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Abstract

Recent literature has demonstrated the poten-
tial of multilingual Neural Machine Translation
(mNMT) models. However, the most efficient
models are not well suited to specialized indus-
tries. In these cases, internal data is scarce and
expensive to find in all language pairs. There-
fore, fine-tuning a mNMT model on a special-
ized domain is hard. In this context, we decided
to focus on a new task: Domain Adaptation of
a pre-trained mNMT model on a single pair
of language while trying to maintain model
quality on generic domain data for all language
pairs. The risk of loss on generic domain and
on other pairs is high. This task is key for
mNMT model adoption in the industry and is
at the border of many others. We propose a
fine-tuning procedure for the generic mNMT
that combines embeddings freezing and adver-
sarial loss. Our experiments demonstrated that
the procedure improves performances on spe-
cialized data with a minimal loss in initial per-
formances on generic domain for all languages
pairs, compared to a naive standard approach
(+10.0 BLEU score on specialized data, -0.01
to -0.5 BLEU on WMT and Tatoeba datasets
on the other pairs with M2M100).

1 Introduction

Building a NMT model supporting multiple lan-
guage pairs is an active and emerging area of re-
search (NLLB Team et al., 2022; Fan et al., 2020;
Tang et al., 2020). Multilingual NMT(mNMT) uses
a single model that supports translation in multiple
language pairs. Multilingual models have several
advantages over their bilingual counterparts (Ari-
vazhagan et al., 2019b). This modeling proves to
be both efficient and effective as it reduces the op-
erational cost (a single model is deployed for all
language pairs) and improves translation perfor-
mances, especially for low-resource languages.

All these advantages make mNMT models inter-
esting for real-world applications. However, they
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Figure 1: Domain Adaptation of a Pre-trained mNMT

are not suitable for specialized industries that re-
quire domain-specific translation. Training a model
from scratch or fine-tuning all the pairs of a pre-
trained mNMT model is almost impossible for most
companies as it requires access to a large number
of resources and specialized data. That said, fine-
tuning a single pair of a pre-trained mNMT model
in a specialized domain seems possible. Ideally
this domain adaptation could be learned while shar-
ing parameters from old ones, without suffering
from catastrophic forgetting (Mccloskey and Co-
hen, 1989). This is rarely the case. The risk of de-
grading performance on old pairs is high due to the
limited available data from the target domain and
to the extremely high complexity of the pre-trained
model. In our case, overfitting on fine-tuning
data means that the model might not even be
multilingual anymore

In this context, this article focuses on a new
real-world oriented task fine-tuning a pre-trained
mNMT model in a single pair of language on
a specific domain without losing initial perfor-
mances on the other pairs and generic data. Our
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research focuses on fine-tuning two state-of-the-art
pre-trained multilingual mNMT freely available:
M2M100 (Fan et al., 2020) and mBART50 (Tang
et al., 2020) which both provide high performing
BLEU scores and translate up to 100 languages.

We explored multiple approaches for this do-
main adaptation. Our experiments were made on
English to French data from medical domain1. This
paper shows that fine-tuning a pre-trained model
with initial layers freezing, for a few steps and
with a small learning rate is the best performing
approach.

It is organized as follows : firstly, we introduce
standard components of modern NMT, secondly
we describe related works, thirdly we present our
methods. We finally systematically study the im-
pact of some state-of-the-art fine-tuning methods
and present our results.

Our main contributions can be separated into 2
parts:

• Defining a new real-world oriented task that
focuses on domain adaptation and catas-
trophic forgetting on multilingual NMT mod-
els

• Defining a procedure that allows to finetune
a pre-trained generic model on a specific do-
main

2 Background

2.1 Neural Machine Translation
Neural Machine Translation (NMT) has become
the dominant field of machine translation. It studies
how to automatically translate from one language
to another using neural networks.

Most NMT systems are trained using Seq2Seq
architectures (Sutskever et al., 2014; Cho et al.,
2014) by maximizing the prediction of the target
sequence VT = (v1, . . . , vT ), given the source
sentence WS = (w1, . . . , wS):

P (v1, . . . , vT | w1, . . . , wS)

Today the best performing Seq2Seq architecture
for NMT is based on Transformers (Vaswani et al.,
2017) architecture. They are built on different lay-
ers among which the multi-head attention and the

1https://opus.nlpl.eu/EMEA-v3.php

feed-forward layer. These are applied sequentially
and are both followed by a residual connection
(He et al., 2015) and layer normalization (Ba et al.,
2016).
Although powerful, traditional NMT only trans-
lates from one language to another with a high com-
putational cost compared to its statistical predeces-
sor. It has been shown that a simple language token
can condition the network to translate a sentence
in any target language from any source language
(Johnson et al., 2017). It allows to create multi-
lingual models that can translate between multiple
languages. Using previous notation the multilin-
gual model adds the condition on target language
in the previous modeling

P (v1, . . . , vT | w1, . . . , wS , ℓ)

where ℓ is the target language.

