
database, such that only 10.6% of the database
queries are represented in the LRL evaluation set2.

2Open Natural Questions train set found here: https:
//github.com/google-research-datasets/

4.1.2 Paraphrase Detection
To detect paraphrases between LRL queries and
HRL queries we train multilingual sentence embed-
ding models with a mix of the following paraphrase
datasets.

PAWS-X Yang et al. (2019b) machine translate
49k examples from the PAWS (Zhang et al., 2019)
dataset to six other languages. This dataset pro-
vides both positive and negative paraphrase exam-
ples.

Quora Question Pairs (QQP) Sharma et al.
(2019) provide English question pair examples
from Quora; we use the 384k examples from the
training split of Wang et al. (2017). This dataset
provides both positive and negative examples of
English paraphrases.

4.2 Query Matching Baselines: LRL Query
→ HRL Query

We consider a combination of translation tech-
niques and cross-lingual sentence encoders to find
semantically equivalent queries across languages.
We select from pretrained models which report
strong results on similar multilingual tasks, or fine-
tune representations for our task using publicly
available paraphrase datasets (4.1.2).3. Each fine-
tuned model receives basic hyperparameter tuning
over the learning rate and the ratio of training data
from PAWS-X and QQP.4

NMT + MIPS We use a many-to-many,
Transformer-based (Vaswani et al., 2017), encoder-
decoder neural machine translation system, trained
on the OPUS multilingual corpus covering 100
languages (Zhang et al., 2020). To match the trans-
lation to an English query, we use the Universal
Sentence Encoder (USE) (Cer et al., 2018) to per-
form maximal inner product search (MIPS).

Pretrained Single Encoders We consider pre-
trained multilingual sentence encoders for sentence
retrieval. We explore mUSE5 (Yang et al., 2019a),
LASER (Artetxe and Schwenk, 2019), and m-
SentenceBERT as the Single Encoder (Reimers
and Gurevych, 2019).

natural-questions/tree/master/nq_open
3Retriever-Reader models do not fit in the Cross-Lingual

Pivots task due to requiring document retrieval, but assuming
perfect cross-lingual retrieval/reading, these systems would
perform as well as Perfect LRL→ HRL in Tables 2 and 3

4We used an optimal learning rate of 1e-5, and training
data ratio of 75% PAWS-X and 25% QQP.

5mUSE was only trained on the following 16 languages:
ar, ch_cn, ch_tw, en, fr, de, it, ja, ko da, pl, pt, es, th, tr ru
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MKQA + Natural Questions LRL→ HRL (Acc.) LRL→ HRL→ LRL (F1)

Language Groups All High Medium Low All High Medium Low

NMT + MIPS 74.4± 15.8 78.8± 13.3 78.3± 10.0 57.7± 19.0 65.8± 16.3 70.7± 14.5 69.9± 11.0 47.8± 17.0
mUSE 71.8± 21.2 88.2± 4.4 57.8± 20.4 73.2± 19.6 62.8± 18.3 77.8± 8.9 52.6± 16.9 58.2± 15.8
LASER 74.2± 15.0 70.0± 14.6 82.6± 8.5 63.3± 16.8 65.4± 15.4 62.8± 14.3 73.6± 9.4 52.0± 16.6
Single Encoder (XLM-R) 73.0± 6.8 72.6± 3.7 73.4± 8.3 72.6± 7.3 63.2± 8.1 63.9± 4.9 65.4± 8.9 57.1± 8.0

RM-MIPS (mUSE) 78.2± 12.5 86.9± 3.1 71.9± 12.5 76.7± 14.0 68.1± 12.4 76.3± 8.0 64.9± 11.3 60.4± 12.7
RM-MIPS (LASER) 80.1± 9.4 79.5± 7.8 83.7± 5.6 73.1± 13.6 69.4± 11.2 70.0± 9.3 74.1± 7.3 57.8± 13.2
RM-MIPS (XLM-R) 83.5± 5.2 84.9± 2.7 83.7± 5.7 80.7± 6.1 72.0± 9.3 74.7± 7.6 74.2± 7.7 62.7± 9.5

Perfect LRL→ HRL - - - - 90.1± 7.3 91.8± 7.1 92.4± 4.2 81.9± 7.5

Table 2: MKQA results by language group with MKQA + Natural Questions as the HRL Database: (left)
the accuracy for the LRL→ HRL Query Matching stage; (right) the F1 scores for the End-to-End XLP task, using
WikiData translation for Answer Translation; and (bottom) the F1 score only for Wikidata translation, assuming
Query Matching (LRL → HRL) was perfect. Macro standard deviation are computed for language groups (±).
The difference between all method pairs are significant.

XQuAD + SQuAD LRL→ HRL (Acc.) LRL→ HRL→ LRL (F1)

Language Group All High Medium Low All High Medium Low

NMT + MIPS 77.7± 14.4 78.4± 21.4 76.5± 4.7 78.0± 8.0 24.5± 12.0 28.8± 17.3 24.5± 3.3 18.7± 3.8
mUSE 68.0± 38.5 94.5± 3.0 66.4± 34.5 34.2± 40.7 21.1± 15.8 31.9± 15.6 20.3± 9.8 7.3± 7.8
LASER 46.7± 24.9 54.7± 24.3 63.9± 1.6 18.8± 10.9 15.2± 11.6 20.1± 14.1 19.9± 2.3 4.1± 2.3
Single Encoder (XLM-R) 81.4± 6.2 85.1± 1.9 79.4± 9.4 78.6± 2.2 24.3± 10.8 29.1± 14.4 24.5± 5.3 17.7± 3.0

RM-MIPS (mUSE) 72.0± 34.0 94.4± 2.5 75.1± 25.4 39.1± 37.8 22.4± 14.7 31.8± 15.4 23.7± 6.0 8.5± 6.9
RM-MIPS (LASER) 69.2± 23.7 77.5± 14.8 85.4± 3.0 41.9± 21.8 21.2± 12.3 26.7± 14.3 26.0± 3.1 9.2± 4.0
RM-MIPS (XLM-R) 92.2± 2.4 93.4± 1.7 90.4± 2.7 92.3± 1.4 27.2± 10.8 31.5± 15.2 27.4± 3.1 21.2± 2.8

Perfect LRL→ HRL - - - - 46.6± 13.1 51.0± 15.5 51.2± 5.0 36.3± 8.4

Table 3: XQuAD results by language group with XQuAD + SQuAD as the HRL Database: (left) the accuracy
for the LRL → HRL Query Matching stage; (right) the F1 scores for the End-to-End XLP task, using machine
translation to translate answers from HRL→ LRL; and (bottom) the F1 score only for Wikidata translation, assum-
ing Query Matching (LRL → HRL) was perfect. Macro standard deviations are computed for language groups
(±). The difference between all method pairs are significant.

Finetuned Single Encoders We finetune trans-
former encoders to embed sentences, per Reimers
and Gurevych (2019). We use the softmax loss
over the combination of [x; y; |x − y|] from Con-
neau et al. (2017a) and mean pool over the final
encoder representations to obtain the final sentence
representation. We use XLM-R Large as the base
encoder (Conneau et al., 2019).

Cross Encoders We finetune XLM-R Large
(Conneau et al., 2019) which is pretrained using the
multilingual masked language modelling (MLM)
objective.6 For classification, a pair of sentences
are given as input for classification, taking advan-
tage of cross-attention between sentences.

4.3 Answer Translation: HRL Answer→
LRL Answer

Once we’ve found an English (HRL) query using
RM-MIPS, or one of our “Query Matching" base-
lines, we can use the English database to lookup
the English answer. Our final step is to generate an
equivalent answer in the target (LRL) language.

6We use the pretrained Transformer encoder implementa-
tions in the Huggingface library (Wolf et al., 2019).

We explore straightforward methods of answer
generation, including basic neural machine transla-
tion (NMT), and WikiData entity translation.

Machine Translation For NMT we use our
many-to-many neural machine translation as de-
scribed in Section 4.2.

WikiData Entity Translation We propose our
WikiData entity translation method for QA datasets
with primarily entity type answers that would likely
appear in the WikiData knowledge graph (Vran-
dečić and Krötzsch, 2014).7 This method uses a
named entity recognizer (NER) with a WikiData
entity linker to find an entity (Honnibal and Mon-
tani, 2017). 8 We train our own entity linker on the
public WikiData entity dump according to spaCy’s
instructions. If a WikiData entity is found, its struc-
tured metadata often contains the equivalent term
in the target language, localized to the relevant
script/alphabet. For our implementation, when a
WikiData entity is not found, or its translation is not
available in the target language, we simply return

7https://www.wikidata.org
8https://github.com/explosion/spaCy
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Figure 3: Effect of Database Size on LRL → HRL. Left: Query Matching accuracy of the strongest methods
on different language groups as the amount of “unaligned" queries in the English database increases. Right: The
accuracy drop of the different methods on low resource languages as the amount of queries in the English database
increases beyond the original parallel count.

the English answer.
For XQuAD end-to-end experiments we find

straightforward machine translation works best,
whereas for MKQA, which contains more short,
entity-type answers, we find WikiData Entity Trans-
lation works best. We report results using these
simple methods and leave more sophisticated com-
binations or improvements to future work.

5 Results
5.1 End-To-End (E2E) Results
We benchmark the performance of the cross-lingual
pivot methods on XQuAD and MKQA. To simu-
late a realistic setting, we add all the English ques-
tions from SQuAD to the English database used in
the XQuAD experiments. Similarly we add all of
Natural Questions queries (not just those aligned
across languages) in the MKQA experiments. For
each experiment we group the languages into high,
medium, and low resource, as shown in Table 1,
according to Wu and Dredze (2020). Tables 2 and
3 present the mean performance by language group,
for query matching (LRL→ HRL), and end-to-end
results (LRL → HRL → LRL), query matching
and answer translation in sequence.

Among the models, RM-MIPS typically outper-
forms baselines, particularly on lower resource
languages. We find the reranking component in
particular offers significant improvements over
the non-reranked sentence encoding approaches in
low resource settings, where we believe sentence
embeddings are most inconsistent in their perfor-
mance. For instance, RM-MIPS (LASER) outper-

forms LASER by 5.7% on the Lowest resource
E2E MKQA task, and 4.0% across all languages.
The margins are even larger between RM-MIPS
(mUSE) and mUSE as well as RM-MIPS (XLM-R)
and XLM-R.

For certain high resource languages, mUSE per-
forms particularly strongly, and for XQuAD lan-
guages, LASER performs poorly. Accordingly,
the choice of sentence encoder (and its language
proportions in pretraining) is important in optimiz-
ing for the cross-lingual pivot task. The modular-
ity of RM-MIPS offers this flexibility, as the first
stage multiligual encoder can be swapped out: we
present results for LASER, mUSE, and XLM-R.

Comparing query matching accuracy (left) and
end-to-end F1 (right) in Tables 2 and 3 measures
the performance drop due to answer translation
(HRL → LRL, see section 4.3 for details). We
see this drop is quite small for MKQA as com-
pared to XQuAD. Similarly, the “Perfect LRL→
HRL" measures the Answer Translation stage on
all queries, showing XQuAD’s machine translation
for answers is much lower than MKQA’s Wikidata
translation for answers. This observation indicates
that (a) Wikidata translation is particularly strong,
and (b) cross-lingual pivot techniques are particu-
larly useful for datasets with frequent entity, date,
or numeric-style answers, that can be translated
with Wikidata, as seen in MKQA. Another poten-
tial factor in the performance difference between
MKQA and XQuAD is that MKQA contains nat-
urally occurring questions, whereas XQuAD does
not. Despite the lower mean end-to-end perfor-
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Figure 4: Effects of Query Alignment on MKQA end-to-end Performance: At a target precision of 80%,
the end-to-end Malay (left) and Spanish (right) recall are plotted for each degree of query alignment. The query
alignment axis indicates the percentage of 10k queries with parallel matches retained in the English database.

mance for XQuAD, this cross-lingual pivot can
still be used alongside traditional methods, and can
be calibrated for high precision/low coverage by
abstaining from answering questions that are Wiki-
data translatable.

One other noteable advantage of paraphrase-
based pivot approaches, is that no LRL-specific
annotated training data is required. A question
answering system in the target language requires
in-language annotated data, or an NMT system
from English. Traditional NMT “translate test" or
“MT-in-the-middle" (Asai et al., 2018; Hajič et al.,
2000; Schneider et al., 2013) approaches also re-
quire annotated parallel data to train. RM-MIPS
and our other paraphrase baselines observe mono-
lingual corpora at pre-training time, and only select
language pairs during fine-tuning (those present in
PAWS-X), and yet these models still perform well
on XLP even for non-PAWS-X languages.

5.2 Database Size
To understand the impact of database size on the
query matching process, we assemble a larger
database with MSMARCO (800k), SQuAD (100k),
and Open-NaturalQuestions (90k). Note that none
of the models are explicitly tuned to MKQA, and
since MSMARCO and Open-NQ comprise natural
user queries (from the same or similar distribution),
we believe these are challenging “distractors". In
Figure 3 we plot accuracy of the most performant
models from Tables 2 and 3 on each of the high,
medium, and low resource language groups over
different sizes of database on MKQA. We report
the initial stage query matching (LRL → HRL)
to isolate individual model matching performance.

We observe that RM-MIPS degrades less quickly
with database size than competing methods, and
that it degrades less with the resourcefulness of the
language group.

5.3 Query Alignment
In some cases, incoming LRL queries may not
have a corresponding semantic match in the HRL
database. To assess the impact of this, we vary the
percentage of queries that have a corresponding
match by dropping out their parallel example in
the English database (in increments of 10%). In
Figures 4 we report the median end-to-end recall
scores over five different random seeds, at each
level of query alignment (x-axis). At each level of
answer query alignment we recompute a No An-
swer confidence threshold for a target precision of
80%. Due to computational restraints, we select
one low resource (Malay) and one high resource
language (Spanish) to report results on. We find
that even calibrated for high precision (a target of
80%) the cross-lingual pivot methods can maintain
proportional, and occasionally higher, coverage
to the degree of query misalignment. RM-MIPS
methods in particular can outperform proportional
coverage to alignment (the dotted black line on the
diagonal) by sourcing answers from similar queries
in the database to those dropped out. Consequently,
a practitioner can maintain high precision and re-
spectable recall by selecting a threshold for any
degree of query misalignment observed in their test
distribution.

The primary limitation of RM-MIPS, or other
pivot-oriented approaches, is that their performance
is bounded by the degree of query alignment. How-
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ever, QA systems still fail to replicate their English
answer coverage in LRLs (Longpre et al., 2020),
and so we expect pivot techniques to remain essen-
tial until this gap narrows completely.

6 Related Work
Cross-Lingual Modeling Multilingual BERT
(Devlin et al., 2019), XLM (Lample and Conneau,
2019), and XLM-R (Conneau et al., 2019) use
masked language modeling (MLM) to share em-
beddings across languages. Artetxe and Schwenk
(2019) introduce LASER, a language-agnostic sen-
tence embedder trained using many-to-many ma-
chine translation. Yang et al. (2019a) extend Cer
et al. (2018) in a multilingual setting by follow-
ing Chidambaram et al. (2019) to train a multi-
task dual-encoder model (mUSE). These multilin-
gual encoders are often used for semantic simi-
larity tasks. Reimers and Gurevych (2019) pro-
pose finetuning pooled BERT token representa-
tions (Sentence-BERT), and Reimers and Gurevych
(2020) extend with knowledge distillation to en-
courage vector similarity among translations. Other
methods improve multilingual transfer via lan-
guage alignment (Roy et al., 2020; Mulcaire et al.,
2019; Schuster et al., 2019) or combining machine
translation with multilingual encoders (Fang et al.,
2020; Cui et al., 2019; Mallinson et al., 2018).

Multilingual Question Answering Efforts to
explore multilingual question answering include
MLQA (Lewis et al., 2019), XQuAD (Artetxe
et al., 2019), MKQA (Longpre et al., 2020), TyDi
(Clark et al., 2020), XORQA (Asai et al., 2020)
and MFAQ (De Bruyn et al., 2021).

Prior work in multilingual QA achieves strong
results combining neural machine translation and
multilingual representations via Translate-Test,
Translate-Train, or Zero Shot approaches (Asai
et al., 2018; Cui et al., 2019; Charlet et al., 2020;
Stepanov et al., 2013; He et al., 2013; Dong et al.,
2017). This work focuses on extracting the answer
from a multilingual passage (Cui et al., 2019; Asai
et al., 2018), assuming passages are provided.

Improving Low Resource With High Resource
Efforts to improve performance on low-resource
languages usually explore language alignment or
transfer learning. Chung et al. (2017) find super-
vised and unsupervised improvements in transfer
learning when finetuning from a language specific
model, and Lee and Lee (2019) leverage a GAN-
inspired discriminator (Goodfellow et al., 2014) to

enforce language-agnostic representations. Align-
ing vector spaces of text representations in exist-
ing models (Conneau et al., 2017b; Schuster et al.,
2019; Mikolov et al., 2013) remains a promising
direction. Leveraging high resource data has also
been studied in sequence labeling (Xie et al., 2018;
Plank and Agić, 2018; Schuster et al., 2019) and
machine translation (Johnson et al., 2017; Zhang
et al., 2020).

Paraphrase Detection The paraphrase detection
task determines whether two sentences are seman-
tically equivalent. Popular paraphrase datasets in-
clude Quora Question Pairs (Sharma et al., 2019),
MRPC (Dolan and Brockett, 2005), and STS-B
(Cer et al., 2017). The adversarially constructed
PAWS dataset Zhang et al. (2019) was translated to
6 languages, offering a multilingual option, PAWS-
X Yang et al. (2019b). In a multilingual setting,
an auxiliary paraphrase detection (or nearest neigh-
bour) component, over a datastore of training ex-
amples, has been shown to greatly improve perfor-
mance for neural machine translation (Khandelwal
et al., 2020).

7 Conclusion

In conclusion, we formulate a task to cross-lingual
open-retrieval question answering more realistic
to the constraints and challenges faced by practi-
tioners expanding their systems’ capabilities be-
yond English. Leveraging access to a large English
training set our method of query retrieval followed
by reranking greatly outperforms strong baseline
methods. Our analysis compares multiple meth-
ods of leveraging this English expertise and con-
cludes our two-stage approach transfers better to
lower resource languages, and is more robust in
the presence of extensive distractor data and query
distribution misalignment. Circumventing retrieval,
this approach offers fast online or offline answer
generation to many languages straight off-the-shelf,
without necessitating additional training data in the
target language.

We hope this analysis will promote creative
methods in multilingual knowledge transfer, and
the cross-lingual pivots task will encourage re-
searchers to pursue problem formulations better
informed by the needs of existing systems. In par-
ticular, leveraging many location and culturally-
specific query knowledge bases, with cross-lingual
pivots across many languages is an exciting exten-
sion of this work.
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A Reproducibility

A.1 Experimental Setup
Computing Infrastructure. For all of our ex-
periments, we used a computation cluster with 4
NVIDIA Tesla V100 GPUs, 32GB GPU memory
and 256GB RAM.

Implementation We used Python 3.7, PyTorch
1.4.0, and Transformers 2.8.0 for all our experi-
ments. We obtain our datasets from the citations
specified in the main paper, and link to the reposi-
tories of all libraries we use.

Hyperparameter Search For our hyper param-
eter searches, we perform a uniformly random
search over learning rate and batch size, with
ranges specified in Table 4, optimizing for the
development accuracy. We find the optimal learn-
ing rate and batch size pair to be 1e − 5 and 80
respectively.

Evaluation For query matching, we use scikit-
learn 9 to calculate the accuracy. For end-to-end
performance, we use the MLQA evaluation script
to obtain the F1 score of the results10.

Datasets We use the sentences in each dataset
as-is, and rely on the pretrained tokenizer for each
model to perform preprocessing.

A.2 Model Training
Query Paraphrase Dataset We found the opti-
mal training combination of the PAWS-X and QQP
datasets by training XLM-R classifiers on training
dataset percentages of (100%, 0%), (75%, 25%),
and (50%, 50%) of (PAWS-X, QQP) – with the
PAWS-X percentage entailing the entirety of the
PAWS-X dataset – and observe the performance on
matching multilingual XQuAD queries. We shuffle
the examples in the training set, and restrict the
input examples to being (English, LRL) pairs. We
perform a hyperparameter search as specified in
Table 5 for each dataset composition, and report
the test results in Table 4.

A.3 Cross Encoder
We start with the pretrained
xlm-roberta-large checkpoint in Hug-
gingface’s transformers11 library and perform

9https://scikit-learn.org/stable/
10https://github.com/facebookresearch/

MLQA
11https://github.com/huggingface/

transformers

(PAWS-X, QQP) XQuAD
(100%, 0%) 0.847
(75%, 25%) 0.985
(50%, 50%) 0.979

Table 4: XLM-R Query Paraphrase Performance
On Different Query Compositions. The performance
of XLM-Roberta on matching XQuAD test queries
when finetuned on different training set compositions
of PAWS-X and QQP.

a hyperparameter search with the parameters
specified in Table 1 by using a modified version of
Huggingface’s text classification training pipeline
for GLUE.

The cross encoder was used in all the RM-MIPS
methods. In particular, it was used in the RM-
MIPS (mUSE), RM-MIPS (LASER), and RM-
MIPS (XLM-R) rows of tables in the main paper.

MODEL PARAMETERS VALUE/RANGE

Fixed Parameters

Model XLM-Roberta Large
Num Epochs 3
Dropout 0.1
Optimizer Adam
Learning Rate Schedule Linear Decay
Max Sequence Length 128

Tuned Parameters

Batch Size [8, 120]
Learning Rate [9e− 4, 1e− 6]

Extra Info

Model Size (# params) 550M
Vocab Size 250,002
Trials 30

Table 5: Cross Encoder Hyperparameter Selection
And Tuning Ranges The hyper parameters we chose
and searched over for XLM-Roberta large on the query
paraphrase detection datasets.

B Full Results Breakdowns

B.1 LRL→HRL Results
See Table 6 and 7 for the non-aggregated
LRL→HRL language performances of each
method on MKQA and XQuAD respectively.

B.2 LRL→HRL→LRL Results
See Table 8 and 9 for the non-aggregated
LRL→HRL→LRL language performances of each
method on MKQA and XQuAD respectively.
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ar zhcn da de es fi fr he zhhk hu it ja km

NMT + MIPS 69.2 48.0 89.8 87.5 86.5 76.0 87.6 74.3 42.5 79.1 86.6 62.0 45.4
mUSE 80.0 83.2 51.7 90.9 91.7 37.6 91.5 33.5 80.8 40.7 91.6 80.0 35.6
LASER 81.5 62.8 88.6 52.0 79.9 81.6 78.5 85.5 64.0 69.1 80.4 39.3 40.2
Single Encoder (XLM-R) 58.0 76.3 84.8 74.6 73.3 65.5 74.1 67.8 77.0 66.9 69.0 71.4 59.0
RM-MIPS (mUSE) 77.6 81.2 77.2 88.8 88.9 59.9 88.8 44.1 81.2 64.1 88.4 81.2 50.6
RM-MIPS (LASER) 77.2 77.7 89.2 66.9 84.7 84.8 84.4 83.3 78.1 77.5 84.7 64.2 48.2
RM-MIPS (Ours) 72.6 80.7 90.1 86.8 87.0 82.7 87.2 80.6 81.0 81.4 85.5 79.5 72.4

ko ms nl no pl pt ru sv th tr zhtw vi

NMT + MIPS 54.2 86.0 88.8 87.2 81.9 87.4 81.9 87.2 75.0 79.6 39.7 76.0
mUSE 73.7 87.6 92.0 50.3 84.9 93.3 87.2 50.3 88.6 87.0 73.2 38.6
LASER 68.6 92.5 93.1 92.4 73.7 85.2 78.1 92.8 62.1 75.2 57.9 79.9
Single Encoder (XLM-R) 72.3 76.4 79.1 81.3 70.6 65.7 78.8 83.8 79.4 68.7 71.2 78.6
RM-MIPS (mUSE) 74.7 89.9 90.9 75.6 87.3 89.8 87.1 76.0 86.8 86.6 75.0 64.4
RM-MIPS (LASER) 73.1 89.5 90.2 89.7 81.9 86.7 84.3 89.8 77.0 82.3 72.5 84.0
RM-MIPS (XLM-R) 75.2 89.0 89.8 88.8 85.6 85.5 86.1 90.0 85.4 83.6 75.5 85.9

Table 6: MKQA + Natural Questions Per-Language LRL→HRL Results. The accuracy scores for each method
on query matching.

ar de el es hi ru th tr vi zh

NMT + MIPS 71.7 90.8 86.7 95.2 79.9 85.7 67.4 82.9 74.8 41.8
mUSE 87.4 96.4 7.5 98.1 3.4 93.2 91.6 94.1 17.8 90.3
LASER 61.7 33.1 3.7 86.2 28.6 70.4 24.2 65.3 64.7 29.2
Single Encoder (XLM-R) 66.8 85.1 81.7 87.8 77.6 85.0 76.6 81.9 89.4 82.3
RM-MIPS (mUSE) 90.4 96.3 14.8 97.3 10.1 93.2 92.6 95.7 39.3 91.0
RM-MIPS (LASER) 81.6 59.9 11.1 95.5 59.1 88.3 55.5 89.0 85.7 66.2
RM-MIPS (XLM-R) 86.6 94.2 94.1 95.5 92.0 93.0 90.7 92.5 92.1 90.8

Table 7: XQuAD + SQuAD Per-Language LRL→HRL Results. The accuracy scores for each method on query
matching.

ar zhcn da de es fi fr he zhhk hu it ja km

NMT + MIPS 60.0 41.7 85.8 83.8 82.4 72.0 83.7 63.3 41.2 74.5 82.5 60.1 44.8
mUSE 68.6 62.7 50.1 87.2 87.4 37.2 87.5 31.9 68.7 40.0 87.2 74.9 35.0
LASER 70.1 49.5 84.6 50.8 76.3 77.3 75.3 72.8 56.2 65.0 76.8 39.1 38.1
Single Encoder (XLM-R) 50.9 57.5 81.0 71.7 70.2 62.0 70.9 58.6 65.8 63.1 66.0 68.0 54.9
RM-MIPS (mUSE) 66.9 61.3 74.4 85.2 84.8 58.0 84.9 39.9 68.8 61.5 84.1 75.8 46.0
RM-MIPS (LASER) 66.7 59.0 85.0 64.6 80.7 80.3 80.6 71.0 66.3 72.7 80.6 61.7 45.3
RM-MIPS (Ours) 62.8 60.8 85.9 83.3 83.1 78.4 83.3 68.7 68.6 76.6 81.5 74.4 64.4

ko ms nl no pl pt ru sv th tr zhtw vi

NMT + MIPS 47.5 81.1 85.3 80.2 77.6 83.3 72.6 84.1 62.9 74.7 35.2 70.6
mUSE 63.0 82.7 88.5 48.4 80.4 88.9 77.2 49.4 72.2 81.7 55.6 37.7
LASER 59.1 87.4 89.7 85.1 70.0 81.2 69.4 89.5 53.7 70.7 45.7 74.4
Single Encoder (XLM-R) 62.5 72.2 76.0 75.2 67.0 62.5 70.1 80.8 66.3 64.6 54.1 73.1
RM-MIPS (mUSE) 64.2 84.8 87.3 70.6 82.5 85.3 77.1 73.9 70.7 81.2 56.6 61.3
RM-MIPS (LASER) 63.1 84.4 86.7 81.8 77.3 82.4 74.7 86.6 64.3 77.1 55.1 78.2
RM-MIPS (XLM-R) 64.7 84.0 86.3 81.6 81.0 81.3 76.3 86.9 69.9 78.6 56.8 79.9

Table 8: MKQA + Natural Questions Per-Language LRL→HRL→LRL WikiData Results. The F1 scores for
end-to-end performance of each method on every language when using WikiData translation

ar de el es hi ru th tr vi zh

NMT + MIPS 35.3 55.5 39.2 68.2 32.9 30.7 17.8 42.1 45.6 19.0
mUSE 40.8 58.2 4.4 70.0 1.6 33.4 23.4 47.0 11.8 33.6
LASER 29.9 22.7 1.5 61.8 10.8 24.2 6.4 33.0 38.6 12.7
Single Encoder (XLM-R) 31.3 52.9 37.3 63.9 30.9 30.1 18.6 42.0 52.7 30.6
RM-MIPS (mUSE) 42.6 58.1 7.8 69.6 4.2 33.4 23.2 47.5 26.1 33.8
RM-MIPS (LASER) 38.3 38.2 5.7 68.3 22.9 31.1 13.7 44.5 50.7 26.3
RM-MIPS (XLM-R) 40.9 57.3 42.1 68.7 36.7 33.0 22.9 45.7 54.5 33.6

Table 9: XQuAD + SQuAD Per-Language LRL→HRL→LRL NMT Results. The F1 scores for end-to-end
performance of each method on every language when using NMT translation
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Abstract

It can be challenging to build effective open
question answering (open QA) systems for lan-
guages other than English, mainly due to a lack
of labeled data for training. We present a data
efficient method to bootstrap such a system for
languages other than English. Our approach
requires only limited QA resources in the given
language, along with machine-translated data,
and at least a bilingual language model. To
evaluate our approach, we build such a sys-
tem for the Icelandic language and evaluate
performance over trivia style datasets. The cor-
pora used for training are English in origin but
machine translated into Icelandic. We train
a bilingual Icelandic/English language model
to embed English context and Icelandic ques-
tions following methodology introduced with
DensePhrases (Lee et al., 2021). The resulting
system is an open domain cross-lingual QA sys-
tem between Icelandic and English. Finally, the
system is adapted for Icelandic only open QA,
demonstrating how it is possible to efficiently
create an open QA system with limited access
to curated datasets in the language of interest.

1 Introduction

Open QA systems are question-answering systems
that suggest answers to questions by searching
through a text corpus. Such systems have improved
significantly in recent years, which can, to a large
extent, be attributed to transformer-based vector
representations of text that are well suited for the
task (Vaswani et al., 2017). The most success-
ful systems have been trained with a focus on En-
glish using large datasets such as Natural Questions
(Kwiatkowski et al., 2019) (>320k questions), and
SQuAD (Okazawa, 2021) (>150k questions). In
some cases, questions have been generated from
text using large generative neural networks (Al-
berti et al., 2019). For most languages, such large
datasets do not exist, and the generative models do
not perform as well as for English which constitutes

the bulk of the training data. For this reason, we
investigate what performance can be reached in QA
for Icelandic, a language with low QA resources. In
that investigation, we study the question of whether
English QA data can aid QA system development
through the use of machine translation.

In this paper, we present a method to boot-
strap an Open QA system for Icelandic where
just a few thousand labelled data entries are avail-
able. We adapt the DensePhrases (Lee et al., 2021)
method by applying a bilingual language model,
and machine-translated data, in a cross-lingual
manner to create a monolingual Open QA system
for Icelandic, the first of its kind built exclusively
for the language. An overview of the build process
is shown step by step in Figure 1.

2 Related work

2.1 Reading comprehension and Open QA

Open-domain question answering methods look for
answers to a given question in a given text corpus
(for a recent survey, see (Zhu et al., 2021)). These
methods can be contrasted with reading compre-
hension (RC) style methods that identify an an-
swer to a question within a single document. The
RC methods are useful when an answer is sought
in a given text, often referred to as the context.
Open QA methods are open in the sense that the
questions they can handle are open ended given a
large enough underlying corpus. Open QA can be
thought of as a generalization of reading compre-
hension since the answer is typically retrieved from
a large collection of text instead of a single doc-
ument. We note that most open QA methods are
extractive, meaning that the suggested answer is
found verbatim within a given document. There are
also QA methods that provide an answer without
explicitly searching through a corpus. For example,
the answer can be generated based on knowledge
embedded in learned parameters of a system such
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as GPT-3 (Brown et al., 2020). While promising,
the non-extractive methods are not considered in
this paper.

Open QA methods solve a common issue in in-
formation retrieval where it is not known in what
document an answer lies. The simpler reading com-
prehension methods can be used as components in
open QA systems by combining them with a re-
triever component. BM25 (Robertson et al., 1995),
a TF-IDF variant, is an example of a commonly
used retriever that ranks context based on term fre-
quencies that are shared with the question and their
overall commonality. The top documents found by
the retriever can then be fed to the reading compre-
hension component along with the question. The
reading comprehension component can, for exam-
ple, be a fine-tuned variant of a neural language
model such as BERT (Devlin et al., 2019). The
reading comprehension component is trained to
predict the start and end location of an answer span
or report whether an answer is not found within the
given context by training on a dataset of context
and question pairs.

2.2 Fast retrieval and DensePhrases

In recent years, efforts in improving open QA have
focused on speeding up the lookup of documents,
for example, by taking advantage of neural meth-
ods. Such a speedup has been realized by em-
bedding documents and questions as dense vector
representations such that lookup can be based on
fast similarity search where the inner product of
the question vector and document vector is used
as a proxy for their similarity (Karpukhin et al.,
2020; Lee et al., 2019; Lin et al., 2021). The em-
bedding function can be trained such that a given
question will, with a good chance, lead to the cor-
rect document being the highest ranked in the sim-
ilarity search. The embedding function can also
be trained end-to-end by basing the loss function
on the performance of looking up the answer. A
downside of these methods, in particular the end-to-
end systems, is that they can be expensive to train
since the document embeddings need to be updated
often as a result of updates to the embedding func-
tion (Guu et al., 2020), which can be particularly
expensive when many documents need to be em-
bedded repeatedly throughout the training process.
Some mitigations have been suggested; as is the
case in DensePhrases (Lee et al., 2021), which is
the foundation of our approach.

In DensePhrases, segments from documents are
first embedded using a phrase model (and fixed),
then a query model is trained to embed questions
such that the inner product of question embeddings
and correct context embeddings are maximized.
For an incorrect pairing, the model is trained such
that the inner product is minimized instead.

Fast databases intended for lookup with maxi-
mum inner product search (MIPS) (Johnson et al.,
2019) enable systems such as DensePhrases to
provide answers from massive datasets in subsec-
ond time, making them excellent candidates for
production-grade QA systems where an answer
and its source can be reported.

2.3 Multilingual and cross-lingual QA

In cross-lingual QA, the question and answer are
not required to be in the same language, and in
multilingual QA the aim is to search for answers
in a multilingual corpus. Multilingual QA is not
necessarily cross-lingual since the answer can be
generated in the same language as the query.

Interest in cross-lingual QA is likely reflected in
the growing number of QA datasets in foreign lan-
guages (Rogers et al., 2021). For reading compre-
hension, it has been shown that multilingual LMs
such as mBERT fine-tuned in an English reading
comprehension task are capable of zero-shot trans-
fer to other languages such as Japanese, French,
and Hindi (Siblini et al., 2021; Gupta and Khade,
2020). Multilingual QA has been performed by ex-
tending models for English by using machine trans-
lation (MT) on the query and answer (Asai et al.,
2021a), MT has also been used to adapt an English
semantic parsing model for other languages (Sher-
borne et al., 2020; Moradshahi et al., 2020). Mul-
tilingual QA was recently implemented without
explicit use of MT by extending the Dense Pas-
sage Retriever model from Karpukhin et al. (2020)
with a fine-tuned mT5 model as an answer gen-
erator (Asai et al., 2021b). The answer generator
receives top-scoring multilingual passages along
with the question and desired answer language to
generate the answer. This flexible approach even
generalizes to languages not seen in the QA train-
ing process thanks to the diverse training set for
crosslingual retrieval. A similar approach with
an answer generator has also been applied where
passage candidates come from different monolin-
gual corpora, and the question is translated and
embedded with several monolingual language mod-
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els (Muller et al., 2021).

2.4 Icelandic QA data

Currently, a single extractive dataset exists for Ice-
landic, NQiI (Snæbjarnarson and Einarsson, 2022).
It is a small Icelandic dataset containing only ∼5k
question-context pairs, half of which have no an-
swer. The dataset is sourced from the Icelandic
Wikipedia following the methodology introduced
in TyDi-QA (Clark et al., 2020). This limited
amount of Icelandic QA data is the main reason we
translate English QA datasets.

3 Methods

3.1 Translating QA data

In the first step of the process, we use an
English-Icelandic translation system (Símonarson
et al., 2021) for translating NewsQA (Trischler
et al., 2017), SQuAD and Natural Questions
(NQ) (Kwiatkowski et al., 2019). We reviewed
the translated questions from SQuAD and out of
100 randomly sampled questions we found that 80
were properly translated such that the meaning was
fully preserved.

We translate questions, answers and contexts in-
dependently and use a fuzzy matching algorithm
(see Appendix A) to map translated answers to
spans in the translated context. We refer to the fully
translated versions of the datasets as NewsQA-IS,
SQuAD-IS, and NQ-IS. For the translated versions
of the datasets where only the questions are an-
swered as we use NewsQA-ISQ, SQuAD-ISQ, and
NQ-ISQ (for an overview, see Table 1).

In DensePhrases, questions are generated for
all spans of length 0–20 words in the English
Wikipedia using a fine-tuned T5 (Raffel et al.,
2020) model. As no such model currently exist that
can reliably generate Icelandic, we also translate
the generated questions. The spans themselves can
not be easily translated as the available models are
mostly good at translating well-formed sentences.
We refer to this dataset as DP-ISQ. For an overview
of all QA datasets used see Table 1.

