@inproceedings{rajalakshmi-etal-2022-understanding,
title = "Understanding the role of Emojis for emotion detection in {T}amil",
author = "Rajalakshmi, Ratnavel and
Mattins R, Faerie and
Selvaraj, Srivarshan and
Shibani, Antonette and
Kumar M, Anand and
Raja Chakravarthi, Bharathi",
editor = "Chakravarthi, Bharathi Raja and
Murugappan, Abirami and
Chinnappa, Dhivya and
Hane, Adeep and
Kumeresan, Prasanna Kumar and
Ponnusamy, Rahul",
booktitle = "Proceedings of the First Workshop on Multimodal Machine Learning in Low-resource Languages",
month = dec,
year = "2022",
address = "IIIT Delhi, New Delhi, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.mmlow-1.2",
pages = "9--17",
abstract = "of expressing relevant idea through social media platforms and forums. At the same time, these memes are trolled by a person who tries to get identified from the other internet users like social media users, chat rooms and blogs. The memes contain both textual and visual information. Based on the content of memes, they are trolled in online community. There is no restriction for language usage in online media. The present work focuses on whether memes are trolled or not trolled. The proposed multi modal approach achieved considerably better weighted average F1 score of 0.5437 compared to Unimodal approaches. The other performance metrics like precision, recall, accuracy and macro average have also been studied to observe the proposed system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rajalakshmi-etal-2022-understanding">
<titleInfo>
<title>Understanding the role of Emojis for emotion detection in Tamil</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ratnavel</namePart>
<namePart type="family">Rajalakshmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faerie</namePart>
<namePart type="family">Mattins R</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srivarshan</namePart>
<namePart type="family">Selvaraj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonette</namePart>
<namePart type="family">Shibani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="family">Kumar M</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="family">Raja Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Multimodal Machine Learning in Low-resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abirami</namePart>
<namePart type="family">Murugappan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhivya</namePart>
<namePart type="family">Chinnappa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adeep</namePart>
<namePart type="family">Hane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prasanna</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Kumeresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rahul</namePart>
<namePart type="family">Ponnusamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">IIIT Delhi, New Delhi, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>of expressing relevant idea through social media platforms and forums. At the same time, these memes are trolled by a person who tries to get identified from the other internet users like social media users, chat rooms and blogs. The memes contain both textual and visual information. Based on the content of memes, they are trolled in online community. There is no restriction for language usage in online media. The present work focuses on whether memes are trolled or not trolled. The proposed multi modal approach achieved considerably better weighted average F1 score of 0.5437 compared to Unimodal approaches. The other performance metrics like precision, recall, accuracy and macro average have also been studied to observe the proposed system.</abstract>
<identifier type="citekey">rajalakshmi-etal-2022-understanding</identifier>
<location>
<url>https://aclanthology.org/2022.mmlow-1.2</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>9</start>
<end>17</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding the role of Emojis for emotion detection in Tamil
%A Rajalakshmi, Ratnavel
%A Mattins R, Faerie
%A Selvaraj, Srivarshan
%A Shibani, Antonette
%A Kumar M, Anand
%A Raja Chakravarthi, Bharathi
%Y Chakravarthi, Bharathi Raja
%Y Murugappan, Abirami
%Y Chinnappa, Dhivya
%Y Hane, Adeep
%Y Kumeresan, Prasanna Kumar
%Y Ponnusamy, Rahul
%S Proceedings of the First Workshop on Multimodal Machine Learning in Low-resource Languages
%D 2022
%8 December
%I Association for Computational Linguistics
%C IIIT Delhi, New Delhi, India
%F rajalakshmi-etal-2022-understanding
%X of expressing relevant idea through social media platforms and forums. At the same time, these memes are trolled by a person who tries to get identified from the other internet users like social media users, chat rooms and blogs. The memes contain both textual and visual information. Based on the content of memes, they are trolled in online community. There is no restriction for language usage in online media. The present work focuses on whether memes are trolled or not trolled. The proposed multi modal approach achieved considerably better weighted average F1 score of 0.5437 compared to Unimodal approaches. The other performance metrics like precision, recall, accuracy and macro average have also been studied to observe the proposed system.
%U https://aclanthology.org/2022.mmlow-1.2
%P 9-17
Markdown (Informal)
[Understanding the role of Emojis for emotion detection in Tamil](https://aclanthology.org/2022.mmlow-1.2) (Rajalakshmi et al., MMLow 2022)
ACL
- Ratnavel Rajalakshmi, Faerie Mattins R, Srivarshan Selvaraj, Antonette Shibani, Anand Kumar M, and Bharathi Raja Chakravarthi. 2022. Understanding the role of Emojis for emotion detection in Tamil. In Proceedings of the First Workshop on Multimodal Machine Learning in Low-resource Languages, pages 9–17, IIIT Delhi, New Delhi, India. Association for Computational Linguistics.