2.2 Transfer Learning
Transfer learning is a key topic in Natural Language
Processing (Devlin et al., 2018; Liu et al., 2019).
It is based on the assumption that pre-training a
model on a large set of data in various tasks will
help initialize a network trained on another task
where data is scarce.

It is already a key area of research in NMT where
large set of generic data are freely available (news,
common crawl, ...). However, real-world applica-
tions require specialized models. In-domain data
is rare and more costly to gather for industries
(finance, legal, medical, ...) making specialized
models harder to train. It is even more true for
multilingual model.

In our work, we study how we can adapt a
mNMT model on a specific domain by fine-tuning
on only one language pair, without losing too much
generality for all language pairs.

3 Related works

3.1 Multilingual Neural Machine Translation
While initial research on NMT started with bilin-
gual translation systems (Sutskever et al., 2014;
Cho et al., 2014; Luong et al., 2015; Yang et al.,
2020), it has been shown that the NMT framework
is extendable to multilingual models (Dong et al.,
2015; Firat et al., 2016; Johnson et al., 2017; Dabre
et al., 2020) mNMT has seen a sharp increase in the
number of publications, since it is easily extendable
and it allows both end-to-end modeling and cross
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lingual language representation (Conneau et al.,
2017; Linger and Hajaiej, 2020; Conneau et al.,
2019).

Competitive multilingual models have been re-
leased and open sourced. mBART (Liu et al.,
2019) first, was trained following the BART (Lewis
et al., 2019) objective before being finetuned on
an English-centric multilingual dataset (Tang et al.,
2020). M2M100 (Fan et al., 2020) scaled large
transformer layers (Vaswani et al., 2017) with a
lot of mined data in order to create a mNMT with-
out using English as pivot, that can perform trans-
lation between any pairs among 100 languages.
More recently, NLLB was released (NLLB Team
et al., 2022), extending the M2M100 framework to
200 languages. Those models are extremely com-
petitive as they have similar performance to their
bilingual counterpart while allowing a pooling of
training and resources.

Our experiments will rely on M2M100 and
mBART but it can be generalized to any new pre-
trained multilingual model (NLLB Team et al.,
2022).

3.2 Domain Adaptation
Domain Adaptation in the field of NMT is a key
real-world oriented task. It aims at maximizing
model performances on a certain in-domain data
distribution. Dominant approaches are based on
fine-tuning a generic model using either in-domain
data only or a mixture of out-of-domain and in-
domain data to reduce overfitting (Servan et al.,
2016a; Van Der Wees et al., 2017). Many works
have extended domain adaptation to multi-domain,
where model is finetuned on multiple and differ-
ent domains (Sajjad et al., 2017; Zeng et al., 2018;
Mghabbar and Ratnamogan, 2020).
However, to the best of our knowledge, our work is
the first exploring domain adaptation in the context
of recent pre-trained multilingual neural machine
translation systems, while focusing on keeping the
model performant in out-of-domain data in all lan-
guages.

3.3 Learning without forgetting
Training on a new task or new data without losing
past performances is a generic machine learning
task, named Learning without forgetting (Li and
Hoiem, 2016).

Limiting pre-trained weights updates using ei-
ther trust regions or adversarial loss is a recent
idea that has been used to improve training stability

in both natural language processing and computer
vision (Zhu et al., 2019; Jiang et al., 2020; Agha-
janyan et al., 2020). These methods haven’t been
explored in the context of NMT but are key assets
that demonstrated their capabilities on other NLP
tasks (Natural Language Inference in particular).
Our work will apply a combination of those meth-
ods to our task.

3.4 Zero Shot Translation

MNMT has shown the capability of direct trans-
lation between language pairs unseen in training:
a mNMT system can automatically translate be-
tween unseen pairs without any direct supervision,
as long as both source and target languages were
included in the training data (Johnson et al., 2017).
However, prior works (Johnson et al., 2017; Firat
et al., 2016; Arivazhagan et al., 2019a) showed
that the quality of zero-shot NMT significantly lags
behind pivot-based translation (Gu et al., 2019).
Based on these ideas, some paper (Liu et al., 2021)
have focused on training a mNMT model support-
ing the addition of new languages by relaxing the
correspondence between input tokens and encoder
representations, therefore improving its zero-shot
capacity. We were interested in using this method
as learning less specific input tokens during the
finetuning procedure could help our model not to
overfit the training pairs. Indeed, generalizing to
a new domain can be seen as a task that includes
generalizing to an unseen language.

4 Methods

Our new real-world oriented task being at the cross-
board of many existing task, we applied ideas from
current literature and tried to combine different
approaches to achieve the best results.