3.2 Pre-training an Icelandic–English
language model

A bilingual language model for Icelandic and
English was trained following the base XLM-
RoBERTa implementation (Conneau et al., 2020).
We refer to this model as LM EN-IS. The Icelandic

training data is the same as the one used for Ice-
BERT (Snæbjarnarson et al., 2022). The Books 3
corpus1 is used as source for English data, it con-
tains around 100GB of data text from a variety of
books. The model was trained for 220k updates
using a batch size of 8k completing 27 epochs over
the data.

3.2.1 Training RC models

After pre-training, the bilingual model (LM EN-IS)
is fine-tuned for cross-lingual RC where questions
are asked in Icelandic and answered in English
(step 3 in Figure 1). We fine-tune using SQuAD-
ISQ, NewsQA-ISQ, and NQ-ISQ. We refer to this
model as the IS-EN RC model.

The bilingual model (LM EN-IS) is also fine-
tuned for an Icelandic only reading comprehension
task (step 4 in Figure 1) using the fully translated
datasets, NQ-IS, SQuAD-IS and NewsQA-IS along
with NQiI. We refer to this model as the IS-IS RC
model.

These RC models are later used as a teacher mod-
els (Hinton et al., 2015). The IS-EN RC model is
distilled in the fifth step and the IS-IS RC model in
the sixth step of the build process when fine-tuning
the Open QA system. Note that to be compatible
with the training of the DensePhrases model, these
models do not predict missing answers.

3.2.2 Training cross-lingual DensePhrases

We also fine-tune the bilingual model (LM EN-IS)
to train a DensePhrases setup 2. We use the par-
tially translated DP-ISQ dataset to train the cross-
lingual DensePhrases model. The result is a phrase
encoder that accepts English and a query encoder
that accepts Icelandic. Following the DensePhrases
approach, we distil the IS-EN RC model at train-
ing time. This distillation step can be beneficial
since the comparison in the DensePhrases setup
is based on an inner product operation, whereas
the RC model was trained in a cross-attention set-
ting. This distillation step improved the EM score
by 2 points for the original DensePhrases paper
and could be validated through ablation in our low-
resource setting as well. We refer to the crosslin-
gual DensePhrases model as DensePhrases-IS-EN

1This is similar to (Kobayashi, 2018) and was made avail-
able in the issue section of the GitHub repository https:
//github.com/soskek/bookcorpus/issues/27.

2With minor adjustments to work with the SentencePiece
(Kudo and Richardson, 2018) tokenization used by the bilin-
gual model
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Figure 1: Diagram showing how to train an Icelandic DensePhrases model in six steps.

3.2.3 Training Icelandic only DensePhrases
In the last step of our process, we take the cross-
lingual model DensePhrases-IS-EN and fine-tune
it on NQiI to develop a fully Icelandic Open QA
system. In this final step, we also distil the IS-IS
RC model from the fourth step of the build pro-
cess. We refer to the final Icelandic only model as
DensePhrases-IS.

4 Results

4.1 Reading comprehension model
performance

A comparison of RC performance is shown in 2.
The table includes performance for the English
model RoBERTa and untranslated SQuAD data
(for the subset of the data that was successfully
translated). Using the bilingual model only leads
to a slight drop in performance (-1.7 F1). Trans-
lating the data further decreases the performance
(-2.7 F1, row 6 in the table) but not catastrophically
in any sense. In comparison, fine-tuning on an
Icelandic only model (IceBERT) improves perfor-
mance slightly (+0.6 F1, row 7 in the table). These
models are not used in any of the steps shown in
Figure 1 but the results validate not only the ade-
quacy of the translation method applied, they also
demonstrate that the bilingual model is suitable to
be adapted for QA in both Icelandic and English.

All models were trained for 4 epochs, using a learn-
ing rate of 3e-5, maximum sequence length of 512
tokens and a document stride of 128.

Performance of the IS-EN RC model is mea-
sured on the development set of NQ with trans-
lated questions. We fine-tune on NQ-ISQ and
SQuAD-ISQ, which refer to the Natural questions
and SQuAD datasets with only the questions ma-
chine translated into Icelandic (step 3, row 5 in the
table). Another RC model was fine-tuned on fully
translated QA data along with NQiI (step 4, row
8 in the table). We chose that model for use in
the fourth step since it was trained on more data
than the models in rows 6 and 7 with a small sac-
rifice in performance on SQuAD-IS, 70.80 F1 and
69.51 EM. With ∼2/3 questions answered exactly,
we conclude that the RC models serve well as a
teacher models for the DensePhrases training (steps
5 and 6).

4.2 Open QA performance

Performance for the cross-lingual Open QA system
(DensePhrases-IS-EN, from step 5) is shown in Ta-
ble 3 where results are evaluated for the Natural
Questions test-dataset, both for the version with
machine-translated questions (Is–En) and the orig-
inal one (En–En). The system still performs well
on the English only data. For reference, we note
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Original dataset Transl. dataset Question transl. Context transl. Step

SQuAD SQuAD-ISQ ✓ ✗ 3
NewsQA NewsQA-ISQ ✓ ✗ 3
NQ NQ-ISQ ✓ ✗ 3

SQuAD SQuAD-IS ✓ ✓ 4
NewsQA NewsQA-IS ✓ ✓ 4
NQ NQ-IS ✓ ✓ 4

DensePhrases (generated) DP-ISQ ✓ ✗ 5
NQiI – ✗ ✗ 6

Table 1: Overview of QA-datasets used in training and how they were translated. The last column refers to steps
where the data is used for fine-tuning in Figure 1.

Step Task Model Fine-tuning dataset F1 EM

- RC-EN-EN RoBERTa (EN) SQuAD 75.9 74.3
- RC-EN-EN LM EN-IS SQuAD 74.2 73.0

- RC-IS-EN LM EN-IS NQ-ISQ 74.9 67.1
- RC-IS-EN LM EN-IS SQuAD-ISQ 59.9 50.6
3 RC-IS-EN LM EN-IS NQ-ISQ + SQuAD-ISQ 75.8 67.9

- RC-IS-IS LM EN-IS SQuAD-IS 71.5 70.1
- RC-IS-IS IceBERT (IS) SQuAD-IS 72.1 70.6
4 RC-IS-IS LM EN-IS NewsQA-IS + SQuAD-IS + NQiI *67.4 64.8

Table 2: Performance in reading comprehension for a mono- and crosslingual setting. RC-X-Y denotes reading
comprehension where the question language is X and the answer language is Y. For fine-tuning in the crosslingual
setting (RC-IS-EN) in rows 3, 4 and 5, questions have been translated into Icelandic while the context and answers
are in English (step 3) whereas the last three rows correspond to fine-tuning on Icelandic only (step 4). The
evaluation data in the last row marked with a (*) is from a combination of the datasets used. The best performance
on each task is shown in bold.

that the original DensePhrases model (Lee et al.,
2021) had an exact match score of 40.9 on NQ and
39.4 on SQuAD when the query-side encoder was
fine-tuned for those datasets, respectively.

The Icelandic open QA system (DensePhrases-
IS, from step 6) is evaluated on NQiI as well
as datasets suitable for open QA in Icelandic,
the Gettu betur corpus (4,569 questions with an-
swer) (Ólafur Páll Geirsson, 2013) and Icelandic
Trivia Questions3 (11,610 questions with answers).
We note that these datasets are not guaranteed to
contain answers that are present in the Icelandic
Wikipedia, but serve as a future baseline for Open
QA in Icelandic.

Performance results for the model in the sixth
step are shown in Table 3. For comparison, a BM25
+ IceBERT-QA result is included. The results are

3Available online at https://github.com/
sveinn-steinarsson/is-trivia-questions

not as good as reported for English systems in,
e.g. (Karpukhin et al., 2020), which we currently
attribute to the small size of the NQiI dataset.

Finally, we embed the Icelandic Wikipedia for
use with CORA (Asai et al., 2021b) using the mod-
els released with the paper. The NQiI test dataset is
used for evaluation. This method significantly out-
performs the one presented in this paper as shown
in the last row of Table 3 with F1 28.6 and EM
15.0.

5 Discussion and future work

As noted in the literature review, good results have
been achieved in multilingual QA using an answer
generator to generate an answer in a selected lan-
guage (Asai et al., 2021b). For a monolingual set-
ting, our approach provides a way to create an Open
QA system without an answer generator as in the
original DensePhrases approach.
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Step Task Method Data EM F1 EM top 10 F1 top 10

5 Open QA IS-EN XL-DensePhr. NQ-ISQ 11.3 15.2 29.6 38.5
5 Open QA EN-EN XL-DensePhr. NQ 14.0 18.9 34.7 45.0

6 Open QA IS-IS XL-DensePhr. NQiI 9.7 18.8 26.8 44.6
6 Open QA IS-IS XL-DensePhr. G.betur 6.0 8.3 14.8 20.6
6 Open QA IS-IS XL-DensePhr. Trivia 5.4 6.9 14.6 18.4
- Open QA IS-IS BM25 + IB-QA NQiI 2.4 17.9 2.4 18.1
- Open QA IS-IS CORA NQiI 15.0 28.6 - -

Table 3: Performance for open QA in a cross-lingual Icelandic and English (DensePhrases-IS-EN) setting and in a
monolingual IS-IS setting (DensePhrases-IS). In the cross-lingual setting, the performance on NQ is included for
reference. All the models are based on the bilingual model (LM EN-IS) except for the last one, which corresponds
to using the IceBERT model along with BM25. We highlight in bold the best performance in Open QA on the NQiI
dataset.

The model used in the original DensePhrases is
SpanBERT (Joshi et al., 2020) whereas we trained
a bilingual RoBERTa (Liu et al., 2019) model that
has been proven to be successful for Icelandic. For
future work, a bilingual SpanBERT model is likely
to improve performance as reported in the original
paper.

We also evaluated the CORA method on NQiI
and it surpassed our method by a significant mar-
gin, highlighting the value of training models in a
multilingual manner and using a generative model.
CORA was not trained specifically on Icelandic QA
although it is based on mT5 which was pre-trained
on corpora that includes some Icelandic. The result
highlights the potential of crosslingual transfer for
QA in low-resource languages.

Finally, we emphasize that the quality of the
resulting model of the process presented in this
paper is affected by multiple factors. For example,
it is related to the performance of the translation
method but possibly also to language intricacies. A
greater amount of training data for Icelandic QA,
along with human translated pairs of questions and
contexts would cast of light of the penalty incurred
from using MT data. We believe the results can be
much better with a larger and higher quality target
language QA dataset, noting that, e.g. the answer
span labelling in the NQiI is somewhat inconsistent.
However, we also believe that QA for Icelandic is
challenging, and we encourage others to try it out.

6 Conclusion

We have shown how to build an Open QA system
from scratch for Icelandic, a language with very
limited original QA resources. We first develop a

cross-lingual QA system by taking advantage of En-
glish QA-data, a well performing translation model,
a bilingual language model and the DensePhrases
approach. This system is then adapted for mono-
lingual Open QA. The method is not perfect but
shows some promising results.
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A Answer span alignment

We apply a heuristic matching method to align the
translated questions with spans in the translated
context. The method does not rely on more com-
plex word alignment methods between the source
text and the translated text but is based on translat-
ing the answer and looking up the translated answer
in the translated answer context using a fuzzy Lev-
enshtein distance.

In our matching method, we search for the trans-
lated answer and then the original answer in the
translated context. If either is found, we label the
matched string as the answer. Otherwise, we ap-
ply a fuzzy matching approach. Denote by wt the
number of words in the translated answer. We per-
form a sliding window search over all contiguous
sequences of words in the translated context that
contain wt, wt − 1, wt + 1 many words. We label
and return a sequence as the answer in the trans-
lated setting if the Levenshtein distance between
the translated answer and the sequence exceeds 0.9.
If no sequence is sufficiently similar to the trans-
lated answer, we repeat this sliding window search
using the original answer instead of the translated
answer. If neither search was successful, we would
discard the translated question-context pair from
training in the fourth step.

Only 6,893 questions, 4.8% of the total data,
were discarded from the SQuAD dataset using the
matching method since an answer span could not
be labelled. 11,478 questions, 9.6% of the total,
were discarded from the NewsQA dataset. The only
publicly released reading-comprehension style Ice-
landic dataset for QA, Natural Questions in Ice-
landic (NQiI) (Snæbjarnarson et al., 2021), is also
used for training.
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Abstract

We present a task of multilingual linking of
events to a knowledge base. We automatically
compile a large-scale dataset for this task, com-
prising of 1.8M mentions across 44 languages
referring to over 10.9K events from Wikidata.
We propose two variants of the event linking
task: 1) multilingual, where event descriptions
are from the same language as the mention, and
2) crosslingual, where all event descriptions are
in English. On the two proposed tasks, we com-
pare multiple event linking systems including
BM25+ (Lv and Zhai, 2011a) and multilingual
adaptations of the biencoder and crossencoder
architectures from BLINK (Wu et al., 2020). In
our experiments on the two task variants, we
find both biencoder and crossencoder models
significantly outperform the BM25+ baseline.
Our results also indicate that the crosslingual
task is in general more challenging than the
multilingual task. To test the out-of-domain
generalization of the proposed linking systems,
we additionally create a Wikinews-based evalu-
ation set. We present qualitative analysis high-
lighting various aspects captured by the pro-
posed dataset, including the need for tempo-
ral reasoning over context and tackling diverse
event descriptions across languages.1

1 Introduction

Language grounding refers to linking concepts
(e.g., events/entities) to a context (e.g., a knowl-
edge base) (Chandu et al., 2021). Knowledge base
(KB) grounding is a key component of informa-
tion extraction stack and is well-studied for linking
entity references to KBs like Wikipedia (Ji and
Grishman, 2011). In this work, we present a new
multilingual task that involves linking event refer-
ences to Wikidata KB.2

Event linking differs from entity’s as it involves
taking into account the event participants as well as

1https://github.com/adithya7/xlel-wd
2www.wikidata.org

its temporal and spatial attributes. Nothman et al.
(2012) defines event linking as connecting event
references from news articles to a news archive
consisting of first reports of the events. Similar
to entities, event linking is typically restricted to
prominent or report-worthy events. In this work,
we use a subset of Wikidata as our event KB and
link mentions from Wikipedia/Wikinews articles.3

Figure 1 illustrates our event linking methodology.
Event linking is closely related to the more

commonly studied task of cross-document event
coreference (CDEC). The goal in CDEC is to un-
derstand the identity relationship between event
mentions. This identity is often complicated by
subevent and membership relations among events
(Pratapa et al., 2021). Nothman et al. (2012) pro-
posed event linking as an alternative to coreference
that helps ground report-worthy events to a KB.
They showed linking helps avoid the traditional
bottlenecks seen with the event coreference task.
We postulate linking to be a complementary task
to coreference, where the first mention of an event
in a document is typically linked or grounded to
the KB and its relationship with the rest of the
mentions from the document is captured via coref-
erence. Additionally, due to computational con-
straints, coreference resolution is often restricted to
a small batch of documents. Grounding, however,
can be performed efficiently using dense retrieval
methods (Wu et al., 2020) and is scalable to any
large multi-document corpora.

Grounding event references to a KB has many
downstream applications. First, event identity en-
compasses multiple aspects such as spatio-temporal
context and participants. These aspects typically
spread across many documents, and KB ground-
ing helps construct a shared global account for
each event. Second, grounding is a complemen-
tary task to coreference. In contrast to coreference,

3We define mention as the textual expression that refers to
an event from the KB.
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Aliaksandra Herasimenia est une nageuse
biélorusse en activité spécialiste des épreuves
de sprint en nage libre et en dos. ... Multiple
médaillée au niveau planétaire et continental, elle
décroche en 2010 son premier titre international
majeur lors des Championnats d’Europe de Bu-
dapest, sur dos.

(frwiki) Aliaksandra Herasimenia

Minibaev’s first major international medal came
in the men’s synchronized 10 metre platform
event at the 2010 European Championships.

(enwiki) Viktor Minibaev

Bei Schwimmeuropameisterschaften gewann
sie insgesamt drei Medaillen. 2006 und 2010
gewann sie in ihrer Heimatstadt Budapest jeweils
Bronze vom 3 m-Brett, 2008 holte sie in Eind-
hoven Silber vom 1 m-Brett.

(dewiki) Nóra Barta

Mention from language Wikipedia

La des Championnats d’Europe de natation se tient du 4
au à Budapest en Hongrie. C’est la quatrième fois que
la capitale hongroise accueille l’événement bisannuel
organisé par la Ligue européenne de natation après les
éditions 1926, 1958 et 2006.

(frwiki) Championnats d’Europe de natation 2010

The 2010 European Aquatics Championships were held
from 4–15 August 2010 in Budapest and Balatonfüred,
Hungary. It was the fourth time that the city of Budapest
hosts this event after 1926, 1958 and 2006. Events in
swimming, diving, synchronised swimming (synchro)
and open water swimming were scheduled.

(enwiki) 2010 European Aquatics Championships

Die 30. Schwimmeuropameisterschaften fanden vom 4.
bis 15. August 2010 nach 1926, 1958 und 2006 zum
vierten Mal in der ungarischen Hauptstadt Budapest statt.

(dewiki) Schwimmeuropameisterschaften 2010

Event Description from
language Wikipedia

Q830917

Event
ID from

Wikidata

Figure 1: An illustration of multilingual event linking with Wikidata as our interlingua. Mentions from French,
English and German Wikipedia (column 1) are linked to the same event from Wikidata (column 3). The title and
descriptions for the event Q830917 are compiled from the corresponding language Wikipedias (column 2). The solid
blue arrows ( ) presents our multilingual task, to link lgwiki mention to event using lgwiki description. The
dashed red arrows ( ) showcases the crosslingual task, to link lgwiki mention to event using enwiki description.

event grounding formulated as the nearest neighbor
search leads to efficient scaling.

For the event linking task, we present a new
multilingual dataset that grounds mentions from
multilingual Wikipedia/Wikinews articles to the
corresponding event in Wikidata. Figure 1 presents
an example from our dataset that links mentions
from three languages to the same Wikidata item.
To construct this dataset, we make use of the hyper-
links in Wikipedia/Wikinews articles. These links
connect anchor texts (like ‘2010 European Champi-
onships’ or “Championnats d’Europe”) in context
to the corresponding event Wikipedia page (‘2010
European Aquatics Championships’ or “Champi-
onnats d’Europe de natation 2010”). We further
connect the event Wikipedia page to its Wikidata
item (‘Q830917’), facilitating multilingual ground-
ing of mentions to KB events. We use the title and
first paragraph from the language Wikipedia pages
as our event descriptions (column 2 in Figure 1).

Such hyperlinks have previously been explored
for named entity disambiguation (Eshel et al.,
2017), entity linking (Logan et al., 2019) and cross-
document coreference of events (Eirew et al., 2021)
and entities (Singh et al., 2012). Our work is
closely related to the English CDEC work of Eirew

et al. (2021), but we view the task as linking instead
of coreference. This is primarily due to the fact
that most hyperlinked event mentions are promi-
nent and typically cover a broad range of subevents,
conflicting directly with the notion of coreference.
Additionally, our dataset is multilingual, covering
44 languages, with Wikidata serving as our inter-
lingua. Botha et al. (2020) is a related work from
entity linking literature that covers entity references
from multilingual Wikinews articles to Wikidata.

We use the proposed dataset to develop multilin-
gual event linking systems. We present two variants
to the linking task, multilingual and crosslingual.
In the multilingual task, mentions from individual
language Wikipedia are linked to the events from
Wikidata with descriptions taken from the same lan-
guage (see solid blue arrows ( ) in Figure 1). The
crosslingual task requires systems to use English
event description irrespective of the mention lan-
guage (see dashed red arrows ( ) in Figure 1). In
both tasks, the end goal is to identify the Wikidata
ID (e.g. Q830917). Following prior work on entity
linking (Logeswaran et al., 2019), we adopt a zero-
shot approach in all of our experiments. We present
results using a retrieve+rank approach based on
Wu et al. (2020) that utilizes BERT-based bien-
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coder and crossencoder for our multilingual event
linking task. We experiment with two multilin-
gual encoders, mBERT (Devlin et al., 2019) and
XLM-RoBERTa (Conneau et al., 2020) and we
find biencoder and crossencoder significantly out-
perform a tf-idf-based baseline, BM25+ (Lv and
Zhai, 2011a). Our results indicate the crosslingual
task is more challenging than the multilingual task,
possibly due to differences in typology of source
and target languages. Our key contributions are,

• We propose a new multilingual NLP task that
involves linking multilingual text mentions to
a knowledge base of events.

• We release a large-scale dataset for the zero-
shot multilingual event linking task by com-
piling mentions from Wikipedia and their
grounding to Wikidata. Our dataset captures
1.8M mentions across 44 languages refering
to over 10K events. To test out-of-domain
generalization, we additionally create a small
Wikinews-based evaluation set.

• We present two evaluation setups, multilin-
gual and crosslingual event linking. We show
competitive results across languages using a
retrieve and rank methodology.

2 Related Work

Our focus task of multilingual event linking shares
resemblance with entity/event linking, entity/event
coreference and other multilingual NLP tasks.

2.1 Entity Linking
Our work utilizes hyperlinks between Wikipedia
pages to identify event references. This idea
was previously explored in multiple entity related
works, both for dataset creation (Mihalcea and Cso-
mai, 2007; Botha et al., 2020) and data augmen-
tation during training (Bunescu and Paşca, 2006;
Nothman et al., 2008). Another related line of
work utilized hyperlinks from general web pages to
Wikipedia articles for the tasks of cross-document
entity coreference (Singh et al., 2012) and named
entity disambiguation (Eshel et al., 2017). Sil et al.
(2012); Logeswaran et al. (2019) highlighted the
need for zero-shot evaluation. We adopt this stan-
dard by using a disjoint sets of events for training
and evaluation (see subsection 3.2).

2.2 Event Linking
Event linking is important for downstream tasks
like narrative understanding. For instance, consider

a prominent event like ‘2020 Summer Olympics’.
This event has had a large influx of articles in
multiple languages. It is often useful to ground
the references to specific prominent subevents in
KB. Some examples of such events from Wikidata
are “Swimming at the 2020 Summer Olympics –
Women’s 100 metre freestyle” (Q64513990) and
“Swimming at the 2020 Summer Olympics – Men’s
100 metre backstroke” (Q64514005). Event linking
task while important is albeit less explored. Noth-
man et al. (2012) linked event-referring expressions
from news articles to a news archive. These links
are made to the first-reported news article regard-
ing the event. In contrast, we focus on prominent
events that have a corresponding Wikidata item.
Concurrent to our work, Yu et al. (2021) presents
a dataset for linking event mentions to Wikipedia.
Similar to our work, they utilize hyperlinks within
Wikipedia pages but are restricted to only English.
They also create a newswire based evaluation set
from NYTimes articles. In contrast, our work uti-
lizes events from Wikidata and covers a larger
set of languages. While our work also includes
a newswire based evaluation set from Wikinews, it
does not explicitly target verb mentions.

2.3 Event Coreference
Event coreference resolution is closely related to
event grounding but assumes a stricter notion of
identity between mentions (Nothman et al., 2012).
Multiple cross-document coreference resolution
works made use of Wikipedia (Eirew et al., 2021)
and Wikinews (Minard et al., 2016; Pratapa et al.,
2021) for dataset collection. Minard et al. (2016)
obtained human translations of English Wikinews
articles to create a crosslingual event coreference
dataset. In contrast, our dataset uses the original
multilingual event descriptions written by language
Wikipedia contributors (column 2 in Figure 1).

2.4 Multilingual Tasks
A majority of the existing NLP datasets (/systems)
cater to a fraction of world languages (Joshi et al.,
2020). There is a growing effort on creating more
multilingual benchmarks for tasks like natural lan-
guage inference (XNLI; Conneau et al. (2018)),
question answering (TyDi-QA; Clark et al. (2020),
XOR QA; Asai et al. (2021)), linking (Mewsli-9;
Botha et al. (2020)) as well as comprehensive eval-
uations (XTREME-R; Ruder et al. (2021)). To the
best of our knowledge, our work presents the first
benchmark for multilingual event linking.
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Train Dev Test Total

Events 8653 1090 1204 10947
Event Sequences 6758 844 846 8448
Mentions 1.44M 165K 190K 1.8M

Languages 44 44 44 44

Table 1: Dataset Summary

3 Multilingual Event Linking Dataset

Our data collection methodology is closely related
to the zero shot entity linking work of Botha et al.
(2020) but we take a top-down approach starting
from Wikidata. Eirew et al. (2021) identified event
pages from English Wikipedia by processing the
infobox elements. However, we found relying on
Wikidata for event identification to be more robust.
Additionally, Wikidata serves as our interlingua
that connects mentions from numerous languages.

3.1 Dataset Compilation

To compile our dataset, we follow a three-stage
pipeline, 1) identify Wikidata items that corre-
spond to events, 2) for each Wikidata event, collect
links to language Wikipedia articles and 3) iter-
ate through all the language Wikipedia dumps to
collect mention spans that refer to these events.

Wikidata Event Identification: Events are typ-
ically associated with time, location and partici-
pants, distinguishing them from entities. To iden-
tify events from the large pool of Wikidata (WD)
items, we make use of the properties listed on WD.4

Specifically, we consider a WD item to be a can-
didate event if it contains the following two prop-
erties, temporal5 and spatial6. We perform addi-
tional postprocessing on this candidate event set
to remove non-events like empires (Roman Em-
pire: Q2277), missions (Surveyor 7: Q774594),
TV series (Deception: Q30180283) and historic
places (French North Africa: Q352061).7 Each
event in our final set has caused a state change and
is grounded in a spatio-temporal context. This dis-
tinguishes our set of events from the rest of the
items from Wikidata. Following the terminology
from Weischedel et al. (2013), these KB events can
be characterized as eventive nouns.

4wikidata.org/wiki/Wikidata:List_of_properties
5duration OR point-in-time OR (start-time AND end-time)
6location OR coordinate-location
7see Table 8 in subsection A.2 of Appendix for the full list

of exclusion properties.

athletics at the 2016 Summer Olympics–men’s 100 metres
(Q25397537)

athletics at the 2016 Summer Olympics (Q18193712)

2016 Summer Olympics (Q8613)

part-of

part-of

Figure 2: An illustration of event hierarchy in Wikidata.

A Note on WD Hierarchy: WD is a rich struc-
tured KB and we observed many instances of hier-
archical relationship between our candidate events.
See Figure 2 for an example. While this hierarchy
adds an interesting challenge to the event ground-
ing task, we observed multiple instances of incon-
sistency in links. Specifically, we observed ref-
erences to parent item (Q18193712) even though
the child item (Q25397537) was the most appro-
priate link in context. Therefore, in our dataset,
we only include leaf nodes as our candidate event
set (e.g. Q25397537). This allows us to focus on
most atomic events from Wikidata. Expanding the
label set to include the hierarchy is an interesting
direction for future work.

Wikidata Wikipedia: WD items have
pointers to the corresponding language Wikipedia
articles.8 We make use of these pointers to identify
Wikipedia articles describing our candidate WD
events. Figure 1 illustrates this through the coiled
pointers ( ) for the three languages. We make
use of the event’s Wikipedia article title and its
first paragraph as the description for the WD event.
Each language version of a Wikipedia article is typ-
ically written by independent contributors, so the
event descriptions vary across languages.

Mention Identification: Wikipedia articles are
often connected through hyperlinks. We iterate
through each language Wikipedia and collect an-
chor texts of hyperlinks to the event Wikipedia
pages (column 1 in Figure 1). We retain both the an-
chor text and the surrounding paragraph (context).
Notably, the anchor text can occasionally be a tem-
poral expression or location relevant to the event.
In the German mention from Figure 1, the anchor
text ‘2010’ links to the event Q830917 (2010 Eu-
ropean Aquatics Championships). This event link
can be infered by using the context (‘Schwimmeu-
ropameisterschaften’: European Aquatics Cham-

8https://meta.wikimedia.org/wiki/List_of_

Wikipedias
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Figure 3: Statistics of events and mentions per language in the proposed dataset. The languages are sorted in the
decreasing order of # events. The counts on y-axis are presented in log scale.

pionships). In fact, the neighboring span ‘2006’
refers to a different event from Wikidata (Q612454:
2006 European Aquatics Championships). We
use the September 2021 XML dumps of language
Wikipedias and the October 2021 dump of Wiki-
data. We use Wikiextractor tool (Attardi, 2015)
to extract text content from the Wikipedia dumps.
We retain the hyperlinks in article texts for use in
mention identification. Overall, the mentions in
our datasets can be categorized into the following
types, 1) eventive noun (like the KB event), 2) ver-
bal, 3) location and 4) temporal expression. Such a
diversity in the nature of mentions also differenti-
ates the event linking task from the standard named
entity linking or disambiguation.

Postprocessing: To link a mention to its event,
the context should contain the necessary tempo-
ral information. For instance, its important to be
able to differentiate between links to ‘2010 Euro-
pean Aquatics Championships’ vs ‘2012 European
Aquatics Championships’. Therefore, we heuristi-
cally remove mention (+context) if it completely
misses the temporal expressions from the corre-
sponding language Wikipedia title and description.
Additionally, we also remove mentions if their con-
texts are either too short or too long (<100, >2000
characters). We also prune WD events under the
following conditions: 1) only contains mentions
from a single language, 2) >50% of the mentions
match their corresponding language Wikipedia title
(i.e., low diversity), 3) very few mentions (<30).
Table 1 presents the overall statistics of our dataset.
The full list of languages with their event and men-
tion counts are presented in Figure 3. Each WD
event on average has mention references from 9

languages indicating the highly multilingual nature
of our dataset. See Table 9 in Appendix for details
on the geneological information for the chosen lan-
guages. We chose our final set of languages by
maximizing for the diversity in language typology,
language resources (in event-related tasks and gen-
eral) and the availability of content on Wikipedia.
Wikipedia texts and Wikidata KB are available un-
der CC BY-SA 3.0 and CC0 1.0 license respectively.
We will release our dataset under CC BY-SA 3.0.

Wikinews Wikidata: To test the out-of-
domain generalization, we additionally prepare a
small evaluation set based on Wikinews articles.9

Inspired by prior work on multilingual entity link-
ing (Botha et al., 2020), we collect hyperlinks from
event mentions in multilingual Wikinews articles
to Wikidata. We restrict the set of events to the pre-
viously identified 10.9k events from Wikidata (Ta-
ble 1). We again use Wikiextractor tool to collect
raw texts from March 2022 dumps of all language
Wikinews. We identify hyperlinks to Wikipedia
pages or Wikinews categories that describe the
events from Wikidata.

Table 2 presents the overall statistics of our
Wikinews-based evaluation set. This set is much
smaller in size compared to Wikipedia-based
dataset primarily due to significantly smaller foot-
print of Wikinews.10 Following the taxonomy from
Logeswaran et al. (2019), we present two evalua-
tion settings, cross-domain and zero-shot. Cross-
domain evaluation gauges model generalization to
unseen domains (newswire). Zero-shot evaluation

9https://www.wikinews.org
10For comparison, English Wikinews contains 21K articles

while English Wikipedia contains 6.5M pages.
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Cross-domain Zero-shot

Events 802 149
Mentions 2562 437
Languages 27 21

Table 2: Summary of Wikinews-based evaluation set.
We present two evaluation settings, cross-domain and
zero-shot. Zero-shot evaluation set is a subset of cross-
domain set as it only includes events from dev and test
splits of Wikipedia-based evaluation set (Table 1).

tests on unseen domain and unseen events.11

Unlike Wikipedia, Wikinews articles contains
meta information such as news article title and pub-
lication date that help provide broader context for
the document. In section 5, we perform ablations
studies to see the impact of this meta information.

Mention Distribution: Following the categories
from Logeswaran et al. (2019), we compute men-
tion distributions in the following four buckets, 1)
high overlap: mention span is the same as the event
title, 2) multiple categories: event title includes an
additional disambiguation phrase, 3) ambiguous
substring: mention span is a substring of the event
title, and 4) low overlap: all other cases. For the
Wikipedia-based dataset, the category distribution
is 22%, 6%, 14%, and 58%.12 For the Wikinews-
based dataset, the category distribution is 18%, 4%,
6%, and 72%. We also computed the fraction of
mentions that are temporal expressions. We used
HeidelTime library (Strötgen and Gertz, 2015) for
25 languages and found 6% of the spans in the dev
set are temporal expressions.

3.2 Task Definition

Given a mention and a pool of events from a KB,
the task is to identify the mention’s reference in the
KB. For instance, the three mentions from column
1 in Figure 1 are to be linked to the Wikidata event,
Q830917. Following Logeswaran et al. (2019), we
assume an in-KB evaluation approach, therefore,
every mention refers to a valid event from the KB
(Wikidata). We collect descriptions for the Wiki-
data events from all the corresponding language
Wikipedias. The article title and the first paragraph
constitute the event description. This results in mul-
tilingual descriptions for each event (column 2 in

11we consider dev and test events from Table 1 as unseen.
12The disambiguation phrase is typically a suffix in the title

for English (Logeswaran et al., 2019), but in our multilingual
setting, it can be anywhere in the title.

Figure 1). We propose two variants of the event
linking task, multilingual and crosslingual, depend-
ing on the source and target languages. We define
the input mention and event description as source
and target respectively. The event label itself (e.g.
Q830917) is language-agnostic.

Multilingual Event Linking: Given a mention
from language L, the linker searches through the
event candidates from the same language L to iden-
tify the correct link. The source and target lan-
guage are the same in this task. The size of event
candidate pool varies across languages (Figure 3),
thereby varying the task difficulty.

Crosslingual Event Linking: Given a mention
from any language L, the linker searches the entire
pool of event candidates to identify the link. Here,
we restrict the target language to English, requiring
the linker to only make use of the English descrip-
tions for candidate events. Note that, all the events
in our dataset have English descriptions.

Creating Splits: The train, dev and test distri-
butions are presented in Table 1. The two tasks,
multilingual and crosslingual share the same splits
except for the difference in target language de-
scriptions. Following the standard in entity link-
ing literature, we focus on the zero-shot linking,
that requires the evaluation and train events to be
completely disjoint. Due to prevalence of event
sequences in Wikidata, a simple random split is
not sufficient.13 We add an additional constraint
that event sequences are disjoint between splits.
Systems need to perform temporal and spatial rea-
soning to distinguish between events within a se-
quence, making the task more challenging.

4 Modeling

In this section, we present our systems for multi-
lingual and crosslingual event linking to Wikidata.
We follow the entity linking system BLINK (Wu
et al., 2020) to adapt a retrieve and rank approach.
Given a mention, we first use a BERT-based bien-
coder to retrieve top-k events from the candidate
pool. Then, we use a crossencoder to rerank these
top-k candidates and identify the best event label.
Additionally, following the baselines from entity
linking literature, we also experiment with BM25
as a candidate retrieval method.

132008, 2010, 2012 iterations of Aquatics Championships
from Figure 1
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Figure 4: Retrieval performance on dev split.

Model Multilingual Crosslingual
Dev Test Dev Test

BM25+ 53.4 50.1 – –
mBERT-bi 84.7 84.6 83.2 83.9
XLM-R-bi 84.5 84.3 79.3 79.1
mBERT-cross 89.8 89.3 81.3 73.9
XLM-R-cross 88.8 87.3 81.0 75.6

Table 3: Event Linking Accuracy. For biencoder models,
we report Recall@1.

4.1 BM25

BM25 is a commonly used tf-idf based rank-
ing function and a competitive baseline for en-
tity linking. We explore three variants of BM25,
BM25Okapi (Robertson et al., 1994), BM25+ (Lv
and Zhai, 2011a) and BM25L (Lv and Zhai, 2011b).
We use the implementation of Brown (2020) with
mention as query and event description as docu-
ments.14 Since BM25 is a bag-of-words method,
we only use in the multilingual task. To create the
documents, we use the concatenation of title and
description of events. For the query, we experiment
with increasing context window sizes of 8, 16, 32,
64 and 128 along with a mention-only baseline.

4.2 Retrieve+Rank

We adapt the standard entity linking architecture
(Wu et al., 2020) to the event linking task. This is
a two-stage pipeline, a retriever (biencoder) and a
ranker (crossencoder).

Biencoder: Using two multilingual transform-
ers, we independently encode the context and

14To tokenize text across the 44 languages, we used bert-
base-multilingual-uncased tokenizer from Huggingface.

Model Multilingual Crosslingual
CD ZS CD ZS

BM25+ 53.5 58.6 - -
mBERT-bi 81.2 76.7 85.4 78.0
XLM-R-bi 82.2 76.7 82.6 76.4
mBERT-cross 90.1 84.4 89.3 76.2
XLM-R-cross 89.7 84.4 88.9 76.0

Table 4: Event linking accuracy on Wikinews test set.
CD and ZS indicate cross-domain and zero-shot.

event candidates. The input context is constructed
as [CLS] left context [MENTION_START] mention
[MENTION_END] right context [SEP]. Candidate
events use a concatenation of event’s title and de-
scription, [CLS] title [EVT] description [SEP]. In
both cases, we use the final layer [CLS] token rep-
resentation as our embedding. For each context,
we score the event candidates by taking a dot prod-
uct between the two embeddings. We follow prior
work (Lerer et al., 2019; Wu et al., 2020) to make
use of in-batch random negatives during training.
At inference, we run a nearest neighbour search to
find the top-k candidates.

Crossencoder: In our crossencoder, the input
constitutes a concatenation of the context and a
given event candidate.15 We take the [CLS] token
embedding from last layer and pass it through a
classification layer. We run crossencoder training
only on the top-k event candidates retrieved by the
biencoder. During training, we optimize a soft-
max loss to predict the gold event candidate within
the retrieved top-k. For inference, we predict the
highest scoring context-candidate tuple from the
top-k candidates. We experiment with two mul-
tilingual encoders, mBERT (Devlin et al., 2019)
and XLM-RoBERTa (Conneau et al., 2020), we
refer to the bi- and cross-encoder configurations as
mBERT-bi, XLM-RoBERTa-bi and mBERT-cross,
XLM-RoBERTa-cross. For crossencoder training
and inference, we use the retrieval results from the
same BERT-based biencoder.16

5 Evaluation

We present our results on the development and
test splits of the proposed dataset. In our experi-

15[CLS] left context [MENTION_START] mention
[MENTION_END] right context [SEP] title [EVT] descrip-
tion [SEP]

16see section A.3 in Appendix for other details.
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Mention Context: At the 2000 Summer Olympics in Sydney, Sitnikov competed only in two swimming events. ... Three days later, in the
100 m freestyle, Sitnikov placed fifty-third on the morning prelims. ...
Predicted Label: Swimming at the 2008 Summer Olympics – Men’s 100 metre freestyle
Gold Label: Swimming at the 2000 Summer Olympics – Men’s 100 metre freestyle

Mention Context: ... war er bei der Oscarverleihung 1935 erstmals für einen Oscar für den besten animierten Kurzfilm nominiert. Eine
weitere Nominierung in dieser Kategorie erhielt er 1938 für “The Little Match Girl” (1937).
Predicted Label: The 9th Academy Awards were held on March 4, 1937, ...
Gold Label: The 10th Academy Awards were originally scheduled ... but due to ... were held on March 10, 1938, ..

Mention Context: Ivanova won the silver medal at the 1978 World Junior Championships. She made her senior World debut at the 1979
World Championships, finishing 18th. Ivanova was 16th at the 1980 Winter Olympics.
Predicted Label: FIBT World Championships 1979
Gold Label: 1979 World Figure Skating Championships

Mention Context: ...攝津號與其姐妹艦河號於1914年10月至11月間參與了青島戰役的最後階段...
Predicted Label: Battle of the Yellow Sea
Gold Label (English): Siege of Tsingtao: The siege of Tsingtao (or Tsingtau) was the attack on the German port of Tsingtao (now
Qingdao) ...
Gold Label (Chinese): 青島戰役（，）是第一次世界大戰初期日本進攻國膠州灣殖民地及其首府青島的一場戰役，也是唯一的
一場戰役。

Table 5: Examples of errors by the event linking system.

ments, we use bert-base-multilingual-uncased and
xlm-roberta-base from Huggingface transformers
(Wolf et al., 2020). For the multilingual task, even
though the candidate set is partly different between
languages, we share the model weights across lan-
guages. We believe this weight sharing helps in
improving the performance on low-resource lan-
guages (Arivazhagan et al., 2019). We follow the
standard metrics from prior work on entity linking,
both for retrieval and reranking. Recall@k mea-
sures fraction of contexts where the gold event is
contained in the top-k retrieved candidates. Ac-
curacy measures fraction of contexts where the
predicted event candidate matches the gold can-
didate. We use the unnormalized accuracy score
from Logeswaran et al. (2019) that evaluates the
overall end-to-end performance (retrieve+rank).

5.1 Results

Figure 4 presents the retrieval results on dev split
for both multilingual and crosslingual tasks. The
biencoder models significantly outperform the best
BM25 configuration, BM25+ (with a context win-
dow of 16).17 The performance is mostly similar
for k=8 and k=16 for both biencoder models, there-
fore, we select k=8 for our crossencoder experi-
ments.18 Table 3 presents the accuracy scores for
the crossencoder models and R@1 scores for re-
trieval methods. On the multilingual task, mBERT
crossencoder model performs the best and signif-

17For a detailed comparison of various configurations of
BM25 baseline, refer to Figure 5 in Appendix.

18see Table 6 in Appendix for Recall@8 scores for all the
configurations.

icantly better than the corresponding biencoder
model. However, on the crosslingual task, mBERT
biencoder performs the best. As expected, the
crosslingual task is more challenging than the mul-
tilingual task. Due to the large number of model
parameters, all of our reported results were based
on a single training run.

We also measure the cross-domain and zero-
shot performance of these systems on the proposed
Wikinews evaluation set (section 3.1). As seen in
Table 4, we notice good cross-domain but moder-
ate zero-shot transfer. This highlights that unseen
events from unseen domains present a considerable
challenge. We noticed further gains (4-12%) when
the meta information (date and title) is included
with the context. Our ablation studies showed that
this gain is primarily due to article date.19

5.2 Analysis

Performance by Language: Multilingual and
crosslingual tasks have three major differences: 1)
source & target language, 2) language-specific de-
scriptions can be more informative than English
descriptions, and 3) candidate pool varies language
(see Figure 3). While the performance is largely the
same across languages, we noticed slightly lower
crosslingual performance, especially for medium
and low-resource languages.20

We also perform qualitative analysis of errors
made by our mBERT-based biencoder models on
multilingual and crosslingual tasks. We summarize

19see section A.3 in Appendix for full results.
20see Figure 8 and Figure 9 in Appendix
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our observations from this analysis below,

Temporal Reasoning: The event linker occasion-
ally performs insufficient temporal reasoning in
the context (see example 1 in Table 5). Since our
dataset contains numerous event sequences, such
temporal reasoning is often important.

Temporal and Spatial expressions: In cases
where the anchor text is a temporal or spatial ex-
pression, we found the system sometimes struggle
to link to the event even if the link can be infered
given the context information (see example 2 in Ta-
ble 5). We believe these examples will also serve as
interesting challenge for future work on our dataset.

Event Descriptions: Crosslingual system occa-
sionally struggles with the English description. In
example 4 from Table 5, we notice the mention
matches exactly with the language Wikipedia title
but it struggles with English description. There-
fore, depending on the event, we hypothesize that
language-specific event descriptions can sometimes
be more informative than the English description.

Dataset Errors: We found instances where the
context doesn’t provide sufficient information
needed for grounding (see example 3 in Table 5).
Albeit uncommon, we found a few cases where
the human annotated hyperlinks in Wikipedia can
sometimes be incorrect.21

5.3 Discussion

Retrieve+rank based methods have been effective
for entity linking tasks (Wu et al., 2020; Botha
et al., 2020). Our results indicate that the same
retrieve+rank approach is useful for the task of
event linking. However, our zero-shot results on
Wikinews hint toward potential challenges in adapt-
ing to new domains. Additionally, as described
above, event linking presents added challenges in
dealing with temporal/spatial expressions and tem-
poral reasoning. For further analysis, it would be
interesting to contrast the performance differences
between planned (e.g., sports competitions) and
unplanned (e.g., wars) events.

6 Conclusion & Future Work

We present the task of multilingual event linking
to Wikidata. To support this task, we first compile

21For more detailed examples, refer to Table 10, Table 12
and Table 13 in Appendix.

a dictionary of events from Wikidata using tem-
poral and spatial properties. We prepare descrip-
tions for these events from multilingual Wikipedia
pages. We then identify a large collection of inlinks
from various language Wikipedia. Depending on
the language of event description, we present two
variants of the task, multilingual (lg lg) and
crosslingual (lg en). Furthermore, to test cross-
domain generalization we create a small evaluation
set based on Wikinews articles. Our results using
a retrieve+rank approach indicate that the crosslin-
gual task is more challenging than the multilingual.

Event linking task has multiple interesting future
directions. First, the Wikidata-based event dictio-
nary can be expanded to include hierarchical event
structures (Figure 2). Since events are inherently
hierarchical, this will present a more realistic chal-
lenge for the linking systems. Second, mention
coverage of our dataset can be expanded to include
more verbal events. Third, event linking systems
can be improved with better temporal reasoning
and improved handling of temporal and spatial ex-
pressions. Fourth, the Wikidata-based event dictio-
nary can be expanded to include events that do not
contain any English Wikipedia descriptions.
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A Appendix

A.1 Ethical Considerations
In this work, we presented a new dataset compiled
automatically from Wikipedia, Wikinews and Wiki-
data. After the initial collection process, we per-
form rigorous post-processing steps to reduce po-
tential errors in our dataset. Our dataset is multi-
lingual with texts from 44 languages. In our main
paper, we state these languages as well as their in-
dividual representation in our dataset. As we high-
light in the paper, the proposed linking systems
only work for specific class of events (eventive
nouns) due to the nature of our dataset.

A.2 Dataset
After identifying potential events from Wikidata,
we perform additional post-processing to remove
any non-event items. Table 8 presents the list of all
Wikidata properties used for removing non-event
items from our corpus. Table 9 lists all languages
from our dataset along with their language geneal-
ogy and distribution in the dataset.
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Figure 5: Effect of context window size on BM25+
retrieval performance.

Retriever Multilingual Crosslingual
Dev Test Dev Test

BM25+ 76.8 70.5 – –
mBERT-bi 96.9 97.1 96.7 97.2
XLM-R-bi 96.3 96.7 94.2 95.3

Table 6: Event candidate retrieval results, Recall@8.

A.3 Modeling
Experiments: We use the base versions of
mBERT and XLM-RoBERTa in all of our experi-

ments. In the biencoder model, we use two multilin-
gual encoders, one each for context and candidate
encoding. In crossencoder, we use just one multi-
lingual encoder and a classification layer. In all of
our experiments, we optimize all the encoder layers.
For biencoder training, we use AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 1e-05 and a linear warmup schedule. We restrict
the context and candidate lengths to 128 sub-tokens
and select the best epoch (of 5) on the development
set. For crossencoder training, we also use AdamW
optimizer with a learning rate of 2e-05 and a linear
warmup schedule. We restrict the overall sequence
length to 256 sub-tokens and select the best epoch
(of 5) on the development set. We ran our experi-
ments on a mix of GPUs, TITANX, v100, A6000
and a100. Each training and inference runs were
run on a single GPU. Both biencoder and crossen-
coder were run for 5 epochs and we select the best
set of hyperparameters based on the dev set perfor-
mance. On a single a100 GPU, biencoder training
takes about 1.5hrs per epoch and the crossencoder
takes ∼20hrs per epoch (with k=8).

Results: In Figure 5, we present results on the
development set from all the explored configura-
tions. In Table 6, we show the Recall@8 scores
from all the retrieval models. Based on the perfor-
mance on development set, we selected k=8 for our
crossencoder training and inference. We also report
the test scores for completeness. Figure 6 presents
the retrieval recall scores. Figure 7 presents the re-
trieval recall scores for BM25+ (context length 16)
method. Figure 9 presents a detailed comparison
of per-language accuracies between multilingual
and crosslingual tasks for each configuration.

Wikinews: Each Wikinews article contains meta
information such as article title and publication
date. Since this meta information provide ad-
ditional context to the linker, we experimented
by including this meta information along with
the mention context. The meta information is
encoded with the context as “[CLS] title [SEP]

date [SEP] left context [MENTION_START] men-
tion [MENTION_END] right context [SEP]”. Table 7
presents the detailed results on the Wikinews eval-
uation set.

Examples: We also present full examples of sys-
tem errors we identified through a qualitative anal-
ysis. Table 10 presents examples of system errors
due to insufficient temporal reasoning in the con-
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Model Multilingual Crosslingual

Ctxt Ctxt+date Ctxt+title Ctxt+date+title Ctxt Ctxt+date Ctxt+title Ctxt+date+title

cross-domain

mBERT-bi 81.2 87.4 83.4 87.7 85.4 90.0 87.4 90.6
XLM-R-bi 82.2 89.4 85.1 90.8 82.6 88.8 85.3 90.0
mBERT-cross 90.1 95.0 91.5 95.6 89.3 93.5 90.8 93.8
XLM-R-cross 89.7 94.0 91.6 94.7 88.9 93.6 90.6 93.7

zero-shot

mBERT-bi 76.7 86.3 78.0 86.7 78.0 85.6 80.3 87.4
XLM-R-bi 76.7 86.0 80.1 89.0 76.4 85.8 78.7 87.2
mBERT-cross 84.4 92.2 86.5 93.8 76.2 81.7 77.6 81.5
XLM-R-cross 84.4 90.6 84.9 92.2 76.0 84.2 76.4 83.5

Table 7: Event linking accuracy on Wikinews test set. For each configuration, we report results using just the
mention context (Ctxt), mention context + article publication date (Ctxt+date), mention context + article title
(Ctxt+title) and mention context + article date & title (Ctxt+date+title). Most of the gain comes from including the
date across all model configurations and tasks.

text. Table 11 presents examples of system errors
on mentions that are temporal or spatial expres-
sions. Table 12 presents examples of system er-
rors on crosslingual task due to issues related with
tackling non-English mentions. Table 13 presents
examples of system errors that were caused due to
dataset errors.
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Property Property_Label URI URI_Label

P31 instance_of Q48349 empire
P31 instance_of Q11514315 historical_period
P31 instance_of Q3024240 historical_country
P31 instance_of Q11042 culture
P31 instance_of Q28171280 ancient_civilization
P31 instance_of Q1620908 historical_region
P31 instance_of Q3502482 cultural_region
P31 instance_of Q465299 archaeological_culture
P31 instance_of Q568683 age
P31 instance_of Q763288 lander
P31 instance_of Q4830453 business
P31 instance_of Q24862 short_film
P31 instance_of Q1496967 territorial_entity
P31 instance_of Q68 computer
P31 instance_of Q486972 human_settlement
P31 instance_of Q26529 space_probe
P31 instance_of Q82794 geographic_region
P31 instance_of Q43229 organization
P31 instance_of Q15401633 archaeological_period
P31 instance_of Q5398426 television_series
P31 instance_of Q24869 feature_film
P31 instance_of Q11424 film
P31 instance_of Q718893 theater
P31 instance_of Q1555508 radio_program
P31 instance_of Q17343829 unincorporated_community_in_the_United_States
P31 instance_of Q254832 Internationale_Bauausstellung
P31 instance_of Q214609 material
P31 instance_of Q625298 peace_treaty
P31 instance_of Q131569 treaty
P31 instance_of Q93288 contract
P31 instance_of Q15416 television_program
P31 instance_of Q1201097 detachment
P31 instance_of Q16887380 group
P31 instance_of Q57821 fortification
P31 instance_of Q15383322 cultural prize
P31 instance_of Q515 city
P31 instance_of Q537127 road_bridge
P31 instance_of Q20097897 sea_fort
P31 instance_of Q1785071 fort
P31 instance_of Q23413 castle
P31 instance_of Q1484988 project
P31 instance_of Q149621 district
P31 instance_of Q532 village
P31 instance_of Q2630741 community
P31 instance_of Q3957 town
P31 instance_of Q111161 synod
P31 instance_of Q1530022 religious_organization
P31 instance_of Q51645 ecumenical_council
P31 instance_of Q10551516 church_council
P31 instance_of Q1076486 sports_venue
P31 instance_of Q17350442 venue
P31 instance_of Q13226383 facility
P31 instance_of Q811979 architectural_structure
P31 instance_of Q23764314 sports_location
P31 instance_of Q15707521 fictional_battle
P36 capital *
P2067 mass *
P1082 population *
P1376 captial_of *
P137 operator *
P915 filming_location *
P162 producer *
P281 postal_code *
P176 manufacturer *
P2257 event_interval *
P527 has_part *
P279 subclass_of *

Table 8: List of properties used for postprocessing Wikidata events. If a candidate event has the property ‘P31’,
we prune them depending on the corresponding. For example, we only prune items that are instances of empire,
historical period etc., For other properties like P527, P36, we prune items if they contain this property.
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Language Code Events Mentions Genus

Afrikaans af 316 2036 Germanic
Arabic ar 2691 28801 Semitic
Belarusian be 737 7091 Slavic
Bulgarian bg 1426 12570 Slavic
Bengali bn 270 3136 Indic
Catalan ca 2631 22296 Romance
Czech cs 2839 36658 Slavic
Danish da 1189 10267 Germanic
German de 7371 209469 Germanic
Greek el 997 13361 Greek
English en 10747 328789 Germanic
Spanish es 5064 91896 Romance
Persian fa 1566 10449 Iranian
Finnish fi 3253 47944 Finnic
French fr 8183 136482 Romance
Hebrew he 1871 34470 Semitic
Hindi hi 216 1219 Indic
Hungarian hu 3067 27333 Ugric
Indonesian id 2274 14049 Malayo-Sumbawan
Italian it 7116 108012 Romance
Japanese ja 3832 49198 Japanese
Korean ko 1732 13544 Korean
Malayalam ml 136 730 Southern Dravidian
Marathi mr 132 507 Indic
Malay ms 824 4650 Malayo-Sumbawan
Dutch nl 4151 41973 Germanic
Norwegian no 2514 24092 Germanic
Polish pl 6270 110381 Slavic
Portuguese pt 4466 45125 Romance
Romanian ro 1224 12117 Romance
Russian ru 7929 180891 Slavic
Sinhala si 31 65 Indic
Slovak sk 726 5748 Slavic
Slovene sl 1288 8577 Slavic
Serbian sr 1611 24093 Slavic
Swedish sv 2865 23152 Germanic
Swahili sw 22 74 Bantoid
Tamil ta 250 1682 Southern Dravidian
Telugu te 39 243 South-Central Dravidian
Thai th 800 4749 Kam-Tai
Turkish tr 2342 19846 Turkic
Ukrainian uk 3428 53098 Slavic
Vietnamese vi 1439 13744 Viet-Muong
Chinese zh 2759 21259 Chinese

Total 10947 1805866

Table 9: Proposed dataset summary (by languages)
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Figure 6: Retrieval recall scores on development set for mBERT and XLM-R in multilingual and crosslingual
settings.
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Figure 7: Retrieval recall scores on development set for BM25+ in multilingual setting.
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Figure 8: Test accuracy of mBERT-bi and mBERT-cross in multilingual and crosslingual tasks. The languages on
the x-axis are sorted in the increasing order of mentions.
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Figure 9: Test accuracy of mBERT-bi, XLM-R-bi, mBERT-cross, XLM-R-cross in multilingual and crosslingual
tasks. The languages on the x-axis are sorted in the increasing order of mentions.
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Mention Context: At the 2000 Summer Olympics in Sydney, Sitnikov competed only in two swimming events. He eclipsed
a FINA B-cut of 51.69 (100 m freestyle) from the Kazakhstan Open Championships in Almaty. On the first day of the Games,
Sitnikov placed twenty-first for the Kazakhstan team in the 4 × 100 m freestyle relay. Teaming with Sergey Borisenko, Pavel
Sidorov, and Andrey Kvassov in heat three, Sitnikov swam a lead-off leg and recorded a split of 52.56, but the Kazakhs
settled only for last place in a final time of 3:28.90. Three days later, in the 100 m freestyle, Sitnikov placed fifty-third on the
morning prelims. Swimming in heat five, he raced to a fifth seed by 0.15 seconds ahead of Chinese Taipei’s Wu Nien-pin in
52.57.

Predicted Label: Swimming at the 2008 Summer Olympics – Men’s 100 metre freestyle: The men’s 100 metre freestyle event
at the 2008 Olympic Games took place on 12–14 August at the Beijing National Aquatics Center in Beijing, China. There
were 64 competitors from 55 nations.

Gold Label: Swimming at the 2000 Summer Olympics – Men’s 100 metre freestyle: The men’s 100 metre freestyle event at
the 2000 Summer Olympics took place on 19–20 September at the Sydney International Aquatic Centre in Sydney, Australia.
There were 73 competitors from 66 nations. Nations have been limited to two swimmers each since the 1984 Games.

Mention Context: In 2012, WWE reinstated their No Way Out pay-per-view (PPV), which had previously ran annually from
1999 to 2009. The following year, however, No Way Out was canceled and replaced by Payback, which in turn became an
annual PPV for the promotion. The first Payback event was held on June 16, 2013 at the Allstate Arena in Rosemont, Illinois.
The 2014 event was also held in June at the same arena and was also the first Payback to air on the WWE Network, which had
launched earlier that year. In 2015 and 2016, the event was held in May. The 2016 event was also promoted as the first PPV
of the New Era for WWE. In July 2016, WWE reintroduced the brand extension, dividing the roster between the Raw and
SmackDown brands where wrestlers are exclusively assigned to perform. The 2017 event was in turn held exclusively for
wrestlers from the Raw brand, and was also moved up to late-April.

Predicted Label: Battleground (2017): Battleground was a professional wrestling pay-per-view (PPV) event and WWE
Network event produced by WWE for their SmackDown brand division. It took place on July 23, 2017, at the Wells Fargo
Center in Philadelphia, Pennsylvania. It was the fifth and final event under the Battleground chronology, as following
WrestleMania 34 in April 2018, brand-exclusive PPVs were discontinued, resulting in WWE reducing the amount of yearly
PPVs produced.

Gold Label: Payback (2017): Payback was a professional wrestling pay-per-view (PPV) and WWE Network event, produced
by WWE for the Raw brand division. It took place on April 30, 2017 at the SAP Center in San Jose, California. It was
the fifth event in the Payback chronology. Due to the Superstar Shake-up, the event included two interbrand matches with
SmackDown wrestlers. It was the final Payback event until 2020, as following WrestleMania 34 in 2018, WWE discontinued
brand-exclusive PPVs, which resulted in the reduction of yearly PPVs produced.

Table 10: Examples of errors by the event linking system. (temporal reasoning related)
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Mention Context: Paul Wing (August 14, 1892 – May 29, 1957) was an assistant director at Paramount Pictures. He won the
1935 Best Assistant Director Academy Award for “The Lives of a Bengal Lancer” along with Clem Beauchamp. Wing was
the assistant director on only two films owing to his service in the United States Army. During his service, Wing was in a
prisoner camp that was portrayed in the film “The Great Raid” (2005).

Predicted Label: 8th Academy Awards: The 8th Academy Awards were held on March 5, 1936, at the Biltmore Hotel in
Los Angeles, California. They were hosted by Frank Capra. This was the first year in which the gold statuettes were called
“Oscars”.

Gold Label: 7th Academy Awards: The 7th Academy Awards, honoring the best in film for 1934, was held on February 27,
1935, at the Biltmore Hotel in Los Angeles, California. They were hosted by Irvin S. Cobb.

Mention Context: Für “Holiday Land” (1934) war er bei der Oscarverleihung 1935 erstmals für einen Oscar für den besten
animierten Kurzfilm nominiert. Eine weitere Nominierung in dieser Kategorie erhielt er 1938 für “The Little Match Girl”
(1937).

Predicted Label: 9th Academy Awards: The 9th Academy Awards were held on March 4, 1937, at the Biltmore Hotel in
Los Angeles, California. They were hosted by George Jessel; music was provided by the Victor Young Orchestra, which
at the time featured Spike Jones on drums. This ceremony marked the introduction of the Best Supporting Actor and Best
Supporting Actress categories, and was the first year that the awards for directing and acting were fixed at five nominees per
category.

Gold Label: 10th Academy Awards: The 10th Academy Awards were originally scheduled for March 3, 1938, but due to the
Los Angeles flood of 1938 were held on March 10, 1938, at the Biltmore Hotel in Los Angeles, California. It was hosted by
Bob Burns.

Table 11: Examples of errors by the event linking system. (temporal or spatial expression related)
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Mention Context: Nel 2018 ha preso parte alle Olimpiadi di Pyeongchang, venendo eliminata nel primo turno della finale e
classificandosi diciannovesima nella gara di gobbe.

Predicted Label: Snowboarding at the 2018 Winter Olympics – Women’s parallel giant slalom: The women’s parallel giant
slalom competition of the 2018 Winter Olympics was held on 24 February 2018 Bogwang Phoenix Park in Pyeongchang,
South Korea.

Gold Label: Freestyle skiing at the 2018 Winter Olympics – Women’s moguls: The Women’s moguls event in freestyle skiing
at the 2018 Winter Olympics took place at the Bogwang Phoenix Park, Pyeongchang, South Korea from 9 to 11 February
2018. It was won by Perrine Laffont, with Justine Dufour-Lapointe taking silver and Yuliya Galysheva taking bronze. For
Laffont and Galysheva these were first Olympic medals. Galysheva also won the first ever medal in Kazakhstan in freestyle
skiing.

Mention Context:

Predicted Label: Hungarian Revolution of 1956: The Hungarian Revolution of 1956 (), or the Hungarian Uprising, was a
nationwide revolution against the Hungarian People’s Republic and its Soviet-imposed policies, lasting from 23 October until
10 November 1956. Leaderless at the beginning, it was the first major threat to Soviet control since the Red Army drove Nazi
Germany from its territory at the end of World War II in Europe.

Gold Label: Suez Crisis: The Suez Crisis, or the Second Arab–Israeli war, also called the Tripartite Aggression () in the
Arab world and the Sinai War in Israel,

Mention Context: 攝津號戰艦於1909年4月1日在須賀海軍工廠鋪設龍骨，後於1909年1日18日舉行下水儀式，並
於1912年7月1日竣工，總造價為11,010,000日圓。海軍大佐田中盛秀於1912年12月1日出任本艦艦長，並編入第一
分遣艦隊。翌年的多數時候，攝津號均巡航於中國外海或是接受戰備操演。當第一次世界大戰於1914年8月間爆
發時，本艦正停泊於廣島縣市軍港。攝津號與其姐妹艦河號於1914年10月至11月間參與了青島戰役的最後階段，
並於外海以艦砲密集轟炸軍陣地。本艦於1916年12月1日離開第一分遣艦隊，並送往市進行升級作業。升級作業
於1917年12月1日完成，該艦隨後編入第二分遣艦隊，直至1918年7月23日重新歸入第一分遣艦隊為止。自此時
起，攝津號戰艦上所有的QF 12磅3英吋40倍徑艦砲均移除，並以QF 12磅3英吋40倍徑防空砲取代，另亦移除了兩
具魚雷發射管。1918年10月28日，攝津號戰艦成為大正天皇於海上校時所搭乘的旗艦。

Predicted Label: Battle of the Yellow Sea: The Battle of the Yellow Sea (; ) was a major naval battle of the Russo-Japanese
War, fought on 10 August 1904. In the Russian Navy, it was referred to as the Battle of 10 August. The battle foiled an attempt
by the Russian fleet at Port Arthur to break out and form up with the Vladivostok squadron, forcing them to return to port.
Four days later, the Battle off Ulsan similarly ended the Vladivostok group’s sortie, forcing both fleets to remain at anchor.

Gold Label: Siege of Tsingtao: The siege of Tsingtao (or Tsingtau) was the attack on the German port of Tsingtao (now
Qingdao) in China during World War I by Japan and the United Kingdom. The siege was waged against Imperial Germany
between 27 August and 7 November 1914. The siege was the first encounter between Japanese and German forces, the first
Anglo-Japanese operation of the war, and the only major land battle in the Asian and Pacific theatre during World War I.

Table 12: Examples of errors by the event linking system. (language-related)
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Mention Context: He established his own production company, Emirau Productions, named after the battle in World War
II in which Warren was injured.

Predicted Label: First Battle of El Alamein: The First Battle of El Alamein (1–27 July 1942) was a battle of the Western
Desert Campaign of the Second World War, fought in Egypt between Axis forces (Germany and Italy) of the Panzer Army
Africa () (which included the under Field Marshal () Erwin Rommel) and Allied (British Imperial and Commonwealth) forces
(Britain, British India, Australia, South Africa and New Zealand) of the Eighth Army (General Claude Auchinleck).

Gold Label: Landing on Emirau: The Landing on Emirau was the last of the series of operations that made up Operation
Cartwheel, General Douglas MacArthur’s strategy for the encirclement of the major Japanese base at Rabaul. A force of
nearly 4,000 United States Marines landed on the island of Emirau on 20 March 1944. The island was not occupied by
the Japanese and there was no fighting. It was developed into an airbase which formed the final link in the chain of bases
surrounding Rabaul. The isolation of Rabaul permitted MacArthur to turn his attention westward and commence his drive
along the north coast of New Guinea toward the Philippines.

Mention Context: Ivanova won the silver medal at the 1978 World Junior Championships. She made her senior World debut
at the 1979 World Championships, finishing 18th. Ivanova was 16th at the 1980 Winter Olympics.

Predicted Label: FIBT World Championships 1979: The FIBT World Championships 1979 took place in Königssee, West
Germany. It was the first championships that took place on an artificially refrigerated track. The track also hosted the luge
world championships that same year, the first time that had ever happened in both bobsleigh and luge in a non-Winter Olympic
year (Igls hosted both events for the 1976 games in neighboring Innsbruck.).

Gold Label: 1979 World Figure Skating Championships: The 1979 World Figure Skating Championships were held in
Vienna, Austria from March 13 to 18. At the event, sanctioned by the International Skating Union, medals were awarded in
men’s singles, ladies’ singles, pair skating, and ice dance.

Mention Context: Изначально открытие башни должно было состояться в декабре 2011 года, но после земле-
трясения строительство замедлилось из-за нехватки средств.

Predicted Label: 2011 Christchurch earthquake: A major earthquake occurred in Christchurch, New Zealand, on Tuesday
22 February 2011 at 12:51 p.m. local time (23:51 UTC, 21 February). The () earthquake struck the Canterbury region in the
South Island, centred south-east of the centre of Christchurch, the country’s second-most populous city. It caused widespread
damage across Christchurch, killing 185 people, in the nation’s fifth-deadliest disaster.

Gold Label: 2011 Tōhoku earthquake and tsunami: The occurred at 14:46 JST (05:46 UTC) on 11 March. The magnitude
9.0–9.1 (Mw) undersea megathrust earthquake had an epicenter in the Pacific Ocean, east of the Oshika Peninsula of the
Tōhoku region, and lasted approximately six minutes, causing a tsunami. It is sometimes known in Japan as the , among other
names. The disaster is often referred to in both Japanese and English as simply 3.11 (read s̈an ten ichi-ichiïn Japanese).

Mention Context: ポワント・デュ・オック (Pointe du Hoc)から向かったアメリカ軍のレンジャー部隊の8個中
隊と共に、アメリカ第29歩兵師団は海岸の西側の側面を攻撃した。アメリカ第1歩兵師団は東側からのアプ
ローチを行った。これは、この戦争において、北アフリカ、シチリア島に続く3回目の強襲上陸であった。
オマハビーチの上陸部隊の主目標は、サン＝ロー (Saint-Lô) の南に進出する前にポール＝アン＝ベッサン
(Port-en-Bessin)とヴィル川 (Vire River)間の橋頭堡を守ることであった。

Predicted Label: Tunisian campaign: The Tunisian campaign (also known as the Battle of Tunisia) was a series of battles
that took place in Tunisia during the North African campaign of the Second World War, between Axis and Allied forces. The
Allies consisted of British Imperial Forces, including a Greek contingent, with American and French corps. The battle opened
with initial success by the German and Italian forces but the massive supply interdiction efforts led to the decisive defeat of
the Axis. Over 250,000 German and Italian troops were taken as prisoners of war, including most of the Afrika Korps.

Gold Label: Operation Torch: Operation Torch (8 November 1942 – 16 November 1942) was an Allied invasion of French
North Africa during the Second World War. While the French colonies formally aligned with Germany via Vichy France,
the loyalties of the population were mixed. Reports indicated that they might support the Allies. American General Dwight
D. Eisenhower, supreme commander of the Allied forces in Mediterranean Theater of Operations, planned a three-pronged
attack on Casablanca (Western), Oran (Center) and Algiers (Eastern), then a rapid move on Tunis to catch Axis forces in
North Africa from the west in conjunction with Allied advance from east.

Table 13: Examples of errors by the event linking system. (also errors in the dataset)
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Abstract

Text Simplification has been an extensively re-
searched problem in English, but has not been
investigated in Vietnamese. We focus on the
Vietnamese-specific Complex Word Identifica-
tion task, often the first step in Lexical Simpli-
fication (Shardlow, 2013). We examine three
different Vietnamese datasets constructed for
other natural language processing tasks and
show that, like in other languages, frequency is
a strong signal in determining whether a word
is complex, with a mean accuracy of 86.87%.
Across the datasets, we find that the 10% most
frequent words in many corpus can be labeled
as simple, and the rest as complex, though this
is more variable for smaller corpora. We also
examine how human annotators perform at this
task. Given the subjective nature, there is a fair
amount of variability in which words are seen
as difficult, though majority results are more
consistent.

1 Introduction

Text Simplification is a task that focuses on improv-
ing the readability and understandability of text
while preserving the original content and mean-
ing. Text Simplification applications have been
shown to benefit a variety of target audiences, in-
cluding readers with low-literacy levels (Mason,
1978), non-native speakers (Paetzold, 2016), lan-
guage learners (Gardner et al., 2007; Crossley et al.,
2007), deaf people (Marschark and Spencer, 2010),
people with reading comprehension problems such
as aphasia (Carroll et al., 1998) and dyslexia (Rello
et al., 2013), and people with Autistic Spectrum
Disorder (Evans et al., 2014). It is also a useful
preprocessing step for other NLP tasks, including
parsing (Chandrasekar et al., 1996), information
extraction (Evans, 2011; Miwa et al., 2010), and
question generation (Heilman and Smith, 2010).

Although significant progress has been made in
text simplification in multiple languages, including
English (Coster and Kauchak, 2011; Nisioi et al.,

2017; Woodsend and Lapata, 2011), Spanish (Sag-
gion et al., 2015; Bott et al., 2012), Portuguese
(Aluísio et al., 2008), Japanese (Katsuta and Ya-
mamoto, 2019; Maruyama and Yamamoto, 2017),
Korean (Chung et al., 2013), and Italian (Barlacchi
and Tonelli, 2013), the problem remains a relatively
new area of research in Vietnamese, a language
spoken by over 70 million people (Van Driem,
2001) in Vietnam, the South East Asia region,
France, Australia, and the United States. Sentence
splitting has been conducted for the Vietnamese
− English machine translation task (Hung et al.,
2012), which can be helpful as an initial step for
Text Simplification, but no further work has been
recorded.

Other tasks in Vietnamese have been explored,
from core problems such as dependency parsing,
word segmentation, and part-of-speech parsing to
more recent ones such as sentiment analysis, auto-
matic speech recognition, and question answering.1

Text Summarization is the most closely related task
to Text Simplification that has been attempted in
Vietnamese.

Progress on the specific task of Complex Word
Identification in Vietnamese has not been reported
so far. Although the terms complex words and
simple words have appeared in literature on the
Word Segmentation task, such as in Nguyen et al.
(2006b), Nguyen et al. (2006a), and Anh et al.
(2015), they refer to the length of each word
(whether they are monosyllabic or polysyllabic
words such as compound and reduplicative words)
rather than the understandability and readability of
each word in the context of Text Simplification.

We implement two approaches to solve the
Complex Word Identification task in Vietnamese:
frequency-based and classification-based with Sup-
port Vector Machines. We conclude with an ex-
periment involving human annotators to predict the

1https://github.com/undertheseanlp/
NLP-Vietnamese-progress
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suitability of our datasets for this task.

2 Characteristics of Vietnamese

The characteristics presented in this section are
extracted from Hạo (2000) and Hữu et al. (1998).

2.1 Language Family
Vietnamese is classified to be in the VietMuong
group of the Mon-Khmer branch in the Austro-
Asiatic language family.

Due to past colonization periods, Vietnamese
is also heavily influenced by Chinese, as exempli-
fied by the significant number of Sino-Vietnamese
words (words with Chinese origin or consists of
morphemes of Chinese origin) in the vocabulary,
French, as seen in the use of calque (or loan trans-
lation), and English.

2.2 Language Type
Vietnamese is an isolating and tonal language with
the following characteristics:

• It uses a Latin alphabet in conjunction with
diacritics and several other letters.

• There are six tones marked by accents:
level ("ngang"), falling ("huyền"), broken
("ngã"), curve ("hỏi"), rising ("sắc"), and drop
("nặng"). The pronunciation of these tones
differ across the Northern, Southern and Cen-
tral regions of Vietnam (Alves, 1995).

• It is a monosyllabic language.

• It is neither inflected nor conjugated, i.e. all
words in Vietnamese are immutable.

• All grammatical relations are established by
word order and function words.

2.3 A Word Unit
Vietnamese has a unit denoted "tiếng" that can
represent either (Nguyễn et al., 2006):

1. a syllable with regards to phonology

2. a morpheme with regards to morpho-syntax

3. a word with regards to sentence constituent
creation

Based on current literature, this unit is commonly
referred to as a syllable. Thus, the Vietnamese vo-
cabulary includes monosyllabic words ("từ đơn",
words with a single syllable) or compound words

("từ phức", words with more than one syllable).
About 85% of Vietnamese words are compound
words and more than 80% of syllables are stand-
alone words (Phuong et al., 2008; Dinh et al.,
2008). This means that unlike in English and other
Occidental languages that also utilize Latin alpha-
bets, white spaces are not reliable indicators of
word boundaries in Vietnamese. For example, "học
sinh" (student) is a compound word that includes
two syllables separated by a white space.

3 Data

We conduct two experiments across three Viet-
namese corpora of various sizes extracted from
different domains. We obtain a simple word list, a
stopword list, and use the two lists to extract three
complex word lists from the three corpora for eval-
uation purposes. The simple and complex wordlists
for the three corpora are available online.2

3.1 Word Lists
The following two word lists are used:

• Simple Word List: A list of 3,000 words ob-
tained by Luong et al. (2018) to construct a
Vietnamese text readability formula. The list
was used to replace the list of 3,000 words that
fourth grade students can understand used in
the Dale-Chall formula for English readabil-
ity (Dawkins et al., 1956) in the development
of an equivalent readability formula in Viet-
namese.

• Stopword List: A list of 1942 stop words.3

3.2 Corpora
The following three corpora are used to conduct
experiments. They are named according to the
purpose of their construction.

• READABILITY (Luong et al., 2020)

This corpus, constructed for research in Viet-
namese text readability, contains 1,825 doc-
uments of approximately 3 million words in
the literature domain. The documents were
sourced from college-level textbooks, stories
and literature websites, and were preprocessed
for the minimization of spelling errors and
standardization of punctuation, encoding, and

2https://github.com/phuongnguyen00/
cwi-in-vietnamese

3https://github.com/stopwords/
vietnamese-stopwords
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tone. The corpus was then divided by experts
into four categories: Very Easy (intended for
children or people with middle-school educa-
tion), Easy (intended for middle-school chil-
dren or people with middle-school education),
Medium (intended for high-school students
or people with high-school education), and
Difficult (specialized text intended for people
with college education). Based on the Viet-
namese Dictionary by Hoang (2017), more
difficult groups of texts are more likely to in-
clude Sino-Vietnamese words and other words
borrowed from English and French.

For this work we only use the Difficult sub-
corpus.

• CLUSTER (Tran et al., 2020)

This dataset was constructed for the task of ab-
stractive multi-document summarization. The
dataset includes 600 summaries of 300 clus-
ters with 1,945 news articles on five topics:
world news, domestic news, business, enter-
tainment and sports extracted from various
news outlets aggregated by Google News in
Vietnamese. Every cluster contains 4 - 10
articles, and the average number of articles
per cluster is 6. Each document contains the
following information: the title, the text con-
tent, the news source, the date of publication,
the author(s), the tag(s), and the headline sum-
mary. These pieces of information are labelled
using English.

For this work we only use the original docu-
ments.

• CLASSIFICATION (Hoang et al., 2007)

This corpus was constructed to solve the Text
Classification task (labeling documents with a
predefined topic). The corpus was comprised
of articles from four major online newspa-
pers, including VnExpress, TuoiTre Online,
Thanh Nien Online, and Nguoi Lao Dong on-
line. The data preprocessing phase included
the removal of HTML tags, normalization of
spelling, and other heuristics. There are 27
predefined topics ranging from music, family,
and eating and drinking, to international busi-
ness, new computer products and fine arts.

The authors constructed 2 corpora of 2 lev-
els of topic specificity (the higher level one

included more fine-grained topic categoriza-
tion). Corpus level 2 is used in this project.

3.3 Data Preprocessing
Since whitespace cannot be used to identify words
in Vietnamese, we use the VNCoreNLP toolkit (Vu
et al., 2018) for the word segmentation process.
The word segmentation tool in the toolkit re-
lies on the use of the Single Classification Rip-
ple Down Rules (SCRDR) tree and was reported
to achieve the best F1 score out of notable seg-
menters including vnTokenizer, JVnSegmenter, and
DongDu (Nguyen et al., 2017).

We extract three complex word lists from the
three corpora by removing all of the simple words,
stopwords, proper nouns (words whose syllables
are all capitalized), invalid words (such as words
that contain numbers, letters, hyperlinks, and En-
glish words that are used repeatedly). The syllables
in each word are concatenated with "_" as white
spaces are not reliable indicators of word bound-
aries in Vietnamese. The remaining words are then
identified as complex.

Table 1 shows various statistics for the three
corpora. The Readability corpus has the small-
est number of documents, but the documents tend
to be longer. The Cluster corpus is the smallest
of the three corpus with just over half a millions
words. The Classification corpus is the largest,
both in the number of documents and the number
of words. These sizes are paralleled in the num-
ber of unique words from each corpora, though the
Cluster corpus is high given its size indicating a
slightly more difficult corpus. All of the corpora
are comprised of about 60% simple words, though,
again the Cluster corpus is slightly smaller than
this.

For the experiments, we rely on the simple word
list, and the 3 complex word lists as extracted
above. We concatenate the simple word list with
each of the 3 complex word lists to create 3 three
separate datasets. These word lists will be referred
to by their corpus’ name in the following sections.

4 Methods

For each dataset, we have the simple word list and
the list of unique complex words. This creates
three complex word identification tasks to identify
whether a word is simple or complex. We exam-
ine two approaches for the this task: frequency
threshold and feature-based using Support Vector
Machines.
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REA CLU CLA
docs 321 1945 25,286

words 1.58M 563K 4.96M
simple words 1.01M 315K 2.95M

(64%) (56%) (59%)
stopwords 666K 174K 1.77M

(42%) (31%) (36%)
unique

complex words 10,273∗ 7,548 27,764

Table 1: Preliminary quantitative information of the
three corpora. [REA = READABILITY, CLU = CLUS-
TER, CLA = CLASSIFICATION]
∗ involves manual processing to remove foreign words and

invalid words

4.1 Frequency Threshold

For the Complex Word Identification task in En-
glish, frequency is an overpowering signal in deter-
mining whether a word is complex (Paetzold and
Specia, 2016). The frequency approach only uses
the frequency of a word in a particular corpus to
label it as complex or simple.

For each of the three datasets that include both
simple and complex words, we split it into training
(75%) and testing (25%) data. Within the training
dataset, we sort all of the words by frequency, and
consider each frequency f out of all frequencies
recorded as a cutoff point. For each frequency f ,
a word will be labelled complex if its frequency is
smaller than or equal to f , and it will be labelled
simple otherwise. We consider all possible fre-
quencies f as the cutoff point and and identify the
frequency that has the highest classification accu-
racy as our threshold for applying to the testing
data.

4.2 Support Vector Machines Classifier

The frequency approach only utilizes a single fea-
ture. Many features have been suggested for use
in the complex word identification task (Paetzold
and Specia, 2016). For our classifier we used four
features: corpus-specific frequency, number of syl-
lables, number of characters, and number of char-
acters and diacritics. All of the features besides
word length try and capture different notions of
word length. Some of these have worked well in
other languages and some of these are specifically
available in Vietnamese (i.e., diacritics).

The number of syllables is calculated based on
the number of underscores found in a word. Be-

cause white spaces are not reliable indicators of
word boundaries in Vietnamese, we concatenate
the syllables of one word together with underscores
in the data preprocessing step.

The number of characters and diacritics are cal-
culated as the length of the word after being nor-
malized into NFD (Normal Form D, also known
as canonical decomposition)4 with the unicode-
data Python module.5

We used the scikit-learn package (Pe-
dregosa et al., 2011) with the default regularization
parameter C = 1 and the radial basis function
kernel.

5 Experiments

We evaluate the performance of the two approaches
on the three corpora based on overall accuracy and
precision, recall, and F1 (for identifying simple
words).

5.1 Frequency Threshold
Frequency has been shown to be a strong signal in
the CWI process. Figure 1 shows the frequency
distribution of the three datasets. As expected,
all three follow the standard Zipf’s like distribu-
tion with a small number of words occurring very
frequently and most of the words only occuring a
small number of times.

Table 2 shows the accuracy, precision, recall and
F1 scores. Overall, the approach does quite well
with accuracies above 80% on all three corpora.
The recall is high, highlighting that the approach is
particularly good at identifying simple words. The
results are significantly higher across all metrics on
the Classification corpus. This is the corpus with
the most data, and all documents represent news
articles, which may have helped with consistency
both because of source as well as writing practices.

Table 3 shows the cutoff frequencies and cutoff
percentiles (if the words have frequencies below the
percentile, then they are complex words). While
cutoff itself varies significantly (mostly due to the
size of the corpus), the percentage this frequency
represents is much more consistent. For the two
larger corpora, Readability and Classification, there
is only a one percentage point difference: the top
10% most frequent words are the simple words.
The Cluster dataset has a lower frequency cutoff.

4This method does not account for the diacritic found in
the letter "đ", but accounts for all other diacritics.

5https://docs.python.org/3/library/
unicodedata.html
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(a) READABILITY

(b) CLUSTER

(c) CLASSIFICATION

Figure 1: The frequency distribution of the three full
(unsplit) datasets.

We hypothesize this may have to do with its small
size, though the source of the corpus might also
play a role. More investigation is needed.

Figure 2 shows the accuracy distributions across
possible cutoff frequencies for the three datasets.
The pattern is consistent across the three datasets.
The classification accuracy reaches a peak very
quickly and then tends to taper off. The accuracy
slightly drops and hits a plateau, except in the case
of the Classification dataset in which the accuracy
remains very high beyond the peak accuracy point.

5.2 Support Vector Machines Classifier

Table 4 shows the accuracy, precision, recall and F1
number for the feature-based SVM approach. The
SVM approach tends to have slightly higher recall
than the threshold approach, but the other met-

accuracy precision recall F1
REA 0.817 0.924 0.972 0.947
CLU 0.836 0.810 0.937 0.869
CLA 0.953 0.935 0.986 0.960

Table 2: The accuracy, precision, recall, and F1 scores
of the Frequency Threshold approach across the three
testing datasets. [REA = READABILITY, CLU =
CLUSTER, CLA = CLASSIFICATION]

cutoff frequency cutoff percentile
REA 154 91.5%
CLU 21 79.6%
CLA 168 92.6%

Table 3: The cutoff frequency and the cutoff percentile
of the three testing datasets. [REA = READABILITY,
CLU = CLUSTER, CLA = CLASSIFICATION]

(a) READABILITY

(b) CLUSTER

(c) CLASSIFICATION

Figure 2: The accuracy distributions across possible
cutoff frequencies of the three testing datasets.
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accuracy precision recall F1
REA 0.821 0.820 0.983 0.894
CLU 0.825 0.821 0.967 0.888
CLA 0.954 0.958 0.992 0.975

Table 4: The accuracy, precision, recall, and F1 scores
of the SVM classifier of the three testing datasets. [REA
= READABILITY, CLU = CLUSTER, CLA = CLAS-
SIFICATION]

accuracy precision recall F1
All 0.437 0.727 0.459 0.563
M 0.824 1.0 0.739 0.850

Table 5: The accuracy, precision, recall, and F1 scores
of the human annotation process. [M = Majority]

rics are not significantly different. The additional
features may provide some small information, but
the SVM is still heavily relying on the frequency
feature to make its prediction.

6 Human Annotation

To quantify the quality of the datasets for the au-
tomated CWI task in Vietnamese, three partici-
pants were asked to manually classify 199 words
as simple or complex, with 100 words randomly
picked from the simple words list and 99 words
from the Readability complex word list. The words
were presented by themselves without any addi-
tional context. All participants were native Viet-
namese speakers pursuing a college degree in the
United States. The instructions were provided in
Vietnamese, in which an example of one simple
word and one complex word is demonstrated. The
participants were reassured that there are no right
or wrong answers, encouraged to use their intuition
when making the decision, and to label a word as
complex when in doubt. Results are reported under
two circumstances: a word gets assigned a label
during this collective classification process if (a)
the label is chosen by all 3 of the participants and
(b) the label is chosen by a majority (i.e., 2 out of
3) participants.

Table 5 shows the results for the humans an-
notators. There is a drastic increase across all of
the metrics when we remove the restriction that
all annotators need to agree on a label. Accuracy
increases two-fold from around 43% to 82%, and
precision rises to 100%, meaning no simple words
are mislabelled. Recall nearly reaches 75%, which
reflects a decent level of agreement between the

annotators’ idea of complexity and what is repre-
sented in the Readability dataset. However, both
between annotators as well as between the task con-
struction, there is still some contention about which
words are simple and complex. This highlights the
difficulty and the subjectivity of this task.

7 Discussion

Frequency is an overpowering signal in determin-
ing whether a word is complex or simple as shown
by the accuracy, precision, recall and F1 scores of
the Frequency Threshold experiment, which are
all are greater than 0.8 (see Table 2). Recall scores
are all greater than 0.9 across the three datasets,
indicating that this approach can reliably identify
complex words. This finding is consistent with the
results obtained from the Complex Word Classifi-
cation task in English (Paetzold and Specia, 2016).

We analyze three corpora to try understand how
consistent frequency is. For the larger corpora, it is
surprisingly consistent with words in the top 10%
most frequent words as simple. For smaller corpora
this is more varied.

There are some shortcomings in the datasets that
may affect the performance. There exist words in
the simple word list that are acronyms that may be
obvious to a certain target audience but not for the
majority of Vietnamese readers (such as "UBND",
which stands for "Uỷ ban nhân dân" (people’s com-
mittee)), and can mean different things in different
contexts (such as TP, which can mean "thành phố"
(city) or "thành phần" (ingredient)). The Clus-
ter and Classification datasets also involve foreign
words, especially English words, that can add noise
to the data.

Support Vector Machines are also explored to
incorporate additional information into the predic-
tion task. Three more features are added in addition
to frequency for the SVM model: number of syl-
lables, number of characters, and number of char-
acters and diacritics. We hypothesize that longer
words and words with more diacritics will be harder
to recognize and understand. For example, "cỏ
cây" (trees and plants) can be perceived as a sim-
pler word to understand than "đường sá" (streets).
However, results show that using SVM with more
features do not improve the performance of the
classification task compared to using a frequency
threshold. In fact, we observe a decline in preci-
sion (from 92.40% to 81.95%) and F1 score (from
94.73% to 89.39%) on the Readability dataset. This
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can be explained by the fact that surface-level word
features do not necessarily make the word more
complex in terms of readability and understand-
ability. Coming back to our example, although the
former word "cỏ cây" is shorter and has fewer dia-
critics, it can also be simpler because both words
have clear meanings ("cỏ" - grass and "cây" - plant),
while the second syllable of the latter word "đường
sá" is a Sino-Vietnamese word that may not be
clearly decipherable. Because of this reason, "trung
kiên" (loyal), which is a Sino-Vietnamese word, can
be viewed as more complex than "phương hướng"
(direction), which is a more common word. Again,
this particular example shows that frequency gives
a very strong signal.

The Human Annotation experiment shows a
great difference between labeling based on the
agreement between all three annotators or between
the majority of annotators (2 out of 3 annotators).
The accuracy and recall scores nearly double, and
the precision score is 1.0 for the majority vote.
This means that the majority of annotators’ label-
ing of complex words is consistent with the data
we obtain, which can indicate the suitability of the
Readability dataset for the CWI training purposes.

8 Conclusions and Future Work

Several next steps can be taken beyond this project:

More Salient Features: Features that describe
a word’s characteristics beyond its pronunciation
can be helpful to obtain a better classification per-
formance. Some examples include sense count
(number of entries in a dictionary for example),
synonym count, and word type (whether the word
is loan word).

Context: The approach we explore predicts
words as simple/complex regardless of their con-
text. In some cases, the context information can
help provide additional information and additional
features to help the identification (Paetzold and
Specia, 2016).

More Diverse Human Annotators: Developing
a clear definition of "word simplicity" and "word
complexity" that reflects the needs of specific audi-
ences by creating a bigger and more diverse pool of
annotators with regards to gender, education back-
ground, and income level can also be helpful in
constructing models that personalize text simplifi-
cation for readers from different groups.

Text Simplification is the process of reducing
the syntactical and lexical complexity of original
text to make it more readable and understandable.
Although this task has been shown to benefit var-
ious groups of audience and has been researched
and experimented with extensively in English and
several other languages, there has not been con-
siderable progress made in Vietnamese-specific
Text Simplification. In this study, we focus on the
Complex Word Identification step in the Lexical
Simplification pipeline, one approach to solve the
Text Simplification problem. We view the ques-
tion as a binary classification task, and conduct
three experiments Frequency Threshold, Support
Vector Machines, and Human Annotation to iden-
tify important features in the classification process
and investigate the quality of our datasets for this
particular purpose.

We observe that frequency is a very strong sig-
nal in the Complex Word Identification process in
Vietnamese, shown by the Frequency Threshold
experiment where we achieve a mean accuracy of
86.87% across our three datasets. The consistency
of results across the three datasets give us a general
rule to identify complex words in any corpus: the
10-20% of most frequent words are likely to be
simple words. The use of Support Vector Machines
with surface-level word features such as number of
syllables and number of characters only marginally
improves the recall scores but makes no signif-
icant difference in terms of accuracy, precision,
and F1 scores. The Human Annotation experiment
demonstrates how with a small number of annota-
tors and a small sample, we can quantify how one
dataset aligns with the definition of word complex-
ity of college-educated native Vietnamese speakers.
Considering the absence of significant progress on
the Vietnamese-specific Text Simplification task
and specifically the Complex Word Identification
question, these three experiments constitute a first
step in the exploration of the Lexical Simplification
pipeline for Vietnamese.

References
Sandra M Aluísio, Lucia Specia, Thiago AS Pardo,

Erick G Maziero, and Renata PM Fortes. 2008. To-
wards brazilian portuguese automatic text simplifi-
cation systems. In Proceedings of the eighth ACM
symposium on Document engineering, pages 240–
248.

Mark Alves. 1995. Tonal features and the development

65



of vietnamese tones. Working Papers in Linguistics,
27:1–13.

Tran Ngoc Anh, Nguyen Phuong Thai, Dao Thanh
Tinh, and Nguyen Hong Quan. 2015. Identifying
reduplicative words for vietnamese word segmenta-
tion. In The 2015 IEEE RIVF International Confer-
ence on Computing & Communication Technologies-
Research, Innovation, and Vision for Future (RIVF),
pages 77–82. IEEE.

Gianni Barlacchi and Sara Tonelli. 2013. Ernesta: A
sentence simplification tool for children’s stories
in italian. In International Conference on Intelli-
gent Text Processing and Computational Linguistics,
pages 476–487. Springer.

Stefan Bott, Horacio Saggion, and Simon Mille. 2012.
Text simplification tools for spanish. In Proceedings
of the Eighth International Conference on Language
Resources and Evaluation (LREC’12), pages 1665–
1671.

John Carroll, Guido Minnen, Yvonne Canning, Siobhan
Devlin, and John Tait. 1998. Practical simplification
of english newspaper text to assist aphasic readers. In
Proceedings of the AAAI-98 Workshop on Integrat-
ing Artificial Intelligence and Assistive Technology,
pages 7–10. Citeseer.

Raman Chandrasekar, Christine Doran, and Srinivas
Bangalore. 1996. Motivations and methods for text
simplification. In COLING 1996 Volume 2: The 16th
International Conference on Computational Linguis-
tics.

Jin-Woo Chung, Hye-Jin Min, Joonyeob Kim, and
Jong C Park. 2013. Enhancing readability of web
documents by text augmentation for deaf people. In
Proceedings of the 3rd International Conference on
Web Intelligence, Mining and Semantics, pages 1–10.

William Coster and David Kauchak. 2011. Learning to
simplify sentences using wikipedia. In Proceedings
of the workshop on monolingual text-to-text genera-
tion, pages 1–9.

Scott A Crossley, Max M Louwerse, Philip M Mc-
Carthy, and Danielle S McNamara. 2007. A lin-
guistic analysis of simplified and authentic texts. The
Modern Language Journal, 91(1):15–30.

John Dawkins, Edgar Dale, and Jeanne S Chall. 1956.
A reconsideration of the dale-chall formula [with
reply]. Elementary English, 33(8):515–522.

Quang Thang Dinh, Hong Phuong Le, Thi Minh Huyen
Nguyen, Cam Tu Nguyen, Mathias Rossignol, and
Xuan Luong Vu. 2008. Word segmentation of viet-
namese texts: a comparison of approaches. In 6th
international conference on Language Resources and
Evaluation-LREC 2008.

Richard Evans, Constantin Orasan, and Iustin Dornescu.
2014. An evaluation of syntactic simplification rules
for people with autism. Association for Computa-
tional Linguistics.

Richard J Evans. 2011. Comparing methods for the
syntactic simplification of sentences in informa-
tion extraction. Literary and linguistic computing,
26(4):371–388.

Elizabeth C Dee Gardner et al. 2007. Effects of lexi-
cal simplification during unaided reading of english
informational texts. TESL Reporter, 40:33–33.

Eva Hasler, Adrià de Gispert, Felix Stahlberg, Aurelien
Waite, and Bill Byrne. 2017. Source sentence simpli-
fication for statistical machine translation. Computer
Speech & Language, 45:221–235.

Michael Heilman and Noah A Smith. 2010. Good ques-
tion! statistical ranking for question generation. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 609–
617.

Phe Hoang. 2017. Từ điển Tiếng Việt (Vietnamese Dic-
tionary). Da Nang Publising House.

Vu Cong Duy Hoang, Dien Dinh, Nguyen Le Nguyen,
and Hung Quoc Ngo. 2007. A comparative study
on vietnamese text classification methods. In 2007
IEEE international conference on research, innova-
tion and vision for the future, pages 267–273. IEEE.

Bui Thanh Hung, Nguyen Le Minh, and Akira Shimazu.
2012. Sentence splitting for vietnamese-english
machine translation. In 2012 Fourth International
Conference on Knowledge and Systems Engineering,
pages 156–160. IEEE.

Cao Xuân Hạo. 2000. Tiếng việt-mấy vấn đề ngữ âm,
ngữ pháp, ngữ nghĩa (vietnamese-some questions on
phonetics, syntax and semantics). NXB Giáo dục,
Hanoi.

Đạt Hữu, TD Trần, and TL Đào. 1998. Cơ sở tiếng việt
(basis of vietnamese).

Akihiro Katsuta and Kazuhide Yamamoto. 2019. Im-
proving text simplification by corpus expansion with
unsupervised learning. In 2019 International Con-
ference on Asian Language Processing (IALP), pages
216–221. IEEE.

An-Vinh Luong, Diep Nguyen, and Dien Dinh. 2018.
A new formula for vietnamese text readability as-
sessment. In 2018 10th International Conference on
Knowledge and Systems Engineering (KSE), pages
198–202. IEEE.

An-Vinh Luong, Diep Nguyen, and Dien Dinh. 2020.
Building a corpus for vietnamese text readability as-
sessment in the literature domain. Universal Journal
of Educational Research, 8(10):4996–5004.

Marc Marschark and Patricia Elizabeth Spencer. 2010.
The Oxford handbook of deaf studies, language, and
education, vol. 2. Oxford University Press.

66



Takumi Maruyama and Kazuhide Yamamoto. 2017.
Sentence simplification with core vocabulary. In
2017 International Conference on Asian Language
Processing (IALP), pages 363–366. IEEE.

Jana M Mason. 1978. Facilitating reading comprehen-
sion through text structure manipulation. Center for
the Study of Reading Technical Report; no. 092.

Makoto Miwa, Rune Saetre, Yusuke Miyao, and Jun’ichi
Tsujii. 2010. Entity-focused sentence simplification
for relation extraction. In Proceedings of the 23rd In-
ternational Conference on Computational Linguistics
(Coling 2010), pages 788–796.

Cam-Tu Nguyen, Trung-Kien Nguyen, Xuan-Hieu Phan,
Minh Le Nguyen, and Quang Thuy Ha. 2006a. Viet-
namese word segmentation with crfs and svms: An
investigation. In Proceedings of the 20th Pacific Asia
Conference on Language, Information and Compu-
tation, pages 215–222.

Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark
Dras, and Mark Johnson. 2017. A fast and accu-
rate vietnamese word segmenter. arXiv preprint
arXiv:1709.06307.

Thanh V Nguyen, Hoang K Tran, Thanh TT Nguyen,
and Hung Nguyen. 2006b. Word segmentation for
vietnamese text categorization: an online corpus ap-
proach. RIVF06.

Thị Minh Huyền Nguyễn, Laurent Romary, Mathias
Rossignol, and Xuân Lương Vũ. 2006. A lexicon
for vietnamese language processing. Language Re-
sources and Evaluation, 40(3):291–309.

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th annual
meeting of the association for computational linguis-
tics (volume 2: Short papers), pages 85–91.

Gustavo Paetzold and Lucia Specia. 2016. Semeval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569.

Gustavo Henrique Paetzold. 2016. Lexical Simplifica-
tion for Non-Native English Speakers. Ph.D. thesis,
University of Sheffield.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Hông Phuong, Nguyên Thi Minh Huyên, Azim Rous-
sanaly, Hô Tuòng Vinh, et al. 2008. A hybrid ap-
proach to word segmentation of vietnamese texts. In
International conference on language and automata
theory and applications, pages 240–249. Springer.

Luz Rello, Ricardo Baeza-Yates, Laura Dempere-
Marco, and Horacio Saggion. 2013. Frequent words
improve readability and short words improve under-
standability for people with dyslexia. In IFIP Con-
ference on Human-Computer Interaction, pages 203–
219. Springer.
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Abstract

Current virtual assistant (VA) platforms are be-
holden to the limited number of languages they
support. Every component, such as the tok-
enizer and intent classifier, is engineered for
specific languages in these intricate platforms.
Thus, supporting a new language in such plat-
forms is a resource-intensive operation requir-
ing expensive re-training and re-designing. In
this paper, we propose a benchmark for eval-
uating language-agnostic intent classification,
the most critical component of VA platforms.
To ensure the benchmarking is challenging and
comprehensive, we include 29 public and inter-
nal datasets across 10 low-resource languages
and evaluate various training and testing set-
tings with consideration of both accuracy and
training time. The benchmarking result shows
that Watson Assistant, among 7 commercial
VA platforms and pre-trained multilingual lan-
guage models (LMs), demonstrates close-to-
best accuracy with the best accuracy-training
time trade-off.

1 Introduction

Virtual assistant (VA) platforms that enable cus-
tomers to train and deploy their chatbots have
seen growing demand in recent years. This has
attracted significant interest from both industry and
academia to develop new machine learning (ML)
models and datasets for these task-oriented dialog
systems. In a dialog system, intent classification
as the core component identifies user intent of a
user’s utterance so that the system can respond ap-
propriately by triggering dialog nodes in predefined
dialog trees.

Although there has been a lot of exploration
around implementing intent classification models
for English, not much work has been extended to
low-resource languages. Due to the vast number of
world languages, it is not trivial for an enterprise
VA platform to support its global customers.

∗Equal contributions from the corresponding authors.

Figure 1: Training time vs. accuracy on Leyzer (Pol-
ish) dataset for all models. Full train set and test set
are used. All methods, except WA and RASA, are
trained using GPU. WA offers the best trade-off be-
tween training time and accuracy.

.

Currently, VA platforms usually take the follow-
ing two methods to handle unsupported languages:

• Use without modification: VA platforms usu-
ally include language-specific components for
each supported language, such as language
models (LMs), tokenizers, part-of-speech tag-
gers. Directly applying them to unsupported
languages could dramatically hurt the perfor-
mance. Several preprocessing steps, such
as contraction handling, stemming, lemma-
tization, can produce unpredictable behavior
when used with an unsupported language.

• Using translation: Translating unsupported
language to the supported ones is an intuitive
solution. However, low-quality translation
can result in classification errors. Also, there
is additional round-trip time and cost when
including a translation component. In enter-
prise scenarios, this may lead to the deployed
solution being more expensive.

While we see an increasing need to develop such
a framework for non-English languages, develop-
ing a language-agnostic modeling paradigm that
can serve a large number of languages carries im-
portant business applications as language-specific
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solutions are difficult and expensive to maintain.
In addition to the above challenge, there are

two more considerations while developing such
language-agnostic VAs. Firstly, due to the high cost
of curating training data for multiple languages,
real-world intent detection models usually must be
able to train and perform well on few-shot training
datasets. Secondly, the training time is also a crit-
ical factor to be considered. Given a commercial
VA platform, authoring an assistant for a specific
domain still takes dozens of hours, and the whole
process involves hundreds to thousands of times of
iteration. As model training is called in each itera-
tion, keeping training time in the range of seconds
is crucial.

In this paper, we conduct a comprehensive and
robust evaluation of several modeling approaches
across multiple low-resource languages in real-
world settings and focus on their accuracy, train-
ing time, and computation requirements. We
benchmark two commercial VA platforms, includ-
ing IBM Watson Assistant (WA)1, RASA2, 3 and
five representative multilingual LMs with different
model sizes and architectures.

To benchmark the models on as many low-
resource languages as possible, we include 9 public
datasets from the research community across 5 lan-
guages and curate 20 real-world datasets from a
commercial VA platform across 7 languages and 9
domains in the evaluation. We also create the few-
shot version of these datasets to evaluate the mod-
els’ performance on small datasets. Additionally,
after observing the close accuracy results among
the models, we follow Arora et al. (2020) and Qi
et al. (2021) to create the TF*IDF and jaccard based
difficult testing set to differentiate them better. 4

Overall, our benchmark generates about 1000
data points, including accuracy and training time
in default, few-shot training, and difficult testing
settings. While LaBSE (Feng et al., 2020) pro-
duces the highest accuracy in almost all settings,
along with all other LMs, their training time is
too long to be used in commercial production. On
the contrary, Watson Assistant achieves the best
accuracy-training trade-off by achieving the com-

1https://www.ibm.com/products/watson-assistant
2https://rasa.com
3We do not include other commercial VA providers due to

the benchmarking prohibition in their terms of use.
4The difficult test sets inherit the same licenses and terms

of original datasets. https://github.com/posuer/benchmark-
multilingual-intent-classification

petitive accuracy and consistent short training time
of less than one minute. Figure1 demonstrates this
comparison on one of the benchmarking datasets.

2 Related Work

Multilingual Intent Classification A line of work
has studied commercial conversational AI services
(Braun et al., 2017; Arora et al., 2020; Liu et al.,
2019) and pretrained LMs (Casanueva et al., 2020;
Larson et al., 2019; Arora et al., 2020; Bunk et al.,
2020; Qi et al., 2021) on intent classification task in
English. Li et al. (2020) built a benchmark on their
proposed multilingual dataset, but only evaluated
two multilingual pretrained LMs. Comparing to
previous work, we conduct a comprehensive bench-
marking study by evaluating seven conversational
AI services or LMs on 9 public datasets and 20
internal datasets covering 10 languages.

Resource Efficiency When applying a VA sys-
tem in a production environment, the training cost
of the model is an important consideration. Most of
the prior work only focuses on the accuracy of mod-
els but does not evaluate the training time they re-
quire given the same training resources. Casanueva
et al. (2020) only compare three models. In our
work, we compared the training time of the 7 mod-
els in addition to their accuracy.

Few-shot Training Li et al. (2020) and
Casanueva et al. (2020) conducted zero-shot or
few-shot training to resemble the training process
of a commercial VA system, but did not conduct a
comprehensive evaluation.

3 Benchmarking

In this section, we firstly introduce the three bench-
marking settings in our experiments, and then de-
scribe the VA platforms and models we evaluate.
Lastly, we present and analyze the results.

3.1 Experimental Settings

Standard Training This corresponds to the stan-
dard benchmark setting where we train on the full
train set and evaluate on the full test set.
Few-shot Training In a real production environ-
ment, the dialog system is usually fine-tuned for
specific topics with scarce labeled data. Therefore,
we propose a few-shot setting where we create five
few-shot subsets by sampling 5, 15, and 30 exam-
ples per intent class from each of the datasets.
Testing with difficult examples In experiments
with the standard train/test splits in the data, we

70



observe that most models can achieve high accu-
racy. One of the possible reasons could be that
the semantic and lexical distribution of test and
train set are very similar. To better evaluate and
compare the performance of the models, we create
difficult test subsets with selected examples from
the original test set.

We use a similar setup as described in Arora et al.
(2020) and Qi et al. (2021) to create two difficult
test subsets, TF*IDF and jaccard, for each of the
datasets. Specifically, we firstly concatenate all
tokenized training examples and transform them
into a vector space of TF*IDF scores (Salton and
McGill, 1986) (count scores for jaccard), then use
the initialized TF*IDF (or jaccard) vectorizer to
transform each testing example and calculate the
cosines distance (or jaccard score). For each intent
class, 5 farthest testing examples are selected to
build the difficult subset.

3.2 Models

In this work, we benchmark 7 different intent clas-
sification models or services. Among them, 5 are
multilingual pre-trained LMs, and the remaining 2
are commercial VA platforms, IBM Watson Assis-
tant and RASA.

Watson Assistant provides language-specific
models for 13 popular languages, and a language-
agnostic model that responds to all other languages.
We focus on the latter for the experiments in the
paper. We use public API to train and evaluate the
model. For training time, we measure the round-
trip latency from sending the training request until
we receive the status that the model is trained and
available for serving.

RASA is an automated dialogue framework that
allows incorporating various text processing tools
and pre-trained LMs. In our experiment, we follow
the default setting that feeds count-based features
to an intent classifier, DIET (Bunk et al., 2020).
We fine-tune the model with each of the dataset for
100 epochs.

We also evaluate following multilin-
gual pretrained LMs: multilingual BERT
(mBERTbase-cased) (Devlin et al., 2018) , Distil-
mBERTbase-cased

5 (Sanh et al., 2019), XLM-Rbase
(Conneau et al., 2019), USE-Multilingual (USE-

5https://huggingface.co/distilbert-base-multilingual-
cased

Mlarge)6 (Yang et al., 2019), and LaBSE7 (Feng
et al., 2020).

For mBERT, Distil-mBERT, XLM-R, and
LaBSE model, we add a softmax classifier on top
of the [CLS] token and fine-tune all layers. We use
AdamW (Loshchilov and Hutter, 2018) with 0.01
weight decay and a linear learning rate scheduler.
We choose a batch size of 32, epochs of 30 8, max
sequence length 128 and learning rate warmup for
the first 50 iterations, peaking at 0.00005.

For USE-M, we train a softmax layer on top of
the sentence representation and fine-tune all layers
for 100 epochs. A learning rate of 0.01 and batch
size of 32 are used for all train set variants. All
models are trained or fine-tuned with a single CPU
core or a single K80 GPU.

4 Benchmarking Datasets

Based on the availability and quality of public in-
tent classification datasets, we propose our bench-
mark consisting of 9 public datasets across 5 lan-
guages, including Hindi, Polish, Russian, Thai &
Turkish, and 20 internal datasets across 7 languages
and 9 domains. A summary of dataset statistics and
preprocessing details are provided in Table 1.

MTOP (Li et al., 2020) is an almost parallel mul-
tilingual dataset covering 6 languages and 11 do-
mains (e.g., weather, calling, alarm, etc.). English
utterances and annotations are generated by crowd-
sourced workers and annotators and then human
translated to other languages. We use the Hindi and
Thai subset of MTOP in our experiments.

Multilingual ATIS (MultiATIS) (Upadhyay
et al., 2018) contains airline travel inquiries in
Hindi and Turkish, which are manually translated
from the original English ATIS dataset. In our ex-
periments, utterances with more than one intent
label (concatenated by white space) are expanded
into multiple records, one for each intent label.

Leyzer (Sowański and Janicki, 2020) is a mul-
tilingual chatbot dataset which contains a large
number of intents and covers 20 domains such as
email, contacts, etc. This corpus is generated with a
grammar-based approach. We use the Polish subset
of Leyzer in our experiments.

6https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/1

7https://huggingface.co/sentence-transformers/LaBSE
8We experimented with both 30 and 40 epochs settings

and present the results of 30 epochs as it produced compatible
results with shorter training time.
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Public Datasets

Language Dataset Train Test Intent Types

Hindi
MTOP 11,251 2,789 113

MultiATIS 1,565 909 16

Polish Leyzer 6,366 991 168

Russian
Chatbot-ru 5,517 1,380 79

PSTU 1,082 271 7

Thai
MultiTOD 1,928 1,692 10

MTOP 10,622 2,765 110

Turkish
Chatbot-tr 761 191 24
MultiATIS 628 725 15

Internal Datasets

Language Domain Train Test Intent Types

Finnish COVID-19 1045 262 60

Greek COVID-19 198 50 15
Insurance 281 71 28

Norwegian Bokmål

banking 223 56 13
customer service 304 76 18

telco 317 80 19
utilities 176 44 10

Norwegian Nynorsk

banking 224 57 13
customer service 300 76 18

teleco 350 88 21
utilities 176 45 10

Polish general 795 199 43

Russian
banking 1364 342 92

COVID-19 1392 349 122
general 623 158 46

Swedish

banking 211 54 13
customer care 294 74 18

teleco 345 87 21
utilities 172 43 10

Turkish customer care 184 46 9

Table 1: Dataset Statistics. Prepossessing has been
done on all datasets (details in Datasets Section). Num-
bers reflect the actual size used in our experiment.

Multilingual Task Oriented Data (Multi-
TOD) (Schuster et al., 2018) contains annotated
utterances in English, Spanish, and Thai across the
topics like weather, alarm, etc. English utterances
are first produced by native English speakers and
labelled by annotators, then translated into Spanish
and Thai by native speakers of the target languages.

Chatbot-ru (Russian)9, PSTU (Russian)10, and
Chatbot-tr (Turkish)11 are three intent classifica-
tion datasets publicly released on Github. For each
of the three datasets, we split them into train and
test set in a stratified fashion, using intent type as
the class labels. Intents with only one utterance are

9https://github.com/Koziev/chatbot/blob/master/data/intents.txt
10https://github.com/Perevalov/pstu_assistant/blob/master/

data/data.txt
11https://github.com/zerocodenlu/chatbot-

tr/blob/master/data/nlu/intent_data.csv

discarded.
Internal Datasets To enable benchmarking with

real-world data and evaluate the models in more
languages, we curate 20 internal datasets in 8 lan-
guages across 9 domains from users of a virtual as-
sistant platform. Different from the public datasets,
these internal datasets are used in enterprise pro-
duction environment to train real-world virtual as-
sistants and serve customers in domains including
banking, COVID-19 and telecommunication. The
detailed size, domain and language information of
these datasets are listed in Table 1.

Dataset Preprocessing We conducted follow-
ing preprocessing for above datasets. We firstly
transform all utterances in the train sets into lower
case and perform deduplication. After this process,
we use the original data without duplication for
experiments. Test sets of Leyzer and MultiATIS
contain utterances with intents unseen in the train-
ing data. We keep such utterances in the test sets
to ensure a fair comparison with others’ work on
these datasets.

5 Results and Analysis

Standard Training Setting Table 2 shows re-
sults of WA, RASA, and 5 pretrained LMs on 9
public datasets across 5 languages. We train on
the full train sets and report results on the full test
sets, measured by accuracy. In Table 3, we present
the results for internal datasets in the same setting.
Overall, LaBSE performs best among the 7 mod-
els on both public and internal datasets. However,
considering that fine-tuning large LMs, such as
LaBSE, requires significantly more computational
resources, WA makes a great trade-off by achieving
84.8% average accuracy that is only 4.5% lower
than LaBSE.

Few-shot Training Setting In table 4, we
present the accuracy of models trained on the full
set and three subsets consisting of 5/15/30 exam-
ples per intent type and evaluated on the full test set.
We obtain the accuracy per language by averaging
the accuracy of all datasets in that language.

Among the models, WA shows an advantage
over RASA and mBERT in the few-shot setting
of 5 examples per intent based on the average ac-
curacy across the 5 languages in Table 4. For all
models, we observe significant drop in accuracy
in 5 examples per intent train set compared to the
full train set, decreasing from about 80% to about
60% on average. This shows that the limitation in
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Models
Hindi Polish Russian Thai Turkish

Average
MTOP MultiATIS Leyzer Chatbot-ru PSTU MultiTOD MTOP Chatbot-tr MultiATIS

WA 90.7 87.6 69.1 81.5 79.7 96.6 89.8 80.6 87.2 84.8
RASA 88.5 88.3 64.0 66.7 75.3 96.6 89.5 81.7 88.3 82.1

mBERT 92.9 90.0 64.6 81.9 79.7 97.1 92.5 77.5 85.7 84.6
XLM-R 94.3 89.9 69.7 86.1 81.5 96.9 94.2 84.8 89.1 87.4
USE-M 75.4 81.6 59.3 84.5 80.8 97.4 93.5 83.2 84.8 82.3
LaBSE 94.4 91.6 74.8 87.2 83.8 97.4 94.5 87.4 92.6 89.3

Distil-mBERT 92.5 89.1 67.2 79.4 80.1 97.2 92.0 78.5 87.2 84.8

Table 2: Accuracy on 9 public datasets for WA, RASA, and 5 pretrained LMs. Each model is trained on full
train set and evaluated on full test set.

Models Finnish Greek Norwegian Bokmål Norwegian Nynorsk Polish Russian Swedish Turkish Average

WA 66.9 70.2 74.8 73.9 68.3 77.6 75.0 80.6 73.4
RASA 64.6 66.1 75.7 73.8 62.3 70.0 68.5 77.8 69.9

mBERT 71.9 65.1 74.6 73.1 84.4 78.3 78.6 75.0 75.1
XLM-R 75.8 84.2 86.6 82.0 79.4 79.4 85.9 75.0 81.0
USE-M 65.8 56.1 66.6 64.6 78.9 78.3 70.2 72.2 69.1
LaBSE 78.1 85.9 89.9 86.6 87.4 81.9 88.8 86.1 85.6

Distil-mBERT 69.6 71.2 73.8 67.4 80.9 76.1 73.4 72.2 73.1

Table 3: Macro accuracy over internal datasets for each language. Models are trained on the full train set of
each dataset and evaluated on the full test set. Averaged accuracy at the last row is the simple averaging.

Hindi Polish Russian Thai Turkish Average
Models 5 15 30 full 5 15 30 full 5 15 30 full 5 15 30 full 5 15 30 full 5 15 30 full

WA 50.4 60.7 76.0 89.1 60.1 67.2 69.6 69.1 51.3 64.6 71.8 80.6 63.3 77.4 82.9 93.2 61.9 72.5 76.5 83.9 57.4 68.5 75.4 83.2
RASA 29.6 46.3 61.2 88.4 47.1 58.9 61.0 63.9 32.7 44.6 51.3 71.0 43.6 62.3 73.2 93.0 43.4 64.0 69.0 85.0 39.3 55.2 63.1 80.2

mBERT 62.3 75.6 80.4 91.5 61.4 66.9 68.2 64.6 48.3 58.4 67.8 80.8 56.7 81.0 85.8 94.8 48.6 69.3 75.6 81.6 55.4 70.2 75.6 82.6
XLM-R 64.8 78.8 82.4 92.1 66.7 73.6 73.8 69.7 52.8 67.2 73.9 83.8 72.0 46.4 47.3 95.6 55.7 73.3 82.0 87.0 62.4 67.8 71.9 85.6
USE-M 24.6 37.3 48.3 78.5 60.0 62.2 61.0 59.3 63.5 67.6 72.8 82.7 81.2 87.5 89.8 95.4 75.2 80.8 84.6 84.0 60.9 67.1 71.3 80.0
LaBSE 74.8 85.0 89.5 93.0 69.9 75.3 74.9 74.8 60.2 69.5 74.7 85.5 73.9 88.1 91.3 96.0 66.7 81.1 84.6 90.0 69.1 79.8 83.0 87.8
Distil-
mBERT 54.9 69.4 78.4 90.8 57.6 65.1 65.5 67.2 32.9 57.4 68.8 79.7 54.3 78.8 84.7 94.6 46.3 63.8 74.8 82.9 49.2 66.9 74.4 83.0

Table 4: Few-shot setting on public datasets with full test set. Accuracy for each language is averaged over all
datasets for that language. Second row corresponds to 5, 15, 30 & all examples per intent in the train set.

Hindi Polish Russian Thai Turkish Average
Models full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf full jaccard tf*idf

WA 89.1 55.6 49.5 69.1 68.0 68.8 80.6 67.5 64.0 93.2 70.4 60.9 83.9 61.9 57.9 83.2 64.7 60.2
RASA 88.4 56.7 50.0 63.9 59.5 60.2 71.0 64.5 58.2 93.0 70.2 67.5 85.0 62.3 60.9 80.2 62.7 59.4

mBERT 91.5 67.8 62.4 64.6 65.7 66.5 80.8 76.5 73.1 94.8 77.8 71.3 81.6 59.4 52.8 82.6 69.4 65.2
XLM-R 92.1 68.3 62.6 69.7 71.1 70.6 83.8 78.8 76.4 95.6 80.7 76.2 87.0 72.0 67.1 85.6 74.2 70.6
USE-M 78.5 40.1 34.2 59.3 59.2 58.5 82.7 76.0 76.0 95.4 78.9 73.1 84.0 61.2 58.4 80.0 63.1 60.0
LaBSE 93.0 72.2 68.7 74.8 76.8 76.8 85.5 79.0 78.3 96.0 82.2 75.2 90.0 79.1 75.6 87.8 77.8 74.9

Distil-mBERT 90.8 63.1 57.0 67.2 66.2 65.5 79.7 69.7 70.4 94.6 78.3 72.1 82.9 59.2 55.2 83.0 67.3 64.0

Table 5: Difficult test accuracy comparison on public datasets. Accuracy for each language is averaged over all
datasets in the corresponding language. full, jaccard, and tf*idf refer to full, jaccard and tf*idf test sets accordingly.

Hindi Polish Russian Thai Turkish

Models Resource MTOP MultiATIS Leyzer Chatbot-ru PSTU MultiTOD MTOP Chatbot-tr MultiATIS

WA CPU 0.64 0.34 0.92 0.79 0.45 0.40 1.03 0.38 0.45
RASA CPU 66.49 8.32 36.34 35.99 15.48 7.11 73.61 2.12 3.08

mBERT GPU 175.89 24.70 98.11 83.17 16.44 29.12 160.35 11.45 9.50
XLM-R GPU 185.41 25.85 104.68 90.82 17.92 31.69 174.50 12.63 10.46
USE-M GPU 103.46 19.94 50.06 40.44 14.70 14.73 72.84 6.95 7.39
LaBSE GPU 207.02 28.77 116.80 101.58 19.98 35.48 195.59 14.01 11.62

Distil-mBERT GPU 90.02 12.55 50.75 44.11 8.73 15.46 85.34 6.09 5.04

Table 6: Training time. Macro averaged training time in minutes and resource types while training on full train
set and evaluating on full test set for each public dataset.
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5 ex/intent 30 ex/intent full
Models Time Acc. Time Acc. Time Acc.

HINDI

MTOP
WA 0.44 45.7% 0.56 75.1% 0.64 90.7%
RASA 2.15 21.0% 10.90 54.6% 66.49 88.5%
mBERT 8.02 51.0% 33.44 82.1% 175.89 92.9%
XLM-R 8.45 68.4% 35.21 88.4% 185.41 94.3%
USE-M 6.80 18.4% 21.32 44.1% 103.46 75.4%
LaBSE 9.40 73.6% 39.22 88.8% 207.02 94.4%
Distil-mBERT 4.10 46.2% 17.08 78.5% 90.02 92.5%

MultiATIS
WA 0.37 55.1% 0.34 76.9% 0.34 87.6%
RASA 0.38 38.1% 1.35 67.4% 8.32 88.3%
mBERT 0.98 73.6% 3.85 78.8% 24.70 90.0%
XLM-R 1.03 61.1% 4.10 76.5% 25.85 89.9%
USE-M 2.91 30.8% 4.93 52.5% 19.94 81.6%
LaBSE 1.15 76.0% 4.55 90.2% 28.77 91.6%
Distil-mBERT 0.50 63.6% 1.98 78.4% 12.55 89.1%

POLISH

Leyzer
WA 0.44 60.1% 0.70 69.6% 0.92 69.1%
RASA 2.62 47.2% 12.83 60.8% 36.34 64.0%
mBERT 11.91 61.4% 43.71 68.2% 98.11 64.6%
XLM-R 13.08 66.7% 48.18 73.8% 104.68 69.7%
USE-M 7.62 60.0% 23.43 61.0% 50.06 59.3%
LaBSE 14.55 69.9% 53.32 74.9% 116.80 74.8%
Distil-mBERT 6.36 57.6% 23.18 65.5% 50.75 67.2%

RUSSIAN

Chatbot-ru
WA 0.34 52.4% 0.48 73.2% 0.79 81.5%
RASA 2.06 22.6% 10.57 42.8% 35.99 66.7%
mBERT 6.04 50.1% 28.53 70.2% 83.17 81.9%
XLM-R 6.64 52.9% 31.27 76.2% 90.82 86.1%
USE-M 4.82 67.6% 14.89 75.6% 40.44 84.5%
LaBSE 7.39 63.2% 34.91 79.6% 101.58 87.2%
Distil-mBERT 3.23 39.2% 15.16 68.9% 44.11 79.4%

PSTU
WA 0.29 50.2% 0.35 70.5% 0.45 79.7%
RASA 0.56 42.8% 3.27 59.8% 15.48 75.3%
mBERT 0.62 46.5% 3.16 65.3% 16.44 79.7%
XLM-R 0.70 52.8% 3.47 71.6% 17.92 81.5%
USE-M 2.64 59.4% 4.48 70.1% 14.70 80.8%
LaBSE 0.81 57.2% 3.89 69.7% 19.98 83.8%
Distil-mBERT 0.34 26.6% 1.69 68.6% 8.73 80.1%

5 ex/intent 30 ex/intent full
Models Time Acc. Time Acc. Time Acc.

THAI

MultiTOD
WA 0.40 77.3% 0.38 90.9% 0.40 96.6%
RASA 0.32 65.7% 1.18 90.1% 7.11 96.6%
mBERT 0.81 62.7% 4.18 92.1% 29.12 97.1%
XLM-R 0.90 82.2% 4.58 93.9% 31.69 96.9%
USE-M 2.66 90.0% 4.02 94.0% 14.73 97.4%
LaBSE 1.02 77.1% 5.12 94.3% 35.48 97.4%
Distil-mBERT 0.44 69.9% 2.23 91.2% 15.46 97.2%

MTOP
WA 0.41 49.3% 0.47 75.0% 1.03 89.8%
RASA 2.43 21.5% 11.61 56.2% 73.61 89.5%
mBERT 7.57 50.6% 31.67 79.6% 160.35 92.5%
XLM-R 8.30 61.8% 34.76 0.8% 174.50 94.2%
USE-M 5.55 72.5% 15.99 85.5% 72.84 93.5%
LaBSE 9.26 70.6% 38.66 88.3% 195.59 94.5%
Distil-mBERT 4.04 38.8% 16.90 78.1% 85.34 92.0%

TURKISH

Chatbot-tr
WA 0.42 56.0% 0.36 74.9% 0.38 80.6%
RASA 0.44 39.3% 1.41 67.5% 2.12 81.7%
mBERT 1.85 51.3% 7.45 73.3% 11.45 77.5%
XLM-R 2.03 60.7% 8.19 83.2% 12.63 84.8%
USE-M 2.92 72.8% 5.37 83.2% 6.95 83.2%
LaBSE 2.26 68.1% 9.12 83.8% 14.01 87.4%
Distil-mBERT 0.98 48.7% 3.96 72.8% 6.09 78.5%

MultiATIS
WA 0.35 67.7% 0.40 78.1% 0.45 87.2%
RASA 0.33 47.6% 0.78 70.5% 3.08 88.3%
mBERT 0.84 45.9% 2.77 77.9% 9.50 85.7%
XLM-R 0.93 50.8% 3.06 80.7% 10.46 89.1%
USE-M 2.68 77.7% 3.61 85.9% 7.39 84.8%
LaBSE 1.05 65.4% 3.40 85.5% 11.62 92.6%
Distil-mBERT 0.45 44.0% 1.47 76.8% 5.04 87.2%

MACRO AVERAGE

WA 0.38 57.1% 0.45 76.0% 0.60 84.8%
RASA 1.26 38.4% 5.99 63.3% 27.62 82.1%
mBERT 4.29 54.8% 17.64 76.4% 67.64 84.6%
XLM-R 4.67 61.9% 19.20 71.7% 72.66 87.4%
USE-M 4.29 61.0% 10.89 72.5% 36.72 82.3%
LaBSE 5.21 69.0% 21.35 83.9% 81.21 89.3%
Distil-mBERT 2.27 48.3% 9.30 75.4% 35.34 84.8%

Table 7: Training time (minutes) and accuracy on full test set for each public datasets. 5 ex/intent, 30 ex/intent,
and full refer to 5 examples per intent, 30 examples per intent, and full train set accordingly.
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training data brings a huge challenge for all models,
and the few-shot train sets provide a better testbed
for the ability to handle such situations, which is
crucial for real-world VA systems.

Difficult Test Setting In Table 2, we observe that
most models can achieve about 90% accuracy. To
better compare these models, we evaluate them on
the difficult test sets, jaccard and tf*idf. Results
are presented in Table 5. In this setting, we observe
a significant gap between the original test set and
difficult sets for all models. Among all the models,
mBERT performs the best as it shows the least
accuracy drop. However, WA still stands on top
considering the trade-off between training time and
accuracy, which will be further explained below.

5.1 Training Time vs. Accuracy Trade-off

We record the training time per dataset along with
the resource requirement and accuracy in Table 6.
Pretrained LMs require significantly longer training
time compared to WA. The detailed result of each
public dataset is in Table 7.

In Figure 1, we present a visualization of accu-
racy and training time for each model on the Leyzer
dataset. WA achieves comparable performance to
XLM-R but only requires less than 1 minute train-
ing time, compared to 104 minutes for XLM-R on
the Leyzer dataset. WA offers the best trade-off in
terms of accuracy vs. training time.

6 Conclusion

In this paper, we propose a robust evaluation frame-
work to benchmark 7 intent classification models
in multiple languages. On 9 public datasets and
20 internal datasets covering 10 languages. The
benchmark results show that while LaBSE pro-
duces the highest accuracy in almost all evaluation
settings, Watson Assistant achieves competitive
performance with much less cost of training time
and resource. The large LMs does not always out-
perform the models that only need CPUs. Through
our work, we hope to encourage more research and
development on language-agnostic chatbot solu-
tions.
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Abstract

This paper introduces our proposed system for
the MIA Shared Task on Cross-lingual Open-
retrieval Question Answering (COQA). In this
challenging scenario, given an input question
the system has to gather evidence documents
from a multilingual pool and generate from
them an answer in the language of the ques-
tion. We devised several approaches combin-
ing different model variants for three main
components: Data Augmentation, Passage Re-
trieval, and Answer Generation. For passage
retrieval, we evaluated the monolingual BM25
ranker against the ensemble of re-rankers based
on multilingual pretrained language models
(PLMs) and also variants of the shared task
baseline, re-training it from scratch using a re-
cently introduced contrastive loss that main-
tains a strong gradient signal throughout train-
ing by means of mixed negative samples. For
answer generation, we focused on language-
and domain-specialization by means of con-
tinued language model (LM) pretraining of
existing multilingual encoders. Additionally,
for both passage retrieval and answer gener-
ation, we augmented the training data pro-
vided by the task organizers with automatically
generated question-answer pairs created from
Wikipedia passages to mitigate the issue of data
scarcity, particularly for the low-resource lan-
guages for which no training data were pro-
vided. Our results show that language- and
domain-specialization as well as data augmen-
tation help, especially for low-resource lan-
guages.

1 Introduction

Open-retrieval Question Answering (OQA), where
the agent helps users to retrieve answers from large-
scale document collections with given open ques-

tions, has arguably been one of the most challeng-
ing natural language processing (NLP) applications
in recent years (e.g., Lewis et al., 2020; Karpukhin
et al., 2020; Izacard and Grave, 2021). As is the
case with the vast majority of NLP tasks, much of
the OQA focused on English, relying on a pipeline
that crucially depends on a neural passage retriever,
i.e., a (re-)ranking model – trained on large-scale
English QA datasets – to find evidence passages
in English (Lewis et al., 2020) for answer gener-
ation. Unlike in many other retrieval-based tasks,
such as ad-hoc document retrieval (Craswell et al.,
2021), parallel sentence mining (Zweigenbaum
et al., 2018), or Entity Linking (Wu et al., 2020),
the progress toward Cross-lingual Open-retrieval
Question Answering (COQA) has been hindered
by the lack of efficient integration and consolida-
tion of knowledge expressed in different languages
(Loginova et al., 2021). COQA is especially rel-
evant for opinionated information, such as news,
blogs, and social media. In the era of fake news and
deliberate misinformation, training on only (or pre-
dominantly) English texts is more likely to lead to
more biased and less reliable NLP models. Further,
an Anglo- and Indo-European-centric NLP (Joshi
et al., 2020) is unrepresentative of the needs of
the majority of the world’s population (e.g., Man-
darin and Spanish have more native speakers than
English, and Hindi and Arabic come close) and
contributes to the widening of the digital language
divide.1 Developing solutions for cross-lingual
open QA (COQA) thus contributes towards the
goal of global equity of information access.

COQA is the task of automatic question answer-
ing, where the answer is to be found in a large

1http://labs.theguardian.com/
digital-language-divide/
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Figure 1: The proposed pipeline for the cross-lingual QA problem. The pipeline is composed of two stages: (i)
the retrieval of documents containing a possible answer (red box) and the generation of an answer (blue box). For
the retrieval part, we exploited different methods, based both on training mDPR variants and on the ensembling of
blackbox models. For training the mDPR variants, we enlarge the original training dataset with samples from our
data augmentation pipeline. For the generation part, we enrich the existing baseline method with data augmentation
and masked language modeling.

multilingual document collection. It is a challeng-
ing NLP task, with questions written in a user’s
preferred language, where the system needs to find
evidence in a large-scale document collection writ-
ten in different languages; the answer then needs to
be returned to the user in their preferred language
(i.e., the language of the question).

More formally, the goal of a COQA system is
to find an answer a to the query q in the collec-
tion of documents {D}Ni . In the cross-lingual set-
ting, q and {D}Ni are, in general, in different lan-
guages. For example, the users can ask a question
in Japanese, and the system can search an English
document for an answer that then needs to be re-
turned to the user in Japanese.

In this work, we propose data augmentation for
specialized models that correspond to the two main
components of a standard COQA system – pas-
sage retrieval and answer generation: (1) we first
extract the passages from all documents of all lan-
guages, exploiting both unsupervised and super-
vised (e.g., mDPR variants) passage retrieval meth-
ods; (2) we then use the retrieved passages from
the previous step and further conduct intermedi-
ate training of a pretrained language model (e.g.,
mT5 (Xue et al., 2021)) on the extracted augmented
data in order to inject language-specific knowledge
into the model, and then generate the answers for
each question from different language portions. As
a result, we obtain a specialized model trained on

the augmented data for the COQA system. The
overall process is illustrated in Figure 1.

2 Data Augmentation

We use a language model to generate question-
answer (QA) pairs from English texts, which we
then filter according to a number of heuristics and
translate into the other 15 languages.2 An example
can be seen in Figure 2 in the Appendix.

2.1 Question-Answer Generation
For generating the question-answer pairs, we use
the provided Wikipedia passages as the input to a
language model, which then generates questions
and answers based on the input text. We based
our choice of the model on the findings by Dong
et al. (2019) and Bao et al. (2020), who showed
that language models that are fine-tuned jointly
on Question Answering and Question Generation,
outperform individual models fine-tuned indepen-
dently on those tasks. More specifically, we use
the model by Dugan et al. (2022) and make slight
modifications. Dugan et al. (2022) used a T5 model
fine-tuned on SQuAD and further fine-tuned it on
three tasks simultaneously: Question Generation
(GQ), Question Answering (QA), and Answer Ex-
traction (AE). They also included a summarization

2Arabic(AR), Bengali(BN), Finish(FI), Japanese(JA), Ko-
rean(KO), Russian(RU), Telugu(TE), Spanish(ES), Khmer(KM),
Malay(MS), Swedish(SV), Turkish(TR), Chinese(ZH-CN),
Tagalog(TL) and Tamil(TA).
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module to create lexically diverse question-answer
pairs. We found that using this module sometimes
leads to factually incorrect passages, and leave this
to future work. Similar to Dugan et al. (2022), we
split the original passages into whole sentences that
are shorter than 512 tokens.3 We then generate the
pairs using the first three sub-passages.

2.2 Filtering
Before translating question-answer pairs, to ensure
better translations, we enforce each pair to satisfy
at least one of a number of heuristics, which we
determined through manual evaluation of the gen-
erated pairs. Each pair is evaluated on whether one
of the following is true (in the respective order):
the answer is a number, the question starts with the
word who, the question starts with the words how
many, or the answer contains a number or a date.
After filtering, we are left with roughly 339,000
question-answer pairs.

2.3 Translation
We use the Google Translate API provided by trans-
latepy4 to translate the filtered question-answer
pairs from English into the relevant 15 languages.
Each language has an equal number of question-
answer pairs. In total, we generate about 5.4 mil-
lion pairs for all languages combined.

3 Methodology

Following the approach described in Asai et al.
(2021b), we consider the COQA problem as two
sub-components: the retrieval of documents con-
taining a possible answer and the generation of
an answer. Figure 1 summarizes the proposed
methods. This section is organized as follows: we
present the proposed retrieval methods in §3.1 and
demonstrate the language-specialized methods for
answer generation in §3.2.

3.1 Passage Retrieval
For the passage retrieval phase, we explored the ap-
proaches described in the following sections, which
fall into three main categories: the enhancement of
the training procedure of the mDPR baseline, the
ensembling of blackbox models (i.e. retrieval using
multilingual sentence encoders trained for semantic
similarity) and lexical retrieval using BM25. While

3We use a different sentence splitting method, namely
pySBD.

4https://github.com/Animenosekai/
translate

the first category is a supervised approach, which
uses QA datasets to inject task knowledge into pre-
trained models, the others use general linguistic
knowledge for retrieving (i.e., unsupervised).

Baseline: mDPR We take as a baseline the
method proposed in Asai et al. (2021b). They
propose mDPR (Multilingual Dense Passage Re-
triever), a model that extends the Dense Passage
Retriever (DPR) (Qu et al., 2021) to a multilin-
gual setting. It is made of two mBERT-based en-
coders (Devlin et al., 2019), one for the question
and one for the passages. The training approach
proceeds over two subsequent stages: (i) parameter
updates and (ii) cross-lingual data mining.

In the first phase, both mDPR and mGEN
(§3.2) are trained one after the other. For
mDPR, the model processes a dataset D =
{(qi, p+i , p−i,1, p−i,2, . . . , p−i,n)}mi=1 made of tuples
containing a question qi, the passage p+i contain-
ing an answer (called positive or gold), and a set
{p−i,j}nj=1 of negative passages. For every question,
negatives are made up of the positive passages from
the other questions or passages either extracted at
random or produced by the subsequent data min-
ing phase. To do this, they use a contrastive loss
(Lmdpr) that moves the embedding of the question
close to its positive passage, while at the same time
repelling the representations of negative passages:

Lmdpr = − log
⟨eqi , ep+i ⟩

⟨eqi , ep+i ⟩+
∑n

j=1⟨eqi , ep−i,j ⟩

In the second stage, the training set is expanded
by finding new positive and negative passages us-
ing Wikipedia language links and mGEN (§3.2)
to automatically label passages. This two-staged
training pipeline is repeated T times.

mDPR variants One of our approaches is to sim-
ply substitute the loss function presented above
with a contrastive loss described in Zhang et al.
(2022), named MixCSE. In this work, the authors
tackle a common problem of out-of-the-box BERT
sentence embeddings, called anisotropy (Li et al.,
2020), which makes all the sentence representa-
tions to be distributed in a narrow cone. Contrastive
learning has already proven effective in alleviating
this issue by distributing embeddings in a larger
space (Gao et al., 2021). Zhang et al. (2022) prove
that hard negatives, i.e. data points hard to distin-
guish from the selected anchor, are key for keeping
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a strong gradient signal; however, as learning pro-
ceeds, they become orthogonal to the anchor and
make the gradient signal close to zero. For this
reason, the key idea of MixCSE is to continually
generate hard negatives via mixing positive and
negative examples, which maintains a strong gradi-
ent signal throughout training. Adapting this con-
cept to our retrieval scenario, we construct mixed
negative passages as follows:

ẽi =
λ ep+i

+ (1− λ) ep−i,j
∥λ ep+i

+ (1− λ) ep−i,j
∥2

,

where p−i,j is a negative passage chosen at ran-
dom. We provide the equation of the loss in Ap-
pendix B. The main difference with Lmdpr is the
addition of a mixed negative in the denominator
and the similarity used (exponential of cosine simi-
larity instead of dot product).

We train mDPR with the original loss and with
the MixCSE loss on the concatenation of the pro-
vided training set for mDPR and the augmented
data obtained via the methods described in §2. We
refer to these two variants as mDPR(AUG) and
mDPR(AUG) with MixCSE, respectively.

Ensembling “blackbox” models Following the
approaches presented in Litschko et al. (2022), we
also ensemble the ranking of some blackbox mod-
els that directly produce a semantic embedding of
the input text. We provide a brief overview of the
models included in our ensemble below.

• DISTIL (Reimers and Gurevych, 2020) is a
teacher-student framework for injecting the
knowledge obtained through specialization
for semantic similarity from a specialized
monolingual transformer (e.g., BERT) into a
non-specialized multilingual transformer (e.g.,
mBERT). For semantic similarity, it first spe-
cializes a monolingual (English) teacher en-
coder using the available semantic sentence-
matching datasets for supervision. In the
second knowledge distillation step, a pre-
trained multilingual student encoder is trained
to mimic the output of the teacher model. We
benchmark different DISTIL models:

– DISTILuse: instantiates the student as the
pretrained m-USE (Yang et al., 2020) in-
stance;

– DISTILxlmr: initializes the student model
with the pretrained XLM-R (Conneau
et al., 2020) transformer;

– DISTILdmbert: distills the knowledge
from the Sentence-BERT (Reimers and
Gurevych, 2019) teacher into a multilin-
gual version of DistilBERT (Sanh et al.,
2019), a 6-layer transformer pre-distilled
from mBERT.

• LaBSE (Language-agnostic BERT Sentence
Embeddings Feng et al. (2022)) is a neural
dual-encoder framework, trained with parallel
data. LaBSE training starts from a pretrained
mBERT instance. LaBSE additionally uses
standard self-supervised objectives used in the
pretraining of mBERT and XLM (Conneau
and Lample, 2019): masked and translation
language modelling (MLM and TLM).

• MiniLM (Wang et al., 2020) is a student
model trained by deeply mimicking the self-
attention behavior of the last Transformer
layer of the teacher, which allows a flexible
number of layers for the students and allevi-
ates the effort of finding the best layer map-
ping.

• MPNet (Song et al., 2020) is based on a pre-
training method that leverages the dependency
among the predicted tokens through permuted
language modeling and makes the model see
auxiliary position information to reduce the
discrepancy between pre-training and fine-
tuning.

We produce an ensembling of the blackbox mod-
els by simply taking an average of the ranks for
each of the documents retrieved, which is denoted
as EnsembleRank.

Oracle Monolingual BM25 (Sparck Jones et al.,
2000; Jonesa et al., 2000) This approach is made
of two phases: first, we automatically detect the
language of the question, then we query the index
in the detected language. As a weighting scheme
in the vector space model, we choose BM25. It is
based on a probabilistic interpretation of how terms
contribute to the document’s relevance. It uses
exact term matching and the score is derived from
a sum of contributions from each query term that
appears in the document. We use an oracle BM25
approach: this naming derives from the fact that
we query the index with the answer rather than the
question. This was done at training time to increase
the probability of the answer to be in the passages
consumed by mGEN, so that the generation model
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would hopefully learn to extract the answer from
its input, rather than generating it from the question
only. At inference time, we query the index using
the question.

3.2 Answer Generation
Our answer generation modules take a concate-
nation of the question and the related documents
retrieved by the retrieval module as an input and
generate an answer. In this section, we first ex-
plain the baseline system which is the basis of our
proposed approaches and then present our special-
ization method.

Baseline: mGEN We use mGEN (Multilingual
Answer Generator; Asai et al. (2021b)) as the base-
line for the answer generation phase. They pro-
pose to take mT5 (Xue et al., 2021), a multilingual
version of a pretrained transformer-based encoder-
decoder model (Raffel et al., 2020), and fine-tune
it for multilingual answer generation. The pre-
training process of mT5 is based on a variant of
masked language modeling named span-corruption,
in which the objective is to reconstruct continu-
ously masked tokens in an input sentence (Xue
et al., 2021). For fine-tuning, the model is trained
on a sequence-to-sequence (seq2seq) task as fol-
lows:

P (aL | qL, PN ) =

T∏

i

p(aLi |aL<i, q
L, PN )

The model predicts a probability distribution over
its vocabulary at each time step (i). It is condi-
tioned on the previously generated answer tokens
(aL<i), the input question (qL) and N retrieved pas-
sages (PN ). Because of a possible language mis-
match between the answer and the passages, it is
not possible to extract answers as in existing work
in monolingual QA tasks (Karpukhin et al., 2020):
for this reason, mGEN opts for directly generating
answers instead.

Masked Language Modeling (MLM) Follow-
ing successful work on language-specialized pre-
training via language modeling (Glavaš et al., 2020;
Hung et al., 2022), we investigate the effect of run-
ning MLM on the language-specific portions of
Wikipedia passages (Asai et al., 2021b) and CC-
Net (Wenzek et al., 2020) with mT5 (Xue et al.,
2021). For the extracted texts of all 16 languages,
14 languages are from the released Wikipedia pas-
sages and the missing two surprise languages

(Tamil, Tagalog) are from CCNet. We addition-
ally clean all language portions by removing email
addresses, URLs, extra emojis and punctuations,
and selected 7K for training and 0.7K for validation
for each language. In this way, we inject both the
domain-specific (i.e., Wikipedia knowledge) and
language-specific (i.e., 16 languages) knowledge
into the multilingual pretrained language model via
MLMing as an intermediate specialization step.

Augmentation Data Variants To further in-
vestigate model capability on (1) extracting an-
swers from English passages or (2) extracting an-
swers from translated passages, while keeping the
Question-Answer pairs in other non-English lan-
guages, we conduct experiments on two augmen-
tation data variants: AUG-QA and AUG-QAP.
AUG-QA keeps the English passage with the trans-
lated Question-Answer pairs, while AUG-QAP
translates the English passage to the same language
as the translated Question-Answer pairs. Detailed
examples are shown in Table 1.

4 Experimental Setup

We demonstrate the effectiveness of our proposed
COQA systems by comparing them to the base-
line models and thoroughly comparing different
specialization methods from §1.

Evaluation Task and Measures Our proposed
approaches are evaluated in 16 languages, 8 of
which are not covered in the training data.5 The
training and evaluation data are originally from Nat-
ural Questions (Kwiatkowski et al., 2019), XOR-
TyDi QA (Asai et al., 2021a), and MKQA (Longpre
et al., 2020). Data size statistics for each resource
and language are shown in Table 2 and 3.

The evaluation results are measured on the com-
petition platform hosted at eval.ai.6 The systems
are evaluated on two COQA datasets: XOR-TyDi
QA (Asai et al., 2021a), and MKQA (Longpre et al.,
2020), using token-level F1 (F1), as common eval-
uation practice of open QA systems (Lee et al.,
2019). For non-spacing languages, we follow the
token-level tokenizers 7 for both predictions and

5Languages with training data: English(EN), Arabic(AR),
Bengali(BN), Finish(FI), Japanese(JA), Korean(KO), Rus-
sian(RU), Telugu(TE). Without training data: Spanish(ES),
Khmer(KM), Malay(MS), Swedish(SV), Turkish(TR), Chi-
nese(ZH-CN). Tagalog(TL) and Tamil(TA) are considered as
surprise languages.

6https://eval.ai/
7Tokenizers for non-spacing languages: Mecab (JA);

khmernltk (KM); jieba (ZH-CN).
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AUG-QA AUG-QAP

QA pair Q:レゴグループを設立したのは誰ですか？
A:オレ・カーク・クリスチャンセン

Passage

The Lego Group began manufacturing the interlocking toy bricks in 1949.
Movies, games, competitions, and six Legoland amusement parks have been
developed under the brand. As of July 2015, 600 billion Lego parts had been
produced. In February 2015, Lego replaced Ferrari as Brand Finance’s
“world’s most powerful brand”. History. The Lego Group began in the
workshop of Ole Kirk Christiansen

レゴグループは1949年に連動おもちゃのレンガの製造を開始しました。映画、
ゲーム、競技会、および6つのレゴランド遊園地がこのブランドで開発されま
した。2015年7月現在、6,000億個のレゴパーツが生産されています。2015年
2月、レゴはブランドファイナンスの「世界で最も強力なブランド」としてフ
ェラーリに取って代わりました。歴史。レゴグループは、OleKirkChristiansen
のワークショップで始まりました

Table 1: Examples of augmented training instances for AUG-QA and AUG-QAP. Top row: translated question-
answer pair in Japanese. Below are different training examples: (1) AUG-QA: the English Wikipedia passage is
kept with the translated question-answer pair. (2) AUG-QAP: the English Wikipedia passage is translated to the
same language as the question-answer pair.

Dataset Lang Train size

Natural Questions en 76635

XOR-TyDi QA

ar 18402
bn 5007
fi 9768
ja 7815
ko 4319
ru 9290
te 6759

Table 2: The training data size for 8 languages.

Dataset Lang Dev size Test size

MKQA (parallel) 12 1758 5000

XOR-TyDi QA

ar 590 1387
bn 203 490
fi 1368 974
ja 1056 693
ko 1048 473
ru 910 1018
te 873 564

Surprise ta - 350
tl - 350

Table 3: The development and test data size for each
language. The data size for MKQA is equal for all
12 languages. Two surprise languages are provided
without development data.

ground-truth answers. The overall score is calcu-
lated by using macro-average scores on XOR-TyDi
QA and MKQA datasets, and then taking the aver-
age F1 scores of both datasets.

Data We explicitly state that we did not train on
the development data or the subsets of the Natural
Questions and TyDi QA, which are used to create
MKQA or XOR-TyDi QA datasets. This makes
all of our proposed approaches fall into the con-
strained setup proposed by the organizers.

For training the mDPR variants, we exploit the
organizer’s dataset that was obtained from DPR
Natural Questions (Qu et al., 2021) and XOR-
TyDiQA gold paragraph data. More specifically,
for training and validation, we always use the ver-
sion of the dataset containing augmented positive

and negative passages obtained from the top 50 re-
trieval results of the organizer’s mDPR. We merge
this dataset with the augmented data, filtering the
latter to get 100k samples for each of the 16 lan-
guages.

We base our training data for answer generation
models on the organizer’s datasets with the top 15
retrieved documents from the coupled retriever. To
use automatically generated question-answer pairs
for each language from §4 for fine-tuning, we align
the format with retrieved results by randomly sam-
pling passages from English Wikipedia as negative
contexts,8 while we keep the seed documents as
positive ones. We explore two ways of merging
the positive and negative passages: in the "shuffle"
style, the positive passage appears in one of the top
3 documents; in the "non-shuffle" method, the pos-
itive passage always appears on the top. However,
since these two configurations did not show large
differences, we only report the former one in this
paper. We also investigated if translating passages
into the different 16 languages 9 may be beneficial
with respect to keeping all the passages in English
(AUG-QA). Due to computational limitations, in
our data augmented setting for generation model
fine-tuning, we use 2K question-answer pairs with
positive/negative passages for each language for
our final results.

Hyperparameters and Optimization For multi-
lingual dense passage retrieval, we mostly follow
the setup provided by the organizers: learning rate
1e−5 with AdamW (Loshchilov and Hutter, 2019),
linear scheduling with warm-up for 300 steps and

8For the negative contexts, we use the passages that were
used for generating the question-answer pairs (i.e., the first
three sub-passages). These were then trimmed down to 100
tokens. We ensure that the answer is not contained in the
negative contexts through lowercase string-matching.

9Using the same Google Translate API adopted for the QA
translation in §4.
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dropout rate 0.1. For mDPR(AUG) with MixCSE
(Zhang et al., 2022), we use λ = 0.2 and τ = 0.05
for the loss (see Appendix B). We train with a batch
size of 16 on 1 GPU for at most 40 epochs, us-
ing average rank on the validation data to pick the
checkpoints. The training is done independently of
mGEN, in a non-iterative fashion.

For retrieving the passages, we use cosine simi-
larity between question and passage across all pro-
posed retrieval models, returning the top 100 pas-
sages for each of the questions.

For language-specialized pretraining via MLM,
we use AdaFactor (Shazeer and Stern, 2018) with
the learning rate 1e− 5 and linear scheduling with
warm-up for 2000 steps up to 20 epochs. For mul-
tilingual answer generation fine-tuning, we also
mostly keep the setup from the organizers: learn-
ing rate 3e− 5 with AdamW (Loshchilov and Hut-
ter, 2019), linear scheduling with warm-up for 500
steps, and dropout rate as 0.1. We take the top 15
documents from the retrieved results as our input
and truncate the input sequence after 16, 000 to-
kens to fit the model into the memory constraints
of our available infrastructure.

5 Results and Discussion

Results Overview Results in Table 4 show the
comparison between the baseline and our proposed
methods on XOR-TyDi QA while Table 5 shows
the results on MKQA. While we can see that the ad-
ditional pretraining on the answer generation model
(mDPR+MLM-14) helps to outperform the base-
line in XOR-TyDi QA, the same approach leads
to a degradation in MKQA. None of the proposed
methods for the retrieval module improved over
the baseline mDPR in both datasets, as shown in
Table 6.

Unsupervised vs Supervised Retrieval In all
evaluation settings, unsupervised retrieval meth-
ods underperform supervised methods by a large
margin (see Table 4 and 5). This might be due
to the nature of the task, which is to find a doc-
ument containing an answer, rather than simply
finding a document similar to the input question.
For this reason, such an objective might not align
well with models specialized in semantic similar-
ity (Litschko et al., 2022). Fine-tuning mBERT,
however, makes the model learn to focus on retriev-
ing an answer-containing document and not simply
retrieving documents similar to the question.

Language Specialization We compare the eval-
uation results for the fine-tuned answer generation
model with and without language specialization
(i.e., MLMing): for XORQA-ar and XORQA-te
we have +2.0 and +1.1 percentage points improve-
ment compared to the baseline model (with mT5
trained on 100+ languages). We further distin-
guish MLM-14 and MLM-16, where the former
is trained on the released Wikipedia passages for
14 languages and the latter is trained on the concate-
nation of Wikipedia passages and CCNet (Wenzek
et al., 2020), to which we resort for the two sur-
prise languages (Tamil and Tagalog), which were
missing in the Wikipedia data. Overall, MLM-14
performs better than MLM-16: we hypothesize that
this might be due to the domain difference between
text coming from Wikipedia and CCNet: the latter
is not strictly aligned with the structured text (i.e.,
clean) version of Wikipedia passages, and causes a
slight drop in performance as we train for 2 addi-
tional languages.

Data Augmentation Data augmentation is con-
sidered a way to mitigate the performance of low-
resource languages while reaching performance on
par with high-resource languages (Kumar et al.,
2019; Riabi et al., 2021; Shakeri et al., 2021). Two
variations are considered: AUG-QA and AUG-
QAP, while the former concatenates the XOR-Tydi
QA training set with the additional augmented data
with translated Question-Answer pairs, and the lat-
ter is made from the concatenation of both XOR-
Tydi QA training set and the translated Question-
Answer-Passage.10 We assume that by also trans-
lating passages, the setting should be closer to test
time when the retrieval module can retrieve pas-
sages in any of 14 languages (without the two sur-
prise languages). In contrast, in AUG-QA setting,
the input passages to the answer generation are al-
ways in English. Models trained with additional
AUG-QA data could increase the capacity of seeing
more data for unseen languages, while AUG-QAP
may further enhance the ability of the model to gen-
erate answers from the translated passages. As ex-
pected, models trained with additional augmented
data have better performance compared to the ones
without. The encouraging finding states that, es-
pecially for two surprise languages, the language
specialized models fine-tuned with both XOR-Tydi

10XORQA-Tydi QA training set is with 8 languages (see Ta-
ble 2) and augmented data are with all 16 languages included
in the test set.
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XOR-TyDi QA
Models ar bn fi ja ko ru te Avg.

mDPR + mGEN (baseline 1) 49.66 33.99 39.54 39.72 25.59 40.98 36.16 37.949

Unsupervised Retrieval
OracleBM25 + MLM-14 0.34 0.49 0.52 2.56 0.19 0.57 5.16 1.404
EnsembleRank + MLM-14 0.34 0.49 1.33 2.56 0.38 6.27 16.21 3.161

Supervised Retrieval
mDPR(AUG) with MixCSE + MLM-14 20.94 7.18 15.27 23.16 10.25 19.23 10.53 15.223
mDPR(AUG) + MLM-14 24.99 15.19 20.33 22.31 10.68 18.82 11.97 17.754
mDPR + MLM-14 51.66 31.96 38.68 40.89 25.35 39.87 37.26 37.951
mDPR + MLM-14(XORQA & AUG-QA) 49.41 32.90 37.95 40.97 24.22 39.29 35.76 37.213
mDPR + MLM-14(XORQA & AUG-QAP) 48.79 33.73 38.33 39.87 25.26 39.11 37.94 37.577
mDPR + MLM-16 49.92 31.16 37.20 39.92 24.63 38.78 34.30 36.558
mDPR + MLM-16(XORQA & AUG-QA) 49.45 31.59 38.33 40.44 23.83 38.67 35.92 36.889
mDPR + MLM-16(XORQA & AUG-QAP) 48.21 34.20 38.78 40.76 24.81 39.49 34.37 37.231

Table 4: Evaluation results on XOR-TyDi QA test data with F1 and macro-average F1 scores.

MKQA Surprise
Models ar en es fi ja km ko ms ru sv tr zh-cn ta tl Avg.

mDPR + mGEN (baseline1) 9.52 36.34 27.23 22.70 15.89 6.00 7.68 25.11 14.60 26.69 21.66 13.78 0.00 12.78 17.141

Unsupervised Retrieval
OracleBM25 + MLM-14 2.80 10.81 3.70 3.29 5.89 1.53 1.51 5.49 1.85 7.42 2.94 1.81 0.00 8.23 4.090
EnsembleRank + MLM-14 6.43 31.66 20.02 17.38 10.68 6.24 4.38 21.03 6.27 21.09 17.13 7.22 0.00 8.39 12.709

Supervised Retrieval
mDPR(AUG) with MixCSE + MLM-14 4.71 28.06 12.78 8.22 7.92 5.44 2.74 12.90 4.65 13.86 8.38 3.99 0.00 6.72 8.599
mDPR(AUG) + MLM-14 5.64 29.23 17.27 15.51 7.81 5.83 3.38 16.57 6.80 17.21 13.10 4.53 0.00 8.09 10.785
mDPR + MLM-14 8.73 35.32 25.54 20.42 14.27 6.06 6.78 24.10 12.01 25.97 20.27 13.95 0.00 11.14 16.040
mDPR + MLM-14(XORQA & AUG-QA) 8.46 35.12 24.74 19.50 14.38 5.62 7.22 23.24 11.46 24.49 19.67 15.79 0.86 12.18 15.909
mDPR + MLM-14(XORQA & AUG-QAP) 8.48 34.73 25.46 20.09 14.61 5.00 7.42 24.16 12.04 25.61 19.62 15.60 0.00 12.41 16.089
mDPR + MLM-16 8.15 34.14 24.85 19.38 13.73 5.93 6.51 22.21 11.46 24.91 18.82 13.62 0.00 12.59 15.451
mDPR + MLM-16(XORQA & AUG-QA) 8.21 34.06 25.65 20.14 14.22 5.80 6.70 24.40 11.82 25.71 19.92 15.42 0.40 12.36 16.057
mDPR + MLM-16(XORQA & AUG-QAP) 8.08 33.89 24.94 20.50 14.11 5.15 7.15 22.95 12.95 24.93 19.68 15.27 0.14 13.07 15.915

Table 5: Evaluation results on MKQA test dataset and two surprise languages with F1 and macro-average F1 scores.

Models Avg.

mDPR + mGEN (baseline1) 27.55

Unsupervised Retrieval
OracleBM25 + MLM-14 2.75
EnsembleRank + MLM-wiki14 7.94

Supervised Retrieval
mDPR(AUG) with MixCSE + MLM-14 11.91
mDPR(AUG) + MLM-14 14.27
mDPR + MLM-14 27.00
mDPR + MLM-14(XORQA & AUG-QA) 26.56
mDPR + MLM-14(XORQA & AUG-QAP) 26.83
mDPR + MLM-16 26.00
mDPR + MLM-16(XORQA & AUG-QA) 26.47
mDPR + MLM-16(XORQA & AUG-QAP) 26.57

Table 6: Results of macro-average F1 for two QA
datasets: XOR-TyDi QA, MKQA, and two surprise
languages.

QA and AUG-QAP drastically improve the perfor-
mance of these unseen, low-resource languages.

mDPR variants results As shown in Table 4
and 5, we can see that the mDPR variants we
trained are considerably worse than the baseline.
We think this is mainly caused by the limited batch
size used (16) which is a constraint due to our in-
frastructure. The number of samples in a batch is
critical for contrastive training, as larger batches

provide a stronger signal due to a higher number of
negatives. For this reason, we think that the mDPR
variants have not been thoroughly investigated and
might still prove beneficial when trained with larger
batches.

6 Related Work

Passage Retrieval and Answer Generation
To improve the information accessibility, open-
retrieval question answering systems are attracting
much attention in NLP applications (Chen et al.,
2017; Karpukhin et al., 2020). Rajpurkar et al.
(2016) were one of the early works to present a
benchmark that requires systems to understand a
passage to produce an answer to a given question.
(Kwiatkowski et al., 2019) presented a more chal-
lenging and realistic dataset with questions col-
lected from a search engine. To tackle these com-
plex and knowledge-demanding QA tasks, Lewis
et al. (2020) proposed to first retrieve related doc-
uments from a given question and use them as ad-
ditional aids to predict an answer. In particular,
they explored a general-purpose fine-tuning recipe
for retrieval-augmented generation models, which
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combine pretrained parametric and non-parametric
memory for language generation. Izacard and
Grave (2021), they solved the problem in two steps,
first retrieving support passages before processing
them with a seq2seq model, and Sun et al. (2021)
further extended to the cross-lingual conversational
domain. Some works are explored with translate-
then-answer approach, in which texts are translated
into English, making the task monolingual (Ture
and Boschee, 2016; Asai et al., 2021a). While this
approach is conceptually simple, it is known to
cause the error propagation problem in which er-
rors of the translation get amplified in the answer
generation stage (Zhu et al., 2019). To mitigate this
problem, Asai et al. (2021b) proposed to extend
Lewis et al. (2020) by using multilingual models
for both the passage retrieval (Devlin et al., 2019)
and answer generation (Xue et al., 2021).

Data Augmentation Data augmentation is a
common approach to reduce the data sparsity for
deep learning models in NLP (Feng et al., 2021).
For Question Answering (QA), data augmentation
has been used to generate paraphrases via back-
translation (Longpre et al., 2019), to replace parts
of the input text with translations (Singh et al.,
2019), and to generate novel questions or answers
(Riabi et al., 2021; Shakeri et al., 2021; Dugan
et al., 2022). In the cross-lingual setting, available
data have been translated into different languages
(Singh et al., 2019; Kumar et al., 2019; Riabi et al.,
2021; Shakeri et al., 2021) and language models
have been used to train question and answer gener-
ation models (Kumar et al., 2019; Chi et al., 2020;
Riabi et al., 2021; Shakeri et al., 2021).

Our approach is different from previous work in
Cross-lingual Question Answering task in that it
only requires English passages to augment the train-
ing data, as answers are generated automatically
from the trained model by Dugan et al. (2022). In
addition, our filtering heuristics remove incorrectly
generated question-answer pairs, which allows us
to keep only question-answer pairs with answers
that are more likely to be translated correctly, thus
limiting the problem of error propagation.

7 Reproducibility

To ensure full reproducibility of our results and
further fuel research on COQA systems, we re-
lease the model within the Huggingface repos-
itory as the publicly available multilingual pre-
trained language model specialized in 14 and 16

languages.11 We also release our code and data,
which make our approach completely transparent
and fully reproducible. All resources developed as
part of this work are publicly available at: https:
//github.com/umanlp/ZusammenQA.

8 Conclusion

We introduced a framework for a cross-lingual
open-retrieval question-answering system, using
data augmentation with specialized models in a
constrained setup. Given a question, we first re-
trieved top relevant documents and further gener-
ated the answer with the specialized models (i.e.,
MLM-ing on Wikipedia passages) along with the
augmented data variants. We demonstrated the ef-
fectiveness of data augmentation techniques with
language- and domain-specialized additional train-
ing, especially for resource-lean languages. How-
ever, there are still remaining challenges, especially
in the retrieval model training with limited com-
putational resources. Our future efforts will be to
focus on more efficient approaches of both multi-
lingual passage retrieval and multilingual answer
generation (Abdaoui et al., 2020) with the investiga-
tion of different data augmentation techniques (Zhu
et al., 2019). We hope that our generated QA lan-
guage resources with the released models can cat-
alyze the research focus on resource-lean languages
for COQA systems.
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A Data Augmentation Example

Figure 2 shows an example of a Wikipedia passage about An American in Paris. The passage in orange is
the set of sentences whose length does not exceed 512 tokens, which is the first of three sub-passages
used for generating question-answer pairs. The generated pairs can be seen at the bottom of the figure.
Questions and answers highlighted in red are those that satisfy the filtering heuristics detailed in §2.2.
These are then translated into other languages.

Title: An American in Paris

URL: https://en.wikipedia.org/wiki?curid=309

Text: An American in Paris is a jazz-influenced orchestral piece by American composer George Gershwin written
in 1928. It was inspired by the time that Gershwin had spent in Paris and evokes the sights and energy of the French capital in
the 1920s. Gershwin composed “An American in Paris” on commission from conductor Walter Damrosch. He scored the
piece for the standard instruments of the symphony orchestra plus celesta, saxophones, and automobile horns. He brought
back some Parisian taxi horns for the New York premiere of the composition, which took place on December 13, 1928 in
Carnegie Hall, with Damrosch conducting the New York Philharmonic. He completed the orchestration on November 18, less
than four weeks before the work’s premiere. He collaborated on the original program notes with critic and composer Deems
Taylor. Gershwin was attracted by Maurice Ravel’s unusual chords, and Gershwin went on his first trip to Paris in 1926 ready
to study with Ravel. After his initial student audition with Ravel turned into a sharing of musical theories, Ravel said he could
not teach him, saying, "Why be a second-rate Ravel when you can be a first-rate Gershwin?" While the studies were cut short,
that 1926 trip resulted in a piece entitled “Very Parisienne”, the initial version of “An American in Paris”, written as a ‘thank
you note’ to Gershwin’s hosts, Robert and Mabel Shirmer. Gershwin called it “a rhapsodic ballet”; it is written freely and in a
much more modern idiom than his prior works. Gershwin strongly encouraged Ravel to come to the United States for a tour.
To this end, upon his return to New York, Gershwin joined the efforts of Ravel’s friend Robert Schmitz, a pianist Ravel had
met during the war, to urge Ravel to tour the U.S. Schmitz was the head of Pro Musica, promoting Franco-American musical
relations, and was able to offer Ravel a $10,000 fee for the tour, an enticement Gershwin knew would be important to Ravel. ...

Question: When was an American in Paris written?
Answer: 1928
Type: Number

Question: When did George Gershwin write an American in Paris?
Answer: the 1920s
Type: Contains number

Question: Who was the conductor of “An American in Paris”?
Answer: Walter Damrosch
Type: Who

Question: What was the name of the instrument that Gershwin scored for?
Answer: automobile horns

Question: What was the name of the orchestral piece Gershwin composed in 1928?
Answer: New York Philharmonic

Question: When did Gershwin complete the orchestration of “An American in Paris”?
Answer: November 18
Type: Date

Question: Who did Gershwin collaborate on the original program notes with?
Answer: Deems Taylor
Type: Who

Figure 2: Example English question-answer pairs (on the bottom) generated from the highlighted text (in yellow) in
the passage. The highlighted question-answer pairs (in red) are those that were kept after filtering.
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B MixCSE Loss

The MixCSE loss described in 3.1 is given by:

Lmixcse = − log
exp(cos(eqi , ep+i

)/τ)

exp(cos(eqi , ep+i
)/τ) +

∑n
j=1 exp(cos(eqi , ep−i,j

)/τ) + exp(cos(eqi ,SG(ẽi))/τ)

where τ is a fixed temperature and SG is the stop-gradient operator, which prevents backpropagation from
flowing into the mixed negative (ẽi).
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Abstract
People speaking different kinds of languages
search for information in a cross-lingual man-
ner. They tend to ask questions in their lan-
guage and expect the answer to be in the same
language, despite the evidence lying in an-
other language. In this paper, we present our
approach for this task of cross-lingual open-
domain question-answering. Our proposed
method employs a passage reranker, the fusion-
in-decoder technique for generation, and a wiki
data entity-based post-processing system to
tackle the inability to generate entities across
all languages. Our end-2-end pipeline shows
an improvement of 3 and 4.6 points on F1 and
EM metrics respectively, when compared with
the baseline CORA model on the XOR-TyDi
dataset. We also evaluate the effectiveness of
our proposed techniques in the zero-shot setting
using the MKQA dataset and show an improve-
ment of 5 points in F1 for high-resource and 3
points improvement for low-resource zero-shot
languages. Our team, CMUmQA’s submission
in the MIA-Shared task ranked 1st in the con-
strained setup for the dev and 2nd in the test
setting.

1 Introduction

Question Answering (QA), especially in English, is
a popular research area in NLP with abundance of
datasets like SQuAD (Rajpurkar et al., 2018), Natu-
ral Questions (Kwiatkowski et al., 2019) and differ-
ent types of tasks including machine reading com-
prehension or extractive QA, cloze-completion and
open-domain QA (Richardson et al., 2013; Chen
et al., 2017). Open-domain QA is the task of an-
swering natural language questions without any
specified predefined context. It usually requires the
system to first search for the relevant documents
as the context w.r.t. a given question from either a
local document repository or Wikipedia-like docu-
ment collection, and then generate the answer.

Cross-lingual Open-Domain Question Answer-
ing is a challenging NLP task, where questions are

given in a user’s preferred language, and the system
needs to find evidence in cross-lingual large-scale
document collections, like Wikipedia, and return
an answer in the user’s preferred language, as in-
dicated by their question. We work on this cross-
lingual open-domain QA challenge as a part of the
MIA Shared task. 1

Recent advancements in Open-Domain QA, usu-
ally for English are made by following a Retriever-
Reader architecture, where the retriever is aimed at
retrieving relevant documents w.r.t. a given ques-
tion, which can be modeled as a dense passage re-
triever trained on large-scale English QA datasets
to fetch evidence passages (Karpukhin et al., 2020),
while Reader aims at inferring the final answer
from the retrieved documents, which is usually a
neural MRC model (Chen et al., 2017) or a genera-
tive model (Izacard and Grave, 2021). Extending
such approaches to a multilingual setting usually
suffers from two major problems - 1) Answering
questions from different language sources because
the answer for low resource languages might lie
in documents from high resource languages (Asai
et al., 2021a), and Wikipedia which might fail in
cases of same language retrieval. (Clark et al.,
2020a). 2) Large-scale cross-lingual datasets are
not available that supply passages in a diverse num-
ber of languages which can enable better training
of cross-lingual retrievers.

One specific approach that has been followed
for bringing multilingual QA close to English QA
is that the non-English question is translated into
English and the answer from the English QA sys-
tem is translated back to the query language. These
systems suffer from the problem of machine trans-
lation error propagating itself in the downstream
question answering. And also, these systems aren’t
able to exploit the fact that for high resource lan-
guages like Spanish, and Chinese the evidence
might lie in the target language itself which is eas-

1https://mia-workshop.github.io/shared_task.html
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ier than two-way translation.

In this paper, we aim to extend the task of cross-
lingual question answering to tackle the follow-
ing research questions - a) How can we adapt the
retrieve-then-generate approaches for English open
QA to cross-lingual QA that do not rely on ma-
chine translation? - b) How do multilingual QA
models trained on a small set of languages perform
in zero-shot settings?

We follow CORA (Asai et al., 2021b) which is
a many-to-many multilingual QA model by fol-
lowing a four-stage pipeline for addressing cross-
lingual QA. The DPR based on mBERT (mDPR)
is a bi-encoder retriever that retrieves documents
cross-lingually without relying on machine transla-
tion. XLM-RoBERTA which serves as a passage
reranker is trained as a cross-encoder to capture the
interactions between the question and the passage
on the top k documents fetched by the mDPR re-
triever. The reranked documents are passed through
a Fusion-in-Decoder based mT5 reader module
which can effectively learn to collect evidence from
multiple passages to arrive at the final answer. In
some cases, the predicted answer is not in the tar-
get language as desired by the user because the
generator is either not able to convert entities into
the target language or evidence is directly extracted
from a different language passage. Further, we use
a postprocessing step to map entities from Wikidata
to convert the answer into the target language.

We conduct our experiments on two multilin-
gual open-domain QA datasets, XOR-TyDi QA
(Asai et al., 2021a) and MKQA (Longpre et al.,
2021) across 14 typologically diverse languages
with CORA as the baseline. We also use English
questions from NQ (Kwiatkowski et al., 2019) for
training. Reranking the outputs from the retriever
leads to consistent improvements across all lan-
guages in both XOR-TyDi and MKQA, even in
zero-shot settings. We show that using a fusion-in-
decoder based reader leads to 2.7 points improve-
ment in EM and 0.6 points improvement in F1 for
the XOR-TyDi dataset. Moreover, on applying
Wikidata based postprocessing techniques we see a
straight 4.6 points improvement in EM and 3 points
in F1. We see that our proposed pipeline also helps
in zero-shot settings for both high resource and low
resource languages.

2 Datasets

In this work, we use the data corpus provided by the
MIA Shared Task on Cross-lingual Open-Retrieval
QA which consists of XOR-TyDi and MKQA cor-
pus. The shared task also provides questions from
the NQ corpus.

XOR-TyDi is the first corpus to combine
information-seeking questions, and open-retrieval
QA in the multilingual domain to enable cross-
lingual answer retrieval. This dataset is an exten-
sion of the TyDi QA (Clark et al., 2020b) dataset
and involves retrieving evidence passages from
multilingual and English resources. This dataset
consists of questions written by native speakers in
7 typologically diverse languages: Arabic, Bengali,
Finnish, Japanese, Korean, Russian, and Telugu.

Language #Train #Dev #Passages

En (English) 76.6k (n) 1.7k (m) 18M
Ar (Arabic) 18.4k (x) 3k (x,m) 1.3M
Bn (Bengali) 5k (x) 0.5k (x) 0.1M
Fi (Finnish) 9.7k (x) 2.7k (x,m) 0.9M

Ja (Japanese) 7.8k (x) 2.4k (x,m) 5.1M
Ko (Korean) 4.3k (x) 2.2k (x,m) 0.7M
Ru (Russian) 9.2k (x) 2.7k (x,m) 4.5M
Te (Telegu) 6.7k (x) 0.6k (x) 0.3M

Es (Spanish) - 1.7k (m) 5.7M
Km (Khmer) - 1.7k (m) 0.06M
Ms (Malay) - 1.7k (m) 0.4M

Sv (Swedish) - 1.7k (m) 4.6M
Tr (Turkish) - 1.7k (m) 0.8M

Zh (Simplified Chinese) - 1.7k (m) 3.4M

Total 137k 9115 45.86M

Table 1: Dataset Statistics showing the 14 diverse lan-
guages used in this task with the top 7 being seen and
the bottom unseen. n, x and m denote the source of the
dataset NQ, XOR-TyDi and MKQA respectively from
which the examples are collected.

MKQA corpus was originally proposed in
(Longpre et al., 2021) and consists of 10K question-
answer pairs aligned across 26 typologically di-
verse languages (260K question-answer pairs in
total). Answers for this corpus are heavily curated
and obtained from language-independent data rep-
resentation which makes this corpus ideal for eval-
uating across diverse languages and being indepen-
dent of language-specific passages. MKQA corpus
provided by the shared task is a filtered version that
only includes questions with answer annotations
and removes the "no answers" questions. For this
task, 12 languages were collected from MKQA, six
seen: Arabic, Finnish, Japanese, Korean, Russian,
and six unseen(zero-shot): Spanish, Khmer, Malay,
Swedish, Turkish, Simplified Chinese, each with
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1.7k examples in the dev set.
NQ (Natural questions) is a factoid-based En-

glish question answering dataset with both short
and long answers for each question from English
Wikipedia. We focus on the subset which is given
as a part of the training dataset in the shared task.

Table 1 shows the dataset statistics for the train
and the dev across 7 different languages. We also
experiment with MKQA corpus in the zero-shot
setting with 6 languages.

3 Related Work

Open-domain question answering requires a model
to answer questions without any pre-trained do-
main (Kwiatkowski et al., 2019). There have been
some recent works to create a non-English QA cor-
pus to analyze the model’s effectiveness to transfer
knowledge from the English language or other high-
resource languages. Further, some works focus on
generating loosely aligned data using translation or
similar multilingual sources.

As mentioned some of the recent works in Ques-
tion Answering (QA) aim to build systems that
can work well with languages other than English.
(Lewis et al., 2019) proposed MLQA which is a
multi-way aligned extractive QA corpus. It consists
of instances in 7 languages with each instance par-
allel between 4 languages on average. This work
defines two tasks: the first one focuses on analyz-
ing the model’s ability to transfer by training and
testing in different languages and the other task re-
quires the model to retrieve passages in a different
language than the question. One of the shortcom-
ings of this corpus is that it contains context in
the same language and therefore doesn’t explicitly
captures the cross-lingual aspect. This leads to a
problem for a low-resource language question set
as in real scenarios most of these questions have
answers in a high resource language. (Liu et al.,
2019) presents the XQA dataset to investigate cross-
lingual OpenQA research. This corpus consists of
the training set in English along with the develop-
ment and test set in eight other languages. Their
analysis of several baseline models indicates that
the performance in a cross-lingual setting not only
depends on the similarity of English and the target
language but also on the complexity of the target
language question set. Another work in the cross-
lingual domain, XQuAD is proposed by (Artetxe
et al., 2019) which is created by using a subset of
SQuad v1.1 (Rajpurkar et al., 2018) corpus and

translating them into ten other languages by profes-
sional translators. This paper also evaluates the hy-
pothesis that multilingual models perform well due
to the shared subword vocabulary and joint training
across multiple languages and shows that mono-
lingual representations can be adapted to produce
similar performance without relying on a shared
vocabulary or joint training.

Most previous works modeled cross-lingual QA
as an extractive task which is mostly inspired by
the datasets like XQuAD (Artetxe et al., 2019)
which is a subset of SQuAD (Rajpurkar et al.,
2018). The SQuAD dataset contains answer spans
in the evidence passage to answer a given ques-
tion. These answer spans were further used in
the generation of the cross-lingual QA dataset,
XQuAD, and therefore are more suitable to be
modeled as an extractive task. More recently,
there have been studies that work on generating
answers from raw text. Works such as (Chi et al.,
2019) (Kumar et al., 2019) study cross-lingual ques-
tion generation. (Shakeri et al., 2020) proposed a
method to generate multilingual question-answer
pairs through the use of a single fine-tuned mul-
tilingual T5 generative model. Their work shows
that these synthetic examples could be used to im-
prove the performance of multilingual QA in the
zero-shot setting on target languages. Previous
works have also explored other variants of gen-
erative modeling but it was mostly limited to the
domains where the model is expected to gener-
ate long answers. Recent work on FiD (Izacard
and Grave, 2021) shows that generative approaches
could achieve competitive results even in the cases
where answers consist of a short text span. One of
the widely used approaches for open-domain ques-
tion answering named RAG (Lewis et al., 2020)
makes use of the generative model approach. RAG
model’s reader module takes several retrieved pas-
sages from the retriever encoder simultaneously
to generate the answer. Passage representations
and their similarity score with the query are used
to generate the final response in the reader mod-
ule. Further, the RAG approach works efficiently at
scale due to the independent processing of passages
in the encoder module.

Bi-encoder retrievers are effective in bringing
out relevant passages from a large index but some-
times reranking those passages is essential as the
downstream reader can only see a limited num-
ber of them. (Fajcik et al., 2021) uses reranker
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Figure 1: The proposed system architecture uses a mDPR based bi-encoder retriever which fetches the top 200
relevant passages from the passage index, followed by a XLM-R based cross-encoder for reranking. The top 50
passages are passed to FiD with mT5 to output the final response. The final response which is not in the target
language is mapped using a Wikidata map to the target language.

after their retriever as a cross-encoder to improve
the recall which proves effective in the end-to-end
question answering pipeline. Incorporating Wiki-
data (Hu et al., 2021) in translation for sentences
including named entities is common in literature
because the pretrained multilingual reader is unable
to translate these entities as it has not seen them
during training.

4 Baseline

We use CORA (Asai et al., 2021b) as our base-
line model which is a unified multilingual open
QA model for many languages. CORA model is
a combination of two models: Multilingual Dense
Passage Retriever (mDPR) and Multilingual An-
swer Generation (mGEN).

mDPR extends Dense Passage Retriever (DPR)
to a multilingual setting and uses an iterative train-
ing approach to fine-tune a pre-trained multilingual
model (mBERT) to encode passages and questions
separately. mGEN uses a multilingual sequence-to-
sequence model (mT5) to generate answers in the
target language token-by-token given the retrieved
multi-lingual passages. The generation approach is
used as it can generate an answer in the target lan-
guage from passages across different languages.

5 Methodology

We employ the widely used Retrieve-then-generate,
figure 1, architecture for open domain question
answering. To tackle the challenge of passing a
limited number of passages to the generator, we
use a reranker. We also use a postprocessor to
convert named entities into the query language.

5.1 Bi-encoder Retriever

Following the baseline (Asai et al., 2021b), we used
the mDPR model trained on hard negatives mined
using BM-25 and adversarial examples mined us-
ing hard negatives from 1st iteration of the mDPR
model.

5.2 Cross-encoder Reranker

The multilingual retriever is trained as a bi-encoder
where the questions and passages are encoded sep-
arately and compared during the inference time.
Therefore, there is no cross-attention captured be-
tween the question and passage which is essential
for cross-language retrieval. Cross-encoder can’t
be used for the retrieval because it isn’t computa-
tionally feasible to compare the query with all the
passages (which are in millions). Further, we can
only pass a limited number of k passages ( less than
50) to the reader model. Therefore, reranking is
very essential in this scenario. Hence, we take the
top k (here 200) passages fetched by the retriever
and train a XLM-RoBERTA (Conneau et al., 2020)
model as a cross-encoder by scoring the positive
passages higher. We followed (Qu et al., 2020) to
train the reranker by using a cross-entropy loss on
the [CLS] token output. The negative passages for
the reranker are mined using the finetuned baseline
mDPR model.

5.3 Fusion-in-Decoder Reader

Given the recent popularity of generative reader
models in English Open-domain QA (Izacard and
Grave, 2021) (Lewis et al., 2020), we used a FiD
model as a reader model with mT5 (Xue et al.,
2021) which encodes the top-50 reranked/retrieved
passages one-by-one and concatenates them before
passing it to the decoder. FiD is useful because
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Target Language Li

Model Ar Bn Fi Ja Ko Ru Te F1 EM

Baseline (CORA) 51.3 28.7 44.3 43.2 29.8 41.3 44.1 39.8 30.3
mDPR + mFiD 53.5 26.3 46.4 42.4 28.3 42.6 43.0 40.4 33.0
mDPR + mFiD + P 54.4 31.7 46.7 42.9 33.3 43.1 45.2 42.5 34.6
mDPR + mFiD + RR 55.1 28.0 46.2 43.2 30.6 42.8 44.5 41.5 34.0
mDPR + mFiD + RR + P 55.6 30.4 46.3 43.7 34.7 43.2 45.8 42.8 34.9
Baseline (Test) 49.7 34.0 39.5 39.7 25.6 41.0 36.2 37.9 -
mDPR + mFiD + RR + P (Test) 55.1 30.6 41.3 42.4 28.8 42.6 40.8 40.2 -

Table 2: XOR-TyDi dev and test set performance across 7 different languages for different ablations of our
components. We tried settings where we removed the RR(reranker) and P(Postprocessing).

Seen Target Language Li Zero Shot Target Language Li

Model Ar En Fi Ja Ko Ru Es Km Ms Sv Tr Zh F1 EM

Baseline (CORA) 8.77 27.9 23.3 15.2 8.3 14.0 24.9 5.7 22.6 24.1 20.6 13.1 17.4 13.5
mDPR + mFiD 8.8 39.7 25.2 14.3 6.3 13.3 29.7 7.7 30.1 28.6 25.7 9.8 19.9 16.0
mDPR + mFiD + P 14.5 39.7 25.1 20.6 13.6 22.6 30.2 7.8 29.4 28.2 25.4 15.1 22.7 17.2
mDPR + mFiD + RR 9.3 40.6 26.2 14.9 6.5 14.6 29.5 8.3 29.9 29.9 26.7 10.6 20.6 16.5
mDPR + mFiD + RR + P 14.2 40.6 26.1 21.5 14.8 22.7 29.8 8.3 29.3 29.6 26.5 16.2 23.3 17.8
Basline (Test) 9.5 36.3 22.7 7.7 15.9 14.6 27.2 6.0 25.1 26.7 21.7 13.8 17.1 -
mDPR + mFiD + RR + P (Test) 13.9 42.6 26.8 14.6 22.7 22.4 32.1 8.7 31.1 31.5 26.6 18.0 22.9 -

Table 3: MKQA dev and test set performance across 12 different languages for different ablations of our components.
There were 6 languages which were in a zero-shot setting. We note from the dataset statistics presented in 1, Es, Sv,
Zh are high-resource whereas others are low resource languages.

it also learns to rerank the documents to collect
the evidence from the documents. We followed
the baseline to use mT5 as the underlying cross-
lingual language model. This mT5 with FiD model,
which we call mFID, is trained on the training data
that is given, which is a mixture of Natural Ques-
tions and XOR-TyDi. This mFiD acts as a cross-
lingual fusion reader without the necessity to trans-
late the passages/free-text answers from which the
evidence is collected. To add extra supervision
during training, we always pass the gold passage
which has the answer along with the other passages.

5.4 Answer Post Processing with Wikidata

Figure 2 shows the discrepancy between the lan-
guage of the predicted output and the language of
the question. This is because if the evidence is
collected from a different language passage, the an-
swer is not translated by the model in cases where
there are entities in the answer. After all, the model
hasn’t seen those entities while training. In such
cases, we require post-processing to convert enti-
ties in other languages to the answer language. We
have only tackled the English case because we have
seen that most of the time the model is not able to
translate the English entity. We collected en-xx

Wikidata 2 maps for the languages in our dev set to
convert those English predicted answers.

Figure 2: The figure shows the predicted answer by the
model which is in English (usually entities) which the
model can’t translate and hence requires post processing
to convert to the final language.

6 Results & Discussion

Table 2 shows the performance of various com-
ponents of our pipeline and compares it with the
baseline on the XOR-TyDi dev and test set and Ta-
ble 3 shows the overall performance on the MKQA
dev set. MKQA dev set has 6 languages that have
no training data. We do not add any training data
using data augmentation for these languages as
we want to evaluate improvement in models in a

2https://www.Wikidata.org/wiki/Wikidata:Main_Page
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R@50
Model Ar Bn Fi Ja Ko Ru Te Avg

Baseline (mDPR) 67.8 52.9 60.6 16.6 40.2 60.9 50.4 53.5
XLM-R Reranker 68.9 56.5 60.3 19 44.6 61.2 53.2 55.1

Table 4: Reranking performance for R@50 across 7 different languages in the XOR-TyDI dev set.

Seen R@50 Zero Shot R@50
Model Ar En Fi Ja Ko Ru Es Km Ms Sv Tr Zh Avg

Baseline (mDPR) 25.5 70.5 55.5 13.6 20.7 35.9 62.2 16.1 59.6 63.0 56.4 12.5 41.0
XLM-R Reranker 27.7 73.5 58.5 15.9 23.3 38.9 64.7 18.6 62.3 65.2 59.0 15.4 43.6

Table 5: Reranking performance for R@50 across 12 different languages in the MKQA dev set. 6 languages were
zero shot (not seen in the training corpus).

zero-shot setting that is comparable to real-world
scenarios.

For XOR-TyDi, we see that overall we achieve 3
and 4.6 points improvement in F1 and EM respec-
tively, whereas for MKQA we achieve a 5.9 points
F1 improvement. We see that adding FiD to the
baseline mDPR leads to a significant increase in F1
for languages like Ar, Fi, and Ru. Further, adding
postprocessing to the FiD output leads to a signifi-
cant increase in both F1 and EM and the model out-
performs the baseline for all the languages. Rerank-
ing is crucial for FiD because it sees only 50 doc-
uments as compared to the 100 that the baseline
uses. Reranking the top 200 documents retrieved
helps the resulting FiD which shows a consistent
improvement over the baseline except for Bn and
Ko for which the model usually outputs lots of enti-
ties in English that require post-processing. We get
the best results for applying postprocessing (P) on
the outputs by the reranker(RR) + FiD model. For
zero-shot settings in the MKQA dataset, we also
see consistent 5 points of F1 improvement over
the baseline due to the combined effect of the FiD,
reranker, and the postprocessor. For high-resource
zero-shot languages Es, Sv, Zh we observe around
5 points improvement over baseline whereas for
Km which is an extremely low-resource language
we still show around 3 points improvement. We
now provide detailed results and analysis for each
component of our pipeline.

6.1 Reranker

Table 4 captures the reranker performance over the
baseline mDPR model. Applying the reranker to
the baseline mDPR gives a consistent improvement
in R@50 for all the languages leading to about 1.6

points improvement. This essentially is because
of two reasons - cross interactions between ques-
tion and passage and the fact that XLM-RoBERTA
is a better language model than mBERT. These
reranked passages also help in the downstream FiD
model (See Table 2) and lead to a 1 point F1 and
EM improvement over the model which didn’t re-
ceive the reranked passages (mDPR + mFiD). We
also think that this model lacks in performance over
the baseline for Bn because the number of training
examples for Bn is very low as compared to other
languages. For the MKQA dataset, in table 5, we
see a significant increase over the mDPR model
across all the languages for R@50. We see a 2.6
improvement in R@50 over the baseline. For zero-
shot languages, we also see a significant increase
in recall showing the effectiveness of the XLM-R
model for unseen languages. This increased recall
further helps in the downstream reader improve-
ments as well.

6.2 Reader

The FiD with mT5 (mFiD) reader performs bet-
ter than the normal mT5 as can be seen by the 3
points EM improvement over the baseline in Table
2, although FiD just uses 50 documents as com-
pared to the 100 documents used by the baseline.
The fusion-in-decoder approach also is an effective
reranker by itself in searching for evidence to arrive
at the final answer. Table 3 shows the final perfor-
mance of the model on the MKQA dataset as well.
We see that mFiD with reranking has 3 points im-
provement over the baseline and also shows great
improvements for unseen languages like Es, Ms,
and Tr. This further corroborates the effectiveness
of the reranker and the mT5 based FiD for unseen
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Figure 3: The figure shows 1 example each for our component improvement and also points to a flaw in the dataset.
Here category indicates the model component which led to the correct prediction compared to the baseline model.

languages. Also, it is worth noting that for En lan-
guage in MKQA, simply adding FiD improves the
performance by 12 points, showing the advantage
of the fusion-in-decoder technique.

6.3 Postprocessor

Converting entities using Wikidata maps in English
to target languages is useful, especially for the high-
resource languages, in both XOR-TyDI and MKQA
datasets because the answers are expected in the
question language and the reader models (mFiD)
can’t translate named entities. Table 2 shows that
for languages Bn, and Ko the improvement of post-
processing is the maximum because the predicted
answers of these languages are usually in English,
which when converted to their entities boost’s the
F1 and EM. In the zero-shot setting, there is a huge
improvement of 6 points in Zh because of the same
reason.

7 Error and Qualitative Analysis

7.1 Qualitative analysis

We present a qualitative analysis, in figure 3, of
our model that highlights the component-wise im-
provement. For the first example with the category
"Rerank", it implies that the original mDPR re-
trieval top-50 docs didn’t have the ground truth
passage but due to the reranker module, we were
able to move ground truth passage into the top-50
passages and finally generate the correct answer.
The second example indicates the improvement of
the reader module due to the use of the FiD tech-
nique. In this example, both baseline and reranker
retrieval output had the ground truth passage but
only our reader module (FiD) can generate the cor-
rect response. For the 3rd example, our reader mod-
ule generates an answer in the English language but

our post-processing module can identify this En-
glish entity from the Wikidata mapping and convert
it to the source language as expected by this task.
For the last example, we try to highlight that both
the models can generate the correct response but F1
comes 0 for both of them due to the limitation of
the dataset (could have provided multiple answers)
and the evaluation metric used for this task.

Figure 4: The graph shows the performance of our best
model with respect to number of positive contexts.

7.2 # Positive context analysis

We look at the reranked results which are used
by our best model to see the effect of the num-
ber of positive passages (passages containing the
right answer) on the F1 and EM metrics. Figure
4 shows that with an increased number of positive
contexts (greater than 10), it’s easier for the FiD
model to collect evidence and arrive at the final
answer, which indicates that the retriever is the bot-
tleneck. If the retriever is good enough to pull up
multiple positive contexts having the correct an-
swer, the FiD model will perform better in those
cases.
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Figure 5: The graph shows a comparison of our model
with the baseline model across correct answer length (in
chars).

7.3 Answer length analysis
Figure 5 shows that our best model performs bet-
ter than the baseline model for questions that have
short answers whereas for long answers the base-
line model outperforms our model. The FiD mT5
model might have learned some bias to truncate
at short answers and it fails to emit long answers,
which the normal mT5 does better.

8 Conclusion & Future Work

We introduced a modular end-to-end system with
a retriever, reranker, reader, and postprocessor
for cross-lingual question answering and showed
improvements in both normal and zero-shot set-
tings. These cross-lingual models consist of a
large number of parameters and are very resource-
intensive. The retriever model takes around 1
hr/epoch whereas the fusion-in-decoder model
takes 8 hr/epoch on A6000 GPUs. For future
work, we think it would be interesting to try sparse
retrieval methods (Formal et al., 2021) in cross-
lingual settings and also try incorporating more
knowledge from Wikidata based entities in the
pipeline.
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Abstract

We describe our two-stage system for the Multi-
lingual Information Access (MIA) 2022 Shared
Task on Cross-Lingual Open-Retrieval Ques-
tion Answering. The first stage consists of mul-
tilingual passage retrieval with a hybrid dense
and sparse retrieval strategy. The second stage
consists of a reader which outputs the answer
from the top passages returned by the first stage.
We show the efficacy of using entity represen-
tations, sparse retrieval signals to help dense
retrieval, and Fusion-in-Decoder. On the devel-
opment set, we obtain 43.46 F1 on XOR-TyDi
QA and 21.99 F1 on MKQA, for an average F1
score of 32.73. On the test set, we obtain 40.93
F1 on XOR-TyDi QA and 22.29 F1 on MKQA,
for an average F1 score of 31.61. We improve
over the official baseline by over 4 F1 points
on both the development and test sets.1

1 Introduction

This paper describes our submission to the Mul-
tilingual Information Access (MIA) 2022 Shared
Task on Cross-Lingual Open-Retrieval Question
Answering. Cross-lingual open-retrieval question
answering is the task of finding an answer to a
knowledge-seeking question in the same language
as the question from a collection of documents
in many languages. The answer may not neces-
sarily exist in a document that’s in the same lan-
guage as the question, and hence a system need
to find the answer across relevant documents in a
different language. The shared task at Multilingual
Information Access 2022 evaluates cross-lingual
open-retrieval question answering systems using
two datasets, XOR-TyDi QA (Asai et al., 2020)
and MKQA (Longpre et al., 2020).2

We use a two stage approach, similar to the
CORA (Asai et al., 2021) baseline, where the first

1Our submission team name is Team Utah: https://
eval.ai/challenge/1638/leaderboard/3933.

2https://mia-workshop.github.io/
shared_task.html.

stage performs multilingual passage retrieval and
the second stage performs cross-lingual answer
generation. In the first stage, we leverage mLUKE
(Ri et al., 2021), a pretrained language model that
models entities, to train a dual encoder that encodes
the question and passage separately (Karpukhin
et al., 2020). During retrieval, we perform nearest
neighbor search using the query vector on an index
of encoded passage vectors. We merge these dense
retrieval hits with BM25 sparse retrieval hits using
an algorithm we call Sparse-Corroborate-Dense.
Finally, we feed the ranked list of passages into a
reader based on Fusion-in-Decoder (Ri et al., 2021)
and mT5 (Xue et al., 2020) to produce the final
answer. We do not perform iterative training to
repeat these steps multiple times.

Compared to official baseline 1, we improve
the macro-averaged score by 4.1 F1 points. We
perform analysis to show the effectiveness of entity
representations, using sparse signals to improve
dense hits, and Fusion-in-Decoder.

2 Data and Processing

2.1 Datasets

We use the official training data consisting of 76635
English questions and answers from Natural Ques-
tions (Kwiatkowski et al., 2019) and 61360 ques-
tions and answers from XOR-TyDi QA (Asai et al.,
2020) to train our dual encoder model. We do not
train on the development data or the subsets of
the Natural Questions and TyDi QA (Clark et al.,
2020) data, which are used to create MKQA or
XOR-TyDi QA data. For training the reader, we
leverage Wikipedia language links, which is de-
tailed in Section 3.3.

XOR-TyDi QA consists of annotated questions
and short answers across seven typologically di-
verse languages. It can be broken down into two
subsets, questions where the answer can be found
in a passage in the same language as the question
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(“in-language”), which just come from answerable
questions in TyDi QA (Karpukhin et al., 2020),
and questions where the answer is unanswerable
from a passage in the same language as the ques-
tion and can only be found in an English passage
(“cross-lingual”), which are newly added answers
in XOR-TyDi QA. A system should be able to
succeed at both monolingual retrieval and cross-
lingual retrieval.

MKQA (Longpre et al., 2020) consists of 10K
parallel questions and answers across 26 typologi-
cally diverse locales. The original question is taken
from Natural Questions (Kwiatkowski et al., 2019)
in English and translated to 25 different locales.
MKQA does not contain any data for training and
is only used for evaluation.

2.2 Passage Corpus
We directly use the passages corpus provided by
the shared task, with the addition of Tamil (ta) and
Tagalog (tl) which are not included in the base-
line’s passage data. Following the other languages,
we use the 20190201 snapshot of the Wikipedia
dumps. We follow the same preprocessing steps
as the baseline passages data.3 We manually split
the data into language-specific files, which are later
used to build language-specific dense and sparse in-
dices. Final passage retrieval results are aggregated
among different indices. The number of passages
in each language is shown in Table 1.

3 System Architecture and Pipeline

Our system differs from the baseline in three ways.
First, in the passage retrieval step, we replace
mBERT (Devlin et al., 2019) with mLUKE (Ri
et al., 2021). Second, we construct sparse in-
dices from which we will retrieve passages to aug-
ment dense retriever-retrieved passages, inspired
by Zhang et al. (2021) but uses a different dense-
sparse hybrid approach. Finally, we encode each
question and passage independently as opposed
to all passages together following the Fusion-in-
Decoder (Izacard and Grave, 2020) approach.

3.1 Entity Representations
For dense retrieval, we use a multilingual pre-
trained language model with entity representations,
mLUKE (Ri et al., 2021), to initialize the dual

3https://github.com/mia-workshop/
MIA-Shared-Task-2022/commits/main/
baseline/wikipedia_preprocess/build_
dpr_w100_data.py

Language Passages % of Total Passages

Arabic (ar) 1304828 2.83
Bengali (bn) 179936 0.39
English (en) 18003200 39.00
Spanish (es) 5738484 12.43
Finnish (fi) 886595 1.92
Japanese (ja) 5116905 11.09
Khmer (km) 63037 0.14
Korean (ko) 638865 1.38
Malaysian (ms) 397396 0.86
Russian (ru) 4545634 9.85
Swedish (sv) 4525695 9.81
Tamil (ta) 219356 0.48
Telugu (te) 274230 0.59
Tagalog (tl) 69228 0.15
Turkish (tr) 798368 1.73
Chinese (zh) 3394943 7.36

Total 46156700 100.0

Table 1: Number of passages in corpus for each lan-
guage.

encoder in DPR (Karpukhin et al., 2020). We
use the same training objective as DPR and also
use the last layer’s hidden state of the first in-
put token as the representation for both the ques-
tion and passage. mLUKE is a multilingual ex-
tension of LUKE (Yamada et al., 2020), a pre-
trained contextualized representation of words and
entities based on the Transformer (Vaswani et al.,
2017). Words and entities are treated as dif-
ferent types of tokens and the entity-aware self-
attention mechanism leads to improved effective-
ness. We use the Hugging Face transformers
(Wolf et al., 2020) versions of mluke-base
and bert-base-multilingual-uncased.
Only in-batch negatives are used to train the dual
encoder.

3.2 Dense-Sparse Hybrids

In order to effectively retrieve passages in a multi-
lingual setting, the retrieval component needs to do
well in both monolingual retrieval and cross-lingual
retrieval. Monolingual retrieval is the setting where
we want to retrieve passages in the same language
as the question. For more than half of the ques-
tions in the XOR-TyDi QA dataset, for example,
the answer is found in a passage that’s in the same
language as the question. Cross-lingual retrieval
is the setting where we want to retrieve relevant
passages in different language from the question.
We use both sparse retrieval (i.e. BM25) and dense
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Figure 1: An illustration of the Sparse-Dense-
Corroborate algorithm, running with K = 5 and
max_frac = 0.6 for a Bengali (bn) question. We first
retrieve the 5 passages with the highest scores from the
dense indices, and the top 5 passages from the Bengali
sparse index. For the first output slice, we take passages
in both lists, ordered by same order as in the dense list,
which are doc 5 and doc 2. For the second slice, we add
the top remaining passages from the dense list, which
are doc 3 and doc 1. For the third slice, we take the top
remaining passages from the sparse list, which is doc
8. The max number of sparse results that is allowed to
influence the final list is 0.6× 5 = 3, which are docs 5,
2, and 8.

retrieval together in our system. Experiments in
Mr. TyDi (Zhang et al., 2021) indicate BM25 out-
performs DPR (Karpukhin et al., 2020) for the lan-
guages in XOR-TyDi QA in the monolingual re-
trieval setting, but combining the sparse score and
DPR score in sparse-dense hybrids perform even
better. At the same time, sparse retrieval rely on
lexical token matches and cannot do cross-lingual
retrieval effectively without translating the query
to the same language as the passage. To remove
the need to use a machine translation system for
simplicity, we rely on multilingual dense passage
retrieval for cross-lingual retrieval.

For dense retrieval, we use FAISS (Johnson et al.,
2019) with IndexFlatIP. For sparse retrieval,
we use Pyserini (Yang et al., 2017; Lin et al., 2021)
with BM25 with default parameters. We build sep-
arate indices for each language for both the dense
and sparse setting. For each query, where we want
to return K passage, we search for the top K pas-
sages globally in the dense indices in all languages,
and search for the top K passages in the sparse
index in the same language as the question.

We combine results from dense retrieval and
sparse retrieval using the following algorithm,
which we call Sparse-Corroborate-Dense. Our fi-
nal ranked list consists of three ordered slices. The
first slice consists of passages that are present in

both dense and sparse retrieved lists, ranked in the
same order as they appear in dense retrieval. The
second slice consists of passages that are only in
the dense ranked list and not in the sparse ranked
list. The last slice consists of top passages in the
sparse ranked list. The number of passages from
the sparse hits that are allowed to influence the fi-
nal ranked list is no more than ⌊max_frac ∗K⌋.
We find this works better than the score normaliza-
tion and combining approach in Mr. TyDi (Zhang
et al., 2021) for cross-lingual retrieval. Figure 1
has an illustration of this algorithm running with
K = 5 and max_frac = 0.6 for a Bengali (bn)
question. Please refer to Appendix A for code of
the algorithm.

3.3 Reader

Instead of concatenating the question and all the
passages in the input to the encoder like in the base-
line, which we will call Fusion-in-Encoder, we use
the Fusion-in-Decoder (FiD) approach (Izacard and
Grave, 2020). In Fusion-in-Decoder, the encoder
processes each of the ctxs passages independently
adding special tokens question: lang: title: and
context: before the question, title and text of each
passage, while the decoder performs attention over
the concatenation of the resulting representations
of all the retrieved passages.

Independent processing of passages in the en-
coder allows to scale linearly to large number of
contexts, while processing passages jointly in the
decoder helps better aggregate evidence from mul-
tiple passages.

In order to semantically ground the entities
across different languages together, we use
Wikipedia language links to augment the data
from retriever while training FiD based reader,
like the CORA baseline. First, for each question
in the MIA training set that comes from Natural
Questions, we use the answer to search for the
corresponding Wikipedia page using the Wikipedia
API. Generally, only answers that are entities
will have a result. This returns the titles of the
Wikipedia articles in different languages, which
we use as the answer in different languages. We
use the DPR checkpoint trained with adversarial
examples to retrieve English passages from
the index.4 For each English question-answer
pair, we find corresponding entries in other

4https://github.com/facebookresearch/
DPR#new-march-2021-retrieval-model
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languages being evaluated in the task and generate
[Queryeng, Langtarget, Answertarget, Passages]
tuples for training FiD. This data is augmented to
the original training data provided by the retriever.

4 Results

For training the dual encoder, we use the official
training data without any hard negatives with the
same hyperparameters as the baseline dual encoder
(Asai et al., 2021). For training Fusion-in-Decoder,
we combine the all of the retrieval results with sam-
pled Wikipedia language link augmented passages
such that the total percentage of training examples
from either source is 50%. We use the baseline
retrieval results instead of mLUKE-retrieved re-
sults to develop the retriever and reader in parallel.
We use learning rate of 0.00005 with linear learn-
ing schedule with a weight decay of 0.01 using
the AdamW optimizer. The context size (num-
ber of passages) in the final submission is 20 pas-
sages. Note for retrieval we use K = 60 to use
the same retrieval results for different context size
experiments, but in the final submitted system take
the top 20 from this list for the reader. We use
max_frac = 0.2 for Sparse-Corroborate-Dense.
We use the best checkpoint on the development set
for both components.

4.1 Main Results

We first report end-to-end results using our best
system compared to the baseline in Table 2 for the
development set and Table 3 for the test set. On
the development set, we obtain macro-averaged
F1 score of 43.46 across all languages on XOR-
TyDi QA, an improvement of 3.70 F1 points over
39.76 obtained by baseline 1. We obtain macro-
averaged F1 score of 21.99 across all languages on
MKQA, an improvement of 4.61 F1 points over
17.38 obtained by baseline 1. On the test set, we
observe fairly consistent results compared to the de-
velopment set. On XOR-TyDi QA, our system and
baseline 1 obtains 40.93 and 37.95 respectively,
an improvement of 2.98 F1 points. On MKQA,
our system and baseline 1 obtains 22.29 and 17.14
respectively, an improvement of 5.15 F1 points.
On both the development set and test set, we out-
perform the baseline on all languages except for
Khmer (km) on MKQA.

We observe our system frequently retrieves ir-
relevant passages for Khmer through qualitatively
sampling some passages retrieved for Khmer ques-

tions, providing little chance for the reader to find
the answer. mLUKE uses 24 languages for pre-
training and does not include Khmer, making it
difficult to align entities in Khmer. Furthermore,
even if we use the baseline retrieval results, we still
see a large drop in reader effectiveness when we
switch to Fusion-in-Decoder from row (iii) to (ii)
in Table 4. We only have 3101 rows in the training
data for Khmer for our reader all from Wikipedia
language links, out of 275990 rows in total.

On the surprising languages Tagalog (tl) and
Tamil (ta), we outperform the baseline by a large
margin. Perhaps surprisingly, this large improve-
ment cannot be attributed to the presence of Taga-
log and Tamil passages in our corpus, since in our
best submission, for example, out of the 350 Tamil
questions, only one question has a retrieved pas-
sage in Tamil in the top results that are fed to the
reader. Instead, the system is able to generate cor-
rect answers from English passages.

4.2 Analysis

Ablation Studies We conduct ablation studies
on our system in Table 4. We find the biggest gain
comes from switching Fusion-in-Encoder (FiE) in
the baseline to Fusion-in-Decoder (FiD) from row
(iii) to row (ii), even though we did not increase
the number of passages for Fusion-in-Decoder
and kept it at 20 for the final system. The sec-
ond largest gain comes from switching mBERT
to mLUKE from row (ii) to row (i). Finally, the
smaller gain comes from switching dense retrieval
only to Sparse-Corroborate-Dense, from row (i) to
mLUKE + SP + FiD. We study each of the compo-
nents in greater detail below.

[ta] ெம#$ அ&ல( ெரானா&ெடா, இ.வ0& யா2 அ3க ேகா&கைள அ89த(? 
Messi or Ronaldo, which of the two has scored the most goals?

[en] [Messi–Ronaldo rivalry] The Messi–Ronaldo rivalry is a football rivalry between fans of 
Argentinian forward Lionel Messi and Portuguese forward Cristiano Ronaldo and supposedly 

between the athletes themselves. … Both players have regularly broken the 50 goal barrier in a 
single season and have scored over 600 goals each in their careers for club and country…

[en] [Refik Resmja] A predominantly a left footed player, Resmja is known to have scored most of 
his goals with it, some of them from outside the penalty area. His short and athletic stature made 
Resmja a great dribbler which allowed him to get past most of the challenges he got in the field. 

The most well-known ability of Resmja was his scoring instinct, attacking movement and 
positioning inside the penalty area…

mLUKE

mBERT

Figure 2: The top passage for a Tamil question retrieved
by mBERT and mLUKE. We see mLUKE is able to find
English passages related to entities Messi and Ronaldo,
but mBERT struggles and only finds a general passage
related to another unrelated soccer player related to goal
scoring.
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XOR-TyDi QA F1 MKQA F1
System ar bn fi ja ko ru te Avg ar en es fi ko ms ja km ru sv tr zh_cn Avg

Baseline 1 51.29 28.72 44.35 43.21 29.84 40.68 40.19 39.76 8.77 27.86 24.92 23.25 8.28 22.64 15.18 5.73 14.00 24.13 20.60 13.14 17.38
Our submission 54.84 30.68 47.41 47.29 33.90 43.13 47.00 43.46 13.34 39.57 29.74 24.73 12.14 27.44 18.97 2.57 19.36 28.26 25.52 22.29 21.99

Table 2: End-to-end development set results. Baseline 1 and our submission obtain overall macro-averaged F1
scores of 28.57 and 32.73 respectively. Our submission outperforms the baseline on all languages except Khmer
(km) on MKQA.

XOR-TyDi QA F1 MKQA F1 Sup
System ar bn fi ja ko ru te Avg ar en es fi ko ms ja km ru sv tr zh_cn Avg ta tl

Baseline 1 49.66 33.99 39.54 39.72 25.59 40.98 36.16 37.95 9.52 36.34 27.23 22.70 7.68 25.11 15.89 6.00 14.60 26.69 21.66 13.78 17.14 0.00 12.78
Our submission 55.33 30.48 41.01 43.45 31.21 42.62 42.40 40.93 12.67 39.63 30.85 25.22 12.18 29.09 20.49 2.36 18.82 29.62 26.16 22.60 22.29 20.75 20.95

Table 3: End-to-end test set results. Baseline 1 and our submission obtain overall macro-averaged F1 scores of
27.55 and 31.61 respectively. “Sup” indicates the surprise languages. Our submission outperforms the baseline on
all languages except Khmer (km) on MKQA.

Entity Representations To evaluate the passage
retrieval component for XOR-TyDi QA, we mea-
sure MRR@60 and Recall@60. We picked 60
because it is the near the maximum number of pas-
sages we can feed into Fusion-in-Decoder bound
by the GPU memory. For each question, to deter-
mine if a passage is relevant, we use a heuristic.
First, we find the universe set of answers for the
questions, which not only contain answers in the
same language, but also possibly answers in En-
glish using the English answer in the XOR-English
Span task (Asai et al., 2020). We check if the
normalized answer is a substring of the passage
text, and if so, we mark the passage as relevant.
Note that this is a proxy for measuring passage
relevance, since answers may not necessarily be
exact spans / substrings or the same answer may
appear as a substring in a non-relevant passage,
but we found it to correlate well with end-to-end
effectiveness. We see from Table 5 that overall
using mLUKE improves passage retrieval effective-
ness. Qualitatively, we also find examples where
the dual encoder trained with mLUKE can find
passages cross-lingually with the relevant entity
whereas that trained with mBERT could not. In
Figure 2, we see mLUKE can retrieve an English
top passage about the soccer players Messi and
Ronaldo asked in Tamil, but mBERT returns just
an English passage about another soccer player not
relevant to the question.

Dense-Sparse Hybrids Next, we evaluate the
benefits of using dense retrieval in conjunction with
sparse retrieval as opposed to using only dense
retrieval in Table 6. The dense retriever here is
mLUKE. We see that dense retrieval always works
better than sparse retrieval when used indepen-
dently, and the score combination approach used

[te] !ద# ప% పంచ (ద) ం ఎ+,- !దల/ం0 ? 
When did the First World War begin?

[te] [!ద# ప% పంచ (ద) ం] !ద# ప% పంచ (ద) ం , 12 3 45 , 67 45 8 ఎం9 ఆ; 45< = 
>?వబB !ద# ప% పంచ (ద) ం ( WWI 67 WW1 ) ఐDEF ఉదHIంJన ప% పంచ (ద) ం 28 LM 1914 

NంO 11 నవంబP 1918 … 
[World War I] World War I, also known as World War I, World War I or WW1 or World War I (WWI 

or WW1) originated in Europe from 28 July 1914 to 11 November 1918…

[sv] [Bernard Montgomery] Bernard Law Montgomery, från 1946 "1:e viscount Montgomery of 
Alamein (Lord Montgomery)", "Monty", född 17 november 1887, död 24 mars 1976, var en brittisk 

militär, fältmarskalk 1 september 1944... 
[Bernard Montgomery] Bernard Law Montgomery, 1946 "1st Viscount Montgomery of Alamein 

(Lord Montgomery)", "Monty", born 17 November 1887, died 24 March 1976, was a British military 
field marshal 1 September 1944 ...

Sparse 
Win

Dense 
Win

[fi] Milloin Bernard Montgomerystä tuli marsalkka? 
When did Bernard Montgomery become marshal?

Figure 3: Here we see a highly relevant passage found
by sparse monolingual retrieval that is not found by
dense retrieval, and a relevant passage found by dense
retrieval cross-lingually that is not found by sparse re-
trieval.

in Mr. TyDi (Zhang et al., 2021) does not outper-
form dense retrieval in recall, but does improve the
MRR. We use Sparse-Corroborate-Dense, which
piggybacks on dense retrieval results, but boosts
the ranking of some passages in dense retrieval,
and add in additional passages not found by dense
retrieval to the end of the top-K list. Compared
to dense only, it is better on both MRR and re-
call. When both dense and sparse retrieval finds
the same passage, it is a strong signal the passage
is relevant. Nonetheless, sparse retrieval can still
find passages that dense retrieval cannot find, and
adding these to the candidate passage list passed to
the reader can provide additional relevant evidence
passages. In Figure 3, we see sparse retrieval can
find a highly relevant passage related to World War
I in Telugu (te) to the Telugu question that can-
not be found by dense retrieval, and dense retrieval
can find a passage related to Bernard Montgomery
cross-lingually in Swedish (sv) to a Finnish (fi)
question that cannot be found by sparse retrieval –
they can complement each other.
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XOR-TyDi QA F1 MKQA F1
System ar bn fi ja ko ru te Avg ar en es fi ko ms ja km ru sv tr zh_cn Avg

mLUKE + SP + FiD 54.84 30.68 47.41 47.29 33.90 43.13 47.00 43.46 13.34 39.57 29.74 24.73 12.14 27.44 18.97 2.57 19.36 28.26 25.52 22.29 21.99
(i) mLUKE + FiD 54.93 29.56 46.88 45.76 33.16 42.03 46.28 42.66 13.23 38.01 29.57 25.36 11.45 27.28 18.37 2.53 18.59 28.22 25.43 21.98 21.67
(ii) mBERT + FiD 53.19 29.25 46.97 43.25 30.38 42.79 44.22 41.44 10.94 37.42 28.18 21.89 9.63 27.20 15.00 2.11 16.41 26.96 21.86 20.24 19.82
(iii) mBERT + FiE 49.71 29.15 42.72 41.20 30.64 40.16 38.57 38.88 8.95 33.87 25.08 21.15 6.72 24.55 15.27 6.05 15.60 25.53 20.44 13.71 18.07

Table 4: Ablation studies on the development sets. mLUKE + SP + FiD is our submission with mLUKE + Sparse-
Corroborate-Dense. (i) mLUKE + FiD only relies on dense retrieval, and we observe a slight decrease in the F1
score of most languages compared with our submission. (ii) mBERT + FiD changes the retriever to mBERT, and we
observe a larger drop in F1 score compared to mLUKE in row (i). (iii) mBERT + FiE changes Fusion-in-Decoder to
Fusion-in-Encoder as in the baseline and we see an even larger drop in F1 score compared with row (ii).

MRR@60
Model ar bn fi ja ko ru te Avg

mBERT (Devlin et al., 2019) 0.106 0.026 0.069 0.031 0.023 0.057 0.050 0.362
mLUKE (Ri et al., 2021) 0.106 0.028 0.076 0.035 0.027 0.122 0.042 0.372

Recall@60
Model ar bn fi ja ko ru te Avg

mBERT (Devlin et al., 2019) 0.185 0.057 0.130 0.073 0.050 0.118 0.075 0.689
mLUKE (Ri et al., 2021) 0.189 0.065 0.133 0.078 0.056 0.056 0.079 0.723

Table 5: MRR@60 and Recall@60 of passage retrieval
for XOR-TyDi QA dev set for different pretrained lan-
guage models.

MRR@60
Methodology ar bn fi ja ko ru te Avg

Sparse Only 0.088 0.023 0.640 0.024 0.018 0.051 0.032 0.299
Dense Only 0.106 0.028 0.076 0.035 0.027 0.058 0.042 0.372
Combine Score (Zhang et al., 2021) 0.113 0.029 0.076 0.032 0.023 0.060 0.048 0.382
Sparse-Corroborate-Dense 0.110 0.029 0.074 0.032 0.026 0.063 0.049 0.382

Recall@60
Methodology ar bn fi ja ko ru te Avg

Sparse Only 0.172 0.045 0.120 0.063 0.044 0.098 0.070 0.611
Dense Only 0.189 0.065 0.133 0.078 0.056 0.122 0.079 0.723
Combine Score (Zhang et al., 2021) 0.178 0.059 0.118 0.070 0.046 0.107 0.076 0.652
Sparse-Corroborate-Dense 0.192 0.065 0.136 0.078 0.057 0.124 0.080 0.733

Table 6: Comparison of various dense-sparse hybrid
strategies for original XOR-TyDi QA dev set. The dense
retrieval dual encoder used is mLUKE. max_frac used
for Sparse-Corroborate-Dense is 0.2.

Fusion-in-Decoder We want to understand the
effect of increasing the number of passages sent to
the reader by comparing the effectiveness of the
reader when there are 20 passages versus 60 pas-
sages. Intuitively, there could be relevant passages
found in positions 21-60, which should strengthen
the evidence needed to output the final answer.
From Table 7 we observe using more evidence pas-
sages consistently improve results, and this scaling
advantage is key over Fusion-in-Encoder. However,
due to time limitations, we only used the 20 pas-
sages setting for the final shared task submission.

5 Conclusion

We describe our submission for the MIA 2022
Shared Task and detail some experiments we per-
form to improve specific components of the sys-
tem. We find that using mLUKE (Ri et al., 2021),
a pretrained language model that models entities,
combing dense and sparse results using Sparse-

XOR-TyDi QA MKQA
Number of Passages EM F1 EM F1

20 31.63 38.06 16.15 20.21
60 33.74 41.29 17.31 21.51

Table 7: Exact Match (EM) and F1 score for differ-
ent number of passages on the development sets from
mLUKE retrieved passages.

Corroborate-Dense, and Fusion-in-Decoder, are ef-
fective for improving the effectiveness for cross-
lingual question answering over the baseline.
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A Sparse-Corroborate-Dense Algorithm

Here is the precise algorithm for Sparse-
Corroborate-Dense.

1 def sparse_corroborate_dense(
2 dense_hits: List[Tuple[str, float]],
3 sparse_hits: List[Tuple[str, float]],
4 max_frac: float, K: int):
5 dense_docid_to_idx = {
6 tup[0]: idx for idx, tup in

enumerate(dense_hits)
7 }
8

9 RESERVED_SPARSE_SLOTS = min(
10 int(max_frac * K),
11 len(sparse_hits)
12 )
13 final_hits = []
14 docids_added = set()
15 backfill_sparse_hits = []
16

17 # Go through top sparse results, if
sparse hit is also in dense, push it
to front, else, put it in backfill

18 for docid, sparse_score in
sparse_hits:

19 if docid in dense_docid_to_idx:
20 final_hits.append(
21 dense_hits[dense_docid_to_idx[

docid]]
22 )
23 docids_added.add(docid)
24 RESERVED_SPARSE_SLOTS -= 1
25 else:
26 backfill_sparse_hits.append([

docid, sparse_score])
27

28 # Add rest of dense ids
29 i = 0
30 while len(final_hits) < K -

RESERVED_SPARSE_SLOTS and i < len(
dense_hits):

31 if dense_hits[i][0] not in
docids_added:

32 final_hits.append(dense_hits[i])
33 docids_added.add(
34 dense_hits[i][0]
35 )
36 i += 1
37

38 final_hits.extend(
39 backfill_sparse_hits[:K - len(

final_hits)]
40 )
41

42 return final_hits
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Abstract

We present the results of the Workshop on
Multilingual Information Access (MIA) 2022
Shared Task, evaluating cross-lingual open-
retrieval question answering (QA) systems in
16 typologically diverse languages. In this task,
we adapted two large-scale cross-lingual open-
retrieval QA datasets in 14 typologically di-
verse languages, and newly annotated open-
retrieval QA data in 2 underrepresented lan-
guages: Tagalog and Tamil. Four teams sub-
mitted their systems. The best constrained
system uses entity-aware contextualized rep-
resentations for document retrieval, thereby
achieving an average F1 score of 31.6, which
is 4.1 F1 absolute higher than the challenging
baseline. The best system obtains particularly
significant improvements in Tamil (20.8 F1),
whereas most of the other systems yield nearly
zero scores. The best unconstrained system
achieves 32.2 F1, outperforming our baseline
by 4.5 points. The official leaderboard1 and
baselines2 models are publicly available.

1 Introduction

Open-retrieval3 question answering (QA) is a
task of answering questions in diverse domains
given large-scale document collections such as
Wikipedia (Chen and Yih, 2020). Despite the rapid
progress in this area (Chen et al., 2017; Karpukhin
et al., 2020; Lewis et al., 2020b), the systems
have primarily been evaluated in English, yet open-
retrieval QA in non-English languages has been
understudied (Longpre et al., 2021; Asai et al.,
2021a). Moreover, due to the task complexity,
cross-lingual open-retrieval QA has unique chal-
lenges such as multi-step inference (retrieval and

1https://eval.ai/web/challenges/
challenge-page/1638/leaderboard

2https://github.com/mia-workshop/
MIA-Shared-Task-2022

3Also sometimes referred to as open-domain QA; we use
open-retrieval as it is not ambiguous with the sense of “cover-
ing many domains.”

answer selection) and cross-lingual pattern match-
ing (Lewis et al., 2020a; Schäuble and Sheridan,
1997), whereas other multilingual NLP tasks have
their inputs specified at once (e.g. natural language
inference) and typically only need to perform infer-
ence on one language at a time.

In this work, we introduce the MIA 2022 shared
task on cross-lingual open-retrieval QA, which tests
open-retrieval QA systems across typologically di-
verse languages. Compared to previous efforts on
multilingual open-retrieval QA (Forner et al., 2008,
2010), this shared task covers a wider set of lan-
guages (i.e., 16 topologically diverse languages)
and orders of magnitude more passages in retrieval
targets (i.e., 40 million passages in total), and con-
stitutes the first shared task for massive-scale cross-
lingual open-retrieval QA. Four teams submitted
systems, three of which significantly improve the
baseline system based on a state-of-the-art multilin-
gual open-retrieval QA system (Asai et al., 2021b).

Our analysis reveals that the system performance
varies across languages even when the questions
are parallel (as in one of our two settings), and
several findings from the submitted systems shed
light on the importance on entity-enhanced rep-
resentations, leveraging more passages and data
augmentation for future research in multilingual
knowledge-intensive NLP. Our analysis suggests
that (i) it is still challenging to retrieve passages
cross-lingually, (ii) generating answers in the tar-
get language whose script differs from the script
of evidence document is nontrivial, (iii) and po-
tential answer overlaps in existing datasets may
overestimate models’ performance.

We formally introduce our task in Section 2, fol-
lowed by data collection process for 16 languages
in Section 3. We then introduce our baseline sys-
tems in Section 4 and the submitted systems. Sec-
tion 5 presents our meta analysis of the systems
performances, and we conclude by suggesting fu-
ture improvements in this area.
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2 Task Descriptions

We first formulate cross-lingual open-retrieval QA
and introduce metrics used to evaluate systems’ per-
formance. We then present two submission tracks:
constrained and unconstrained tracks.

2.1 Task Formulation

Cross-lingual open-retrieval QA is a challenging
multilingual NLP task, where given questions writ-
ten in a user’s preferred language, a system needs
to find evidence from large-scale document col-
lections written in many different languages. The
final answer needs to be in the user’s preferred lan-
guage which is indicated by their question, as in
real-world applications. We follow the general def-
inition of Asai et al. (2021b), where a system can
retrieve evidence from documents in any languages,
not limiting the retrieval target to certain languages
as in Forner et al. (2008). For instance, a system
needs to answer in Arabic to an Arabic question,
but it can use evidence passages written in any lan-
guage included in a large-document corpus such as
English, German, Japanese and so on. In real-world
applications, the issues of information asymmetry
and information scarcity (Roy et al., 2022; Blasi
et al., 2022; Asai et al., 2021a; Joshi et al., 2020)
arise in many languages, hence the need to source
answer contents from other languages—yet we of-
ten do not know a priori in which language the
evidence can be found to answer a question.

2.2 Evaluation Metrics

Systems are evaluated using automatic metrics:
token-level F1 and exact match (EM). Although
EM is often used as the primary evaluation met-
ric for English, the risk of surface-level mismatch-
ing (Min et al., 2020a) can be more pervasive in
cross-lingual settings. Therefore, we use F1 as
the primary metric and rank systems using the F1
scores. Evaluation is conducted using language-
specific tokenization and evaluation scripts pro-
vided in the MIA shared task repository.4 We use
data from XOR-TyDi QA and MKQA (detailed in
Section 3), and due to different characteristics these
datasets have, we macro-average scores per lan-
guage set on each dataset, and then macro-average
those scores to produce an F1 score for XOR-TyDi

4For non-spacing languages (i.e., Japanese, Khmer, and
Chinese), we use off-the-shelf tokenizers including Mecab,
khmernltk and jieba to tokenize both predictions and ground-
truth answers.

QA and an F1 score for MKQA to compute the
final scores for ranking.

2.3 Tracks

For the shared task, we defined two tracks based on
the resource used to train systems: constrained and
unconstrained settings. Systems trained only on
the official training data qualify for the constrained
track, while systems trained with additional data
sources participate in the unconstrained track.

Constrained Track. To qualify as a constrained
track submission, participants are required to use
the official training corpus, which consists of exam-
ples pooled from XOR-TyDi QA and Natural Ques-
tions (Kwiatkowski et al., 2019). See more data
collection details in Section 3. No other QA data
may be used for training. We allow participants
to use off-the-shelf tools for linguistic annotations
(e.g. POS taggers, syntactic parsers), as well as
any publicly available unlabeled data and models
derived from these (e.g. word vectors, pre-trained
language models). In the constrained setup, par-
ticipants may not use external blackbox APIs such
as Google Search API and Google Translate API
for inference, as those models are often trained on
additional data, but they are permitted to use them
for offline data augmentation or training.

Unconstrained track. Any model submissions
using APIs or training data beyond the scope of
the constrained track are considered for the un-
constrained setting. Participants are required to
report the details of their additional resources
used for training, for transparency. For instance,
a submission might use publicly available QA
datasets, such as CMRC 2018 (Cui et al., 2019)
and FQuAD (d’Hoffschmidt et al., 2020), to create
larger-scale training data.

3 Shared Task Data

The MIA shared task data is derived from two
large-scale multilingual evaluation sets: XOR-
TyDi QA (Asai et al., 2021a) and MKQA (Longpre
et al., 2021). We first discuss the source datasets,
and then discuss how the target languages are se-
lected, and how the data is split into training and
evaluation sets. Table 1 shows the included lan-
guages, their language groups, the size of train-
ing, development and test data, and the number of
Wikipedia passages available in each language.
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Language Family # of examples # Wiki. passages

Language Family Branch Train Development Test

Arabic (ar) Afro-Asiatic Semitic 18,402 3,145 5,590 1,304,828
Bengali (bn) Indo-European Indo-Iranian 5,007 2,248 5,203 179,936
English (en) Indo-European Germanic 76,635 1,758 5,000 18,003,200
Spanish (es) Indo-European Italic 0 1,758 5,000 5,738,484
Finnish (fi) Uralic Finnic 9,762 2,732 1,368 886,595
Japanese (ja) Japonic Japonic 7,815 2,451 6,056 5,116,905
Khmer (km) Austroasiatic Khmer 0 1,758 5,000 63,037
Korean (ko) Koreanic Han 4,319 2,231 6,048 638,864
Malay (ms) Austronesian Malayo-Poly. 0 1,758 5,000 397,396
Russian (ru) Indo-European Balto-Slavic 9,290 2,776 6,910 4,545,635
Swedish (sv) Indo-Europea Germanic 0 1,758 5,000 4,525,695
Chinese (zh) Sino-Tibetan Sinitic 0 1,758 5,000 3,394,943
Telugu (te) Dravidian South-Central 6,759 2,322 6,873 274,230

Surprise Languages
Tagalog (tl) Austronesian Malayo-Poly. 0 0 350 –
Tamil (ta) Dravidian Southern 0 0 350 –

Table 1: List of the languages, their families and amount of data available in the MIA shared task data. The last two
languages are surprise languages hidden from the participants.

3.1 Source Datasets

XOR-TyDi QA (Asai et al., 2021a) is a cross-
lingual open-retrieval QA dataset covering 7 lan-
guages built upon TyDi QA (Clark et al., 2020).
Asai et al. (2021a) collect answers for questions
in TyDi QA that are unanswerable using the same-
language Wikipedia. As the questions are inher-
ited from TyDi QA, they are written by native
speakers to better reflect their own interests and
linguistic phenomena, and they are not parallel
across languages. We use data for the XOR-full
setting, where some questions can be answered
based on the target language’s Wikipedia (monolin-
gual) while others require evidence only presented
in English Wikipedia (cross-lingual). We use all of
the 7 languages covered by XOR-TyDi QA: Ara-
bic (ar), Bengali (bn), Finnish (fi), Japanese (ja),
Korean (ko), Russian (ru), Telugu (te).

MKQA (Longpre et al., 2021) comprises the
largest set of languages and dialects (26) for open-
retrieval QA, spanning 14 language families. There
are 10k question and answer pairs per language.
The questions are human-translated from English
Natural Questions (Kwiatkowski et al., 2019) and
the answers are re-annotated for higher quality –
chosen independently of any web pages or docu-
ment corpora. From MKQA, we sample the 6,758
parallel examples which are answerable. We select
12 of the 26 languages to lower the computational
barrier: Arabic (ar), English (en), Spanish (es),
Finnish (fi), Japanese (ja), Khmer (km), Korean
(ko), Malay (ms), Russian (ru), Swedish (sv), Turk-

ish (tr), and traditional Chinese (zh-cn).

3.2 Language Selection
We select a subset of languages from each resource
(i) to cover a wide range of languages and typo-
logical features with a sufficient scale, and (ii) to
compare participating model performance between
questions that are translated from English and ones
that are naturally generated by native speakers. The
natively-written questions from XOR-TyDi QA al-
low measuring systems’ quality on questions that
are likely to serve information need expressed by
speakers of each language, whereas the human-
translated questions of MKQA allow measuring
the performance on the target script and language,
holding constant the question content. For this
reason, we include 5 languages present in both
XOR-TyDi QA and MKQA to compare the gap be-
tween cultural and linguistic model generalization:
Arabic, Finnish, Japanese, Korean, and Russian.

Surprise languages. In addition, we newly an-
notated data in Tagalog (tl) and Tamil (ta), where
little work studies open-retrieval QA (Liu et al.,
2019). For each language, we sample 350 MKQA
English examples, where the answer entities have
an Wikipedia article in the target language. The
350 questions are all translated using Gengo’s hu-
man translation,5 but the answers are automatically
translated using Wikidata. This annotation results
in 350 well-formed examples in Tagalog (tl) and
Tamil (ta). Surprise languages are released two

5https://gengo.com/
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weeks before the system submission deadline to
test systems’ ability to perform zero-shot trans-
fer (Hu et al., 2020) to unseen languages that are
substantially different from the languages they are
trained on. Except for one system, all of the sub-
missions directly apply their systems to the new
languages without any training or adding new tar-
get languages’ Wikipedia.

3.3 Data Statistics

Table 1 presents the list of the languages and statis-
tics of the train, development and test set data in
each target language.

Training data. Our training data consists of Nat-
ural Questions (Kwiatkowski et al., 2019) for En-
glish and XOR-TyDi QA for the other languages
in the shared task.6 In the constrained track (Sec-
tion 2.3) only this data source is permitted for pro-
viding QA supervision, though other tools are per-
missible for data augmentation.

Evaluation data. Our evaluation sets span 16
languages: 7 from XOR-TyDi QA and 12 from
MKQA with an overlap of five languages and two
surprise languages newly annotated for this shared
task following MKQA annotation schema. We
found that the original XOR-TyDi QA validation
and test splits have different proportions of the in-
language and cross-lingual questions, resulting in
large performance gaps between dev and test sub-
sets as reported by Asai et al. (2021b). We re-split
XOR-TyDi QA so that the validation and test sets
have similar ratios of the two question types of in-
language and cross-lingual questions. In-language
questions are answerable from Wikipedia in the
question’s language, and are often easier to answer
while the other category requires cross-lingual re-
trieval between the target language and English,
and are more challenging. Further, we add aliases
that can be retrieved via the Wikimedia API to the
gold answers, following MKQA, thereby avoiding
penalizing models for generating correct answers
with surface-level differences. For MKQA we split
the answerable examples into a validation set of
1,758 questions and a test set of 5,000 question.
We add the newly annotated data for the surprise
languages (Tamil and Tagalog) to the test set only.

6See the training data linked at https://github.
com/mia-workshop/MIA-Shared-Task-2022#
training-data

3.4 Limitations

False negatives in evaluations. First, because
the original source questions and answers are from
TyDi QA or Natural Questions, their answers are
annotated based on a single Wikipedia article in
English or the question language. MKQA an-
swers are re-labeled by English speakers without
any Wikipedia or web corpus, but small portion
of the answers can be geographically incorrect for
that regions of the languages the data is translated
into (e.g., when the first harry potter movie was
released?). As we generalize the task setting to
cross-lingual open retrieval, there are inconsistent
contents across articles in different languages lead-
ing to many possible answers. However, because
we only have one answer, this can penalize correct
answers (Palta et al., 2022). It is a common issue
that open-retrieval QA datasets do not comprehen-
sively cover all valid answers (Min et al., 2020a;
Asai and Choi, 2021), and this can be more preva-
lent in multilingual settings due to transliteration
of entities or diverse ways to express numeric in
some languages (Al-Onaizan and Knight, 2002).

English American-centric biases. Second, the
MKQA questions as well as the new data anno-
tated for this shared task are translated from En-
glish. This annotation scheme enables us to scale
up to many typologically diverse languages, but
the resulting questions are likely to be Western- or
specifically American-centric, rather than reflect-
ing native speakers’ interests and unique linguistic
phenomena (Clark et al., 2020). We try to reduce
such English-centric bias by only using the ques-
tions whose answer entities are also included in
Tamil or Tagalog Wikipedia, though this constrains
the distribution to simple factoid questions. We
also found that in some languages, MKQA answers
have high overlap with their English counterparts.

4 Baseline Models

We use a state-of-the-art open-retrieval QA model
as our baseline. We open source the code, trained
checkpoints, training data, and intermediate/final
prediction results.7

4.1 Modeling

Our baseline model is based on CORA (Asai et al.,
2021b), which has two components: mDPR for

7https://github.com/mia-workshop/
MIA-Shared-Task-2022
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document retrieval and mGEN for answer genera-
tion. Both mDPR and mGEN are based on multi-
lingual pretrained models to process data written
in many different languages without relying on ex-
ternal translation modules.

Given a question q
L written in a language

L, mDPR R retrieves top N passages: P =
p1, . . . , pN = R(qL). mDPR includes all of the
target languages’ Wikipedias as its retrieval target,
except for the two surprise languages. mGEN G
takes as input q and P and generates an answer aL

in the target language: aL = G(q,P). mDPR is a
multilingual extension of DPR (Karpukhin et al.,
2020), which employs a dual-encoder architecture
based on BERT (Devlin et al., 2019) and retrieves
top passages based on the dot-product similarities
between encoded representations. During training,
mDPR optimizes the loss function as the negative
log likelihood of the positive passages. mGEN sim-
ply concatenates the question and a set of top K
passages, and the fine-tuned multilingual encoder-
decoder model generates a final answer in the tar-
get language. Unlike some prior work in English
conducting end-to-end training of the retriever and
reader (Lewis et al., 2020c; Guu et al., 2020), we
train mDPR and mGEN independently. Note that
during mGEN training, we use the passages re-
trieved by the trained mDPR, as in Izacard and
Grave (2021a).

4.2 Training and Hyperparameters

We use the official training data for training. We
also leverage the long answer annotations in the
Natural Questions dataset and the gold paragraph
annotations of XOR-TyDi QA to create mDPR
training data, released at the shared task reposi-
tory.8 After training mDPR, we run it on the shared
task training data questions to obtain top passages,
and then use those retrieved passages to train the
mGEN model: mGEN is trained to generate the
gold answer given an input query and top retrieved
passages.

mDPR uses multilingual BERT-base uncased
(Devlin et al., 2019), and mGEN is fine-tuned from
mT5-base (Xue et al., 2021). For mDPR, we use
the same hyperparameters as in DPR (Karpukhin
et al., 2020), and train it for 30 epochs, and take the
last checkpoint. For mGEN, we follow Asai et al.
(2021b) hyperparameters.

8https://github.com/mia-workshop/
MIA-Shared-Task-2022#training-data

4.3 Pre-processing Knowledge Corpus.

Following DPR and mDPR, we split each article
into 100-token chunks based on whitespace. For
non-spacing languages (e.g., Japanese, Thai), we
tokenize the articles using off-the-shelf tokeniz-
ers (i.e., MeCab for Japanese9 and Thai NLP for
Thai10). We exclude passages with less than 20 to-
kens. Total numbers of passages for each language
are listed in Table 1.

5 Shared Task Submissions

Four teams submitted their final systems to our
EvalAI (Yadav et al., 2019) leaderboard,11 three
of which significantly outperformed the original
baseline described in Section 4. We summarize the
submitted systems here and refer readers to their
system description paper for details.

5.1 Constrained Systems

mLUKE+FiD. Tu and Padmanabhan (2022)
adapt the retrieve-then-read baseline system with
several improvements, including (a) using an
mLUKE encoder (Ri et al., 2022) for dense re-
trieval, (b) combining sparse and dense retrieval,
(c) using a fusion-in-decoder reader (Izacard and
Grave, 2021b), and (d) leveraging Wikipedia links
to augment the training data with additional target
language labels.

For retrieval, Tu and Padmanabhan (2022) use
the 2019/02/01 Wikipedia snapshot as their docu-
ment corpora, matching the baseline. They include
the Wikipedia snapshots for Tamil and Tagalog to
evaluate on the surprise languages. Their sparse
retriever searches the monolingual corpora only,
while their dense retriever searches all corpora.

CMUmQA. Agarwal et al. (2022) build a four-
stage pipeline for a retrieve-then-read approach,
based on the CORA open-retrieval system (Asai
et al., 2021b) that searches evidence documents in
any language for target questions (many-to-many
QA; Asai et al., 2021b), without relying on trans-
lation. They first apply an mBERT-based DPR
retrieval model, followed by a reranker (Qu et al.,
2021) with XLM-RoBERTA (Conneau et al., 2020).
While it is computationally intractable to use for

9https://taku910.github.io/mecab/.
10https://github.com/PyThaiNLP/

pythainlp.
11https://eval.ai/web/challenges/

challenge-page/1638/leaderboard
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System Macro F1 Language F1
Total XOR MKQA Arabic Bengali Finnish Japanese Korean Russian Telugu

(a) mLUKE-FID 31.61 40.93 22.29 45.33 30.48 41.01 43.45 31.21 42.62 42.40
(b) CMUmQA 31.53 40.20 22.87 55.06 30.56 41.25 42.44 28.76 42.56 40.75
(c) ZusammenQA 27.00 37.95 16.04 49.66 33.99 39.54 39.72 25.59 40.98 36.16
(d) Baseline 27.55 37.95 17.14 51.66 31.96 38.68 40.89 25.35 39.87 37.26
(e) Texttron 32.02 45.50 18.54 56.37 42.43 43.13 44.71 34.37 47.79 49.72

Table 2: Final results on the XOR-TyDi QA subsets of the MIA 2022 shared task. The grayed entry indicates an
unconstrained setting.

sys Language F1
ar en es fi ko ma ja km ru sv tr zh tm ta

(a) 12.67 39.63 30.85 25.22 12.81 29.09 20.49 2.36 18.82 29.62 26.16 22.60 20.75 20.95
(b) 13.94 42.58 32.11 26.75 14.59 31.13 22.72 8.71 22.36 31.48 26.59 18.00 2.74 26.42
(c) 8.73 35.32 25.54 20.42 6.78 24.10 14.27 6.06 12.01 25.97 20.27 13.95 0.00 11.14
(d) 9.52 36.34 27.23 22.70 7.68 25.11 15.89 6.00 14.60 26.69 21.66 13.78 0.00 12.78
(e) 13.62 33.24 28.98 25.26 13.07 29.04 23.11 3.96 20.11 29.75 28.15 11.30 0.00 0.00

Table 3: Final results on the MKQA subsets of the MIA 2022 shared task. The grayed entry indicates an
unconstrained setting.

retrieval, the reranker has the advantage of encod-
ing a question and a passage together, rather than
independently. An mT5-based fusion-in-decoder
is then applied to generate an answer. As the final
step of their pipeline, Wikidata is used to trans-
late English entities in the answer into the target
language, if any.

ZusammenQA. Hung et al. (2022) follow the
retrieve-then-read system, but with the expansion
of several components, along with training meth-
ods and data augmentation. Their retriever ensem-
bles supervised models (mDPR and mDPR with a
MixCSE loss; Wang et al., 2022) along with unsu-
pervised sparse (Oracle BM-25) and unsupervised
dense models (DISTIL, LaBSE, MiniLM, MPNet).

The reader system is based on mGEN, but with
domain adaptation by continued masked language
modeling on the document corpora, to better adapt
to Wikipedia and the target languages. The train-
ing data is augmented using Dugan et al. (2022)
that generates question-answer pairs from raw doc-
ument corpora and translates them into multiple
languages.

5.2 Unconstrained Systems

Texttron. This unconstrained submission also
follows the retrieve-then-read structure: the re-
trieval model performs dense passage retrieval with
XLM-RoBERTa Large (Conneau et al., 2020), and
the reading model uses mt5 large. The retrieval

text is split into paragraphs (as opposed to 100-
word text segments) extracted by the WikiExtrac-
tor package. The retrieval model is trained on a
combination of three types of custom training data:
target-to-target (both the query and retrieved para-
graphs are in the target language), target-to-English
(the query is in the target language and the retrieval
paragraphs are in English), and English-to-English
(both the query and retrieved paragraphs are in
English). These data are created based on BM25
retrieval and query translation.

Texttron also used multiple stages of training and
negative sample mining to tune their final dense
retriever with hard negatives: a combination of
BM25 and examples from the previous iteration of
retrieval that had low token overlap with the gold
answers. No system description was available.

6 Main Results

Tables 2 and 3 show final results on XOR-TyDi
QA and MKQA subsets, respectively. Three sys-
tems are submitted in the constrained setting, while
Texttron is an unconstrained submission.

Macro performance. Texttron, mLUKE +
mFiD, and CMUmQA significantly improve the
baseline performance. Among the constraint sub-
missions, mLUKE + mFiD yields the best perfor-
mance. While several systems achieve higher than
40 average F1 on XOR-TyDi QA, only two sys-
tems achieve higher than 20 average F1 on MKQA,
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demonstrating how difficult it is to build a sys-
tem that performs well in many languages with-
out language-specific supervision. Texttron signifi-
cantly outperforms other baselines on XOR-TyDi
QA while CMUmQA shows the best MKQA per-
formance among the submitted systems.

Language-wise performance. The performance
varies across different languages. Among XOR-
TyDi QA, all of the systems struggle in Korean and
Bengali, while in Arabic, Japanese and Russian,
they generally show relatively high F1 scores.

On MKQA, where all of the questions are paral-
lel, the performance still significantly differs across
languages. Almost all of the systems report lower
than 10 F1 in Khmer and Tamil, which are less
represented in existing pretraining corpora (Xue
et al., 2021) and use their own script systems—with
the notable exception of mLUKE + FiD, which
achieves 20.8 F1 on Tamil. mLUKE+FiD achieves
substantially better performance than other systems
in Tamil. This is partially because they also include
the Tamil Wikipedia passages for passage retrieval,
while other systems, including the baseline, do not.
As discussed in Asai et al. (2021b), all systems
show lower scores in the languages that are dis-
tant from English and use non-Latin scripts (e.g.,
Cyrillic for Russian, Hangul for Korean).

7 Analysis

We provide further analysis on the submitted sys-
tems. In Section 7.1 we provide a brief summary of
the findings from the submitted system descriptions.
Section 7.2 provides performance comparison over
answer-type, and answer overlap with English or
training data. We then analyze the degree of an-
swer agreements among the submitted systems to
understand which questions remain challenging in
Section 7.3. We further conduct manual error anal-
ysis in five languages in Section 7.4.

7.1 Summary of Findings

In this section, we highlight several effective tech-
niques from the submitted systems. Overall, a sur-
prisingly wide range of complementary, and po-
tentially additive, methods all reported strong ben-
efits, including: (i) larger and longer pre-trained
models for retrieving and reading, (ii) a reranking
step with fusion-in-decoder multi-passage cross-
encodings, (iii) iterative dense retrieval tuning with
progressively harder negative example mining, (iv)

using entity-aware retrieval encodings, (v) com-
bining dense and sparse retrievers, (vi) data aug-
mentation, and (vii) leveraging Wikidata answer
post-processing for language localization. We dis-
cuss some of these below.

These findings highlight various techniques mi-
grating the performances in English retrieval sys-
tems. And most of all, they emphasize that cross-
lingual retrieval still poses the major bottleneck
to the end-to-end task, while large multilingual
fusion-in-decoder reader systems can operate well
when given sufficient evidence. These findings sug-
gest multilingual retrieval is the most important
avenue for future research, especially on questions
not easily answered by English Wikipedia. More-
over, retrieving evidence cross-lingually is keys for
other knowledge intensive NLP tasks such as fact
verification (Thorne et al., 2018) and knowledge-
grounded dialogues (Dinan et al., 2019) beyond
open-retrieval QA.

Entity representations. Using entity-aware rep-
resentations for the passage retriever’s encoders
gives a large performance improvement; As shown
in analysis by Team Utah (Tu and Padmanabhan,
2022), replacing mBERT encoders in DPR with
mLUKE improves by 1.22 F1 on XOR macro-
average and 1.85 MKQA macro F1. We hypoth-
esize that the mLUKE may capture better cross-
lingual entity alignment than mBERT as it lever-
ages inter-language links in Wikipedia during pre-
training. This sheds light on the potential effective-
ness of multilingual entity contextualized represen-
tations for cross-lingual passage representations,
which is an under-explored direction.

Combining dense and sparse retrievers & hard
negatives. Texttron and Team Utah combine both
BM25 and mDPR, while ZusammenQA explore a
diverse set of unsupervised and supervised retrieval
approaches including BM25 and LaBSE (Feng
et al., 2022). Team Utah shows that combining
BM25 with mDPR helps, while ZusammenQA
shows that only using BM25 gives significantly
lower scores than the original baseline (Hung et al.,
2022), as BM25 does not have cross-lingual phrase
matching capabilities. Texttron iteratively trained
their dense retriever, mining increasingly hard neg-
ative examples using BM25 and query translation,
filtered using simple heuristics.

Fusion-in-Decoder and passage reranking.
Team Utah and CMUmQA demonstrate that
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Fusion-in-Decoder architectures outperform sim-
ply concatenating passages as in mGEN (Fusion-
in-Encoder). While Fusion-in-Encoder simply con-
catenates retrieved passages in a retrieved order,
Fusion-in-Decoder encodes each of the retrieved
passages independently and then concatenate them.
This may help the model to pay more attentions to
the passages that are ranked lower by the retriever
but indeed provides evidence to answer. Recent
work in open domain QA also demonstrates that
the Fusion-in-Decoder architecture is more com-
petitive than prior systems that simply concatenate
passages (Fajcik et al., 2021; Asai et al., 2022).

Team Utah show increasing the number of pas-
sages improves performance, while CMUmQA
show that cross-encoder reranking is particularly
beneficial for Fusion-in-Decoder.

Data augmentation. ZusammenQA introduces
data augmentation using Google Translate to trans-
late the training data into target languages. AUG-
QA translates question-answer pairs into target lan-
guages, while AUG-QAP translates question, an-
swer and the original training data passages into the
target languages. They found that the AUG-QAP
and AUG-QA both improve performance from their
direct counterpart without data augmentation.

Wikipedia answer localization. CMUmQA and
others used Wikidata entity maps to localize an-
swers to the correct target script following Long-
pre et al. (2021). This process was particularly
effective for localizing short answers into a target
language from English due to the overwhelming
English bias of retrieval and generative systems
finetuned on English. As a result, CMUmQA ob-
tains the best MKQA performance among the sub-
mitted systems.

7.2 Performance Comparison

In this section, we group questions based on sev-
eral factors (e.g., answer types) and compare the
models’ performance across different sub-groups.

Answer types. MKQA provides answer cate-
gories for each question. We analyze the per-
category model performance to understand what
types of questions remain challenging. The original
MKQA source data except for the unanswerable
subsets has the following answer type distributions:
Entity (42%), Date (12%), Number (5%), Number
with Unit (4%), Short Phrase (3%), Boolean (yes,
no; 1%), Unanswerable (14%), and Long Answers

en es ja zh

Number with units 7.77 3.56 1.94 3.88
Entity 58.18 53.19 34.42 15.75
Number 27.07 29.83 21.27 25.70
Date 28.14 28.49 6.10 11.37
Short phrases 8.60 7.81 5.08 5.08
Binary 32.99 31.96 79.38 75.25

Table 4: The percentage of the exact match per answer
types in English (en), Spanish (es), Japanese (ja) and
Chinese (zh).

(13%). The Unanswerable and Long Answers cate-
gories are excluded from the MIA 2022 shared task
evaluation data.

We present the percentage of the questions where
any of the submitted system predictions match
the annotated gold answers in English, Spanish,
Japanese and Chinese in Table 4. In all of the lan-
guages, the systems show relatively higher exact
matching rate in Entity types questions except for
Chinese and Japanese. In those languages, many
of the entity names are written in their own script
systems (e.g., Chinese characters, katakana), which
is challenging to be generated from the evidence
passages written in other languages; it is known
to be challenging to translate an entity name from
one language to another using different script sys-
tems (Wang et al., 2017). In English and Span-
ish, the systems show significantly higher accuracy
on entity and date than in Japanese or Chinese,
while the systems struggle in Boolean questions.
XOR-TyDi QA Japanese subset shows higher per-
centage of boolean questions than other subsets,
which potentially helps the systems in Japanese
and Chinese MKQA boolean questions. All of the
systems show significantly lower performance in
short phrase questions, indicating the difficulty of
generating phrase length answers beyond simple
factoid questions with entity or date answers.

Answer overlaps with English. We analyze per-
formances across languages by examining the re-
lationship between the final performance and the
number of the questions whose answers are the
same as English answers. Figure 1a shows the
performance of the best constrained track submis-
sion, mLUKE + FiD and answer overlap with the
English subsets for each MKQA language except
for Khmer and two surprise languages. We ob-
serve a clear correlation between the answer over-
lap and final performance among those languages.
The model performs well on the languages where
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(a) MKQA performance vs. answer overlap with English an-
swers.
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(b) XOR-TyDi QA performance vs. answer overlap be-
tween train and test sets.

Figure 1: Performance vs. answer overlap between train and test sets.

many answers are the same as English answers.
Finnish, on the other hand, shows relatively lower
performance compared to other languages with
high answer overlap (i.e., Malay, Swedish, Span-
ish). Among the languages with low answer over-
lap, on the Japanese and Chinese sets, the system
shows relatively high F1 scores compared to the
other languages with lower than 40% overlap (i.e.,
Russian, Korean, Arabic). This is likely because
Chinese and Japanese show higher accuracy on
Boolean type questions than other languages as
discussed above.

Answer overlap with training data. Prior work
shows that the high overlap between train and test
data can result in the overestimated performance
of the systems (Lewis et al., 2021). In XOR-TyDi
QA, the questions are annotated by native speakers
of the target languages, so the percentage of the
train-test overlap can vary across languages. We
calculate the percentage of the answers for the test
data questions that also appear as gold answers
in XOR-TyDi QA training data. We then check
whether the degree of the answer overlap between
the train and test sets correlate with the final XOR-
TyDi QA test performance.

Figure 1b shows the performance and train-test
overlap percentage. Although we can see the per-
centage of overlap between train and test data
varies across languages, it is not particularly corre-
lated with the final performance. For instance, Ben-
gali actually shows relatively high overlap between
train and test data (over 25% answer overlap), but
the performance is much lower than Telugu, whose
answer overlap ratio is close to that of Bengali.
We also found that the percentage of the Boolean
questions (yes, no) significantly differs across lan-
guages: in Japanese, around 10% of the questions
are Boolean questions, while in Telugu, almost no

questions are Boolean. The original TyDi QA data
is annotated by different groups of annotators for
each language, and thus such question distributions
can differ (Clark et al., 2020).

XOR-TyDi QA vs. MKQA. Arabic, Japanese,
Korean, and Finnish are included both in MKQA
and XOR-TyDi QA, but their performance on the
two subsets significantly differ; In general, the
XOR-TyDi QA F1 scores are much higher than
MKQA (e.g., Japanese: 44.71 vs. 23.11). We
hypothesize that this happens because we do not
have training data for MKQA and all MKQA
questions tend to require cross-lingual retrieval as
the questions are translated from English and an-
swers are American-centric. In contrast, half of
the questions in XOR-TyDi QA are from TyDi
QA, and the answers are grounded to their own
languages’ Wikipedia. Cross-lingual retrieval is
generally more challenging than monolingual re-
trieval (Zhang et al., 2021). In addition, all of the
XOR-TyDi QA cross-lingual questions are labeled
“unanswerable” in TyDi QA, and can be more diffi-
cult to answer than its monolingual counterparts.

To further test this hypothesis, we evaluate the
submitted systems’ performance on XOR-TyDi
QA’s cross-lingual and monolingual subsets in Ta-
ble 5. We can clearly see that all of the baseline’s
performance deteriorates on the cross-lingual sub-
sets, while they show high F1 scores across lan-
guages on the monolingual subsets.

7.3 Prediction Agreement

We analyze how often all of the systems agree on
the same answers on the MKQA test data in five
languages. In particular, we compare all of the four
system predictions on the English, Japanese, Chi-
nese, Spanish and Turkish subsets of the MKQA
test data, and check the prediction agreements
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(a) MKQA Answer agreement. (b) Per-category agreement (En). (c) Per-category agreement (Ja).

Figure 2: Answer agreements of the four submitted systems.

Avg. Arabic Bengali Finnish Japanese Korean Russian Telugu
Sys. cl m cl m cl m cl m cl m cl m cl m cl m

(a) 27.2 58.8 28.3 64.8 29.4 63.3 30.3 51.3 29.5 55.9 22.2 53.2 24.9 55.8 25.9 67.6
(b) 21.4 54.2 22.2 65.2 21.7 44.6 24.1 51.7 27.4 55.2 19.5 49.3 19.1 50.8 16.0 62.2
(c) 20.3 52.5 21.5 64.6 20.5 42.3 25.5 50.9 26.3 53.1 17.6 44.9 16.0 51.2 14.7 60.3
(d) 19.5 49.7 22.4 59.0 19.0 51.5 23.8 46.9 25.2 50.2 15.3 38.8 16.9 47.0 14.0 54.2

Table 5: Final results on MIA 2022 Shared Task XOR-TyDi QA cross-lingual (“cl”) / monolingual subsets (“m”).
Systems (a), (b), (c) and (d) are Texttron, mLUKE-FID, CMUmQA, and ZusammenQA, respectively.

based on the number of the unique predictions
among the union of the predictions. We can see
that in English and Spanish, the agreement is high
(e.g., in 40% of the questions, all or three of the
four systems agree on the same answers), while the
agreement is lower in other languages, particularly
in Japanese and Chinese.

To understand the phenomena, we breakdown
the prediction agreement statistics in English and
Japanese into different answer categories. Fig-
ure 2b and Figure 2c show per-category prediction
agreements in English and Japanese, respectively.
While in English, systems show high agreements in
date, entity and number type questions, in Japanese,
the agreement rate is lower across category, poten-
tially because of their diverse formats of number
and dates, as well as the transliteration of the entity
names.

7.4 Error Analysis
We conduct a set of error analysis in five languages
(i.e., English, Japanese, Korean, Chinese and Tel-
ugu) on randomly sampled 30 questions, where
none of the submission systems’ predictions ex-
actly match any of the ground truth answers.

Error types. We classify the errors into follow-
ing categories: (i) incorrect predictions, (ii) an-
swers are semantically correct in different lan-
guages (incorrect languages), (iii) incorrect gold
answers, (iv) semantically-equivalent predictions in
the target language but are penalized because gold
answers do not cover all of the potential gold an-
swers (not comprehensive gold answers), (v) ques-

tions are open-ended or ambiguous (e.g., entity
ambiguity), (vi) questions’ granularity is unclear
(unclear question granularity; e.g., year v.s. month,
kilometers v.s. meters), (vii) questions are highly
subjective (e.g., who is the best singer ever), (viii)
temporal or geographical dependency in questions.

The first two error types, (i) and (ii), reveal the
limitations of models. The error type (iii) and (iv)
are considered answer annotation errors (Min et al.,
2020a; Asai and Choi, 2021). The last four error
types (v), (vi), (vii) and (viii) requires some spec-
ifications or context (Zhang and Choi, 2021; Min
et al., 2020b).

Error analysis schema. We recruit native speak-
ers of the five target languages and ask them to
classify the errors into the aforementioned cate-
gories. We present the predictions of all of the
systems as well as the intermediate retrieval results
of the top constrained system (Team Utah).

Error analysis results. Table 6 provides the er-
ror analysis result. Besides modeling errors, we
found that the original annotations themselves ex-
hibit some issues, which underestimates models’
performance. Across languages, annotators found
non-negligible proportion of the errors happen as
the original gold answers do not cover all of the
possible answer aliases or the answer granularity
is unclear. For instance, an English question asks
“what is the temperature at the center of earth” and
the gold answer is 6000 °C. Several systems answer
in Fahrenheit or Kelvin, and got zero F1 score. Sev-
eral questions are also temporal or geographical de-

117



English Arabic Japanese Korean Chinese

(i) incorrect predictions 12 9 23 16 12
(ii) incorrect languages 0 2 3 0 2
(iii) incorrect gold answers 2 4 5 1 0
(iv) not comprehensive gold answers 10 1 7 5 6
(v) ambiguous question 3 7 6 15 5
(vi) unclear question granularity 3 2 1 2 0
(vii) subjective question 0 0 0 0 0
(viii) temporal or geographical dependency in questions 4 4 1 4 5

Table 6: Error analysis on sampled questions where all of the submissions unanimously fail to predict the correct
answers. We show the percentage of the errors in each category.

pendent such as “who was the last person appointed
to the u.s. supreme court” orクリミナル・マイ
ンドの新シーズンが公開されるのはいつか
(when is the next season of Criminal Minds will
be released?). Although situation-grounded QA
has been recently studied (Zhang and Choi, 2021),
there’s little work that analyzes this phenomena in
multilingual settings, where the particularly geo-
graphical dependence can be even more prevalent.
Question ambiguity is also common in multilingual
QA.

8 Conclusion and Discussions

We have presented the MIA 2022 Shared Task on
cross-lingual open-retrieval QA systems in 16 ty-
pologically diverse languages, many of which are
unseen during training. Several submissions im-
proved significantly over our baseline based on a
state-of-the-art cross-lingual open-retrieval QA sys-
tem and investigated a wide range of techniques.
Those results shed light on the effectiveness of sev-
eral techniques in this challenging task, such as
entity-enhanced representations, sparse-dense re-
trieval, and better interactions between passages.
We further conducted detailed performance anal-
ysis on different subsets of the datasets, such as
languages, answer types, the necessity of cross-
lingual retrieval as well as detailed error analysis.
We also suggest several bottlenecks in the area.
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