4.1 Hyperparameters search heuristics for
efficient fine-tuning

We seek to adapt generic multilingual model to a
specific task or domain. (Cettolo et al., 2014; Ser-
van et al., 2016b). Recent works in NMT (Domingo
et al., 2019) have proposed methods to adapt incre-
mentally a model to a specific domain. We con-
tinue the training of the generic model on specific
data, through several iterations (see Algorithm 1).
This post-training fine-tuning procedure is done
without dropping the previous learning states of
the multilingual model. The resulting model is
considered as adapted or specialized to a specific
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domain. We want to avoid the model to suffer
from forgetting on generic domain and pairs. To
this end, we include different methods in this fine-
tuning, that have been mentioned in the literature.
These methods includes in particular choosing a
small learning rate (Howard and Ruder, 2018), a
triangular learning schedule (Houlsby et al., 2019),
reducing the number of steps and freezing some of
the layers(Stickland and Murray, 2019).

4.2 Smoothness-inducing Adversarial
Regularizer

We seek to reduce the loss on generic domain and
other pairs. Indeed, due to limited data resources
from downstream tasks and the extremely large ca-
pacity of pre-trained models, aggressive fine-tuning
often causes the adapted model to overfit the data
of downstream tasks and forget the knowledge of
the pre-trained model. To this end, we added a
Smoothness-inducing Adversarial Regularization
(SMART) term during the fine-tuning (Jiang et al.,
2020). Models fine-tuned on GLUE task with
SMART approach outperform even the strongest
pre-trained baseline on all 8 tasks. Comparing with
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), BERTSMART and RoBERTaSMART

are performing better by a big margin. This ap-
proach gives a smoothness-inducing property to
the model f . This is helpful to prevent overfitting
and to improve generalization on low resource tar-
get domain for a certain task. Therefore, adding
it to our task should avoid overfitting on the new
domain.

Given the model f(.; θ) and n data points of the
target task denoted by {(xi, yi)}ni=1, where xi’s de-
note the embeddings of the input sentences, given
by the first embedding layer of the language model
and yi’s are the associated labels, SMART is adding
a regularization term Rs(θ) to the canonical opti-
misation loss below:

min
θ

(F(θ)) = L(θ) + λsRs(θ) (1)

where L(θ) is the loss function defined as

L(θ) = 1

n

n∑

i=1

ℓ (f (xi; θ) , yi) (2)

and ℓ(·, ·) is the loss function depending on the
target task, λs > 0 is a tuning parameter, andRs(θ)
is the smoothness-inducing adversarial regularizer.

Here we defineRs(θ) as

Rs(θ) =
1

n

n∑

i=1

max
∥x̄i−xi∥p≤ϵ

ℓs (f (x̄i; θ) , f (xi; θ))

(3)
where ϵ > 0 is a tuning parameter. Since NMT

is a classification tasks, f(; θ) outputs a probability
simplex and ℓs is chosen as the symmetrized KL-
divergence, i.e.,

ℓs(P,Q) = DKL(P∥Q) +DKL(Q∥P )

4.3 Enabling the model to learn less
aggressive input tokens

We seek at reducing the loss of performances on the
pairs learned during the pre-training of the model.
A factor causing a too important language-specific
representation is the positional correspondence to
input tokens (Liu et al., 2021). Relaxing it should
help the model learn the new domain while not
focusing too much on the language representation.
Recent advances in mNMT showed that we can
reduce the positional correspondence learned from
the input tokens seen during training thanks to Po-
sitional Disentangling Encoder (PDE) (Liu et al.,
2021). PDE corresponds to removing some of
the residual connections of the model architecture.
PDE is reported to beat by +18.5 BLEU models
that do not use it on zero shot translation pairs
while retaining quality on supervised directions
(Liu et al., 2021). Doing this during the domain
adaptation fine-tuning helps to learn less specific
input tokens (since we train only from English
to French). Therefore, adapting this method to
our domain adaptation training is straightforward
and could bring gain in BLEU on language pairs
seen during pre-training while not sacrificing per-
formances on the new specific domain.

5 Experimental Settings

5.1 Pre-trained Generic Models used

We have worked with two pre-trained mNMT mod-
els: M2M100 and mBART50 large.

M2M100 is a multilingual encoder-decoder
model, based on large Transformer architecture
that can handle 100 languages. It was trained on a
non-English-centric dataset of 7.5B sentences from
generic domain, as such it is the first true many-to-
many NMT model. To ease the fine-tuning process
and due to hardware limitations, we worked with
the lightest version released (418M parameters).
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mBART50 is a multilingual encoder-decoder
model, based on training on an English-centric
dataset and on large Transformer architecture that
can handle 50 languages. It was trained following
the BART objective (Lewis et al., 2019). More
formally, the model aims to reconstruct a text that
has been previously noised.

We will compare the domain adaptation per-
formance between mBART50 which was trained
on English-centric data and M2M100 which was
trained on non English-centric data.

5.2 Datasets and preprocessing

In order to assess the effectiveness of our different
domain adaptation strategies, we focused on the
medical domain on the English to French using
data from the EMEA32 dataset (Tiedemann, 2012).
We used the same preprocessing as the original
publications (BPE joint-tokenization from senten-
cepiece). We split the dataset into a train and a
test dataset. We chose to use the first 5.000 sen-
tences for the testing set and 350.000 sentences
for the training set. For the evaluation data on the
generic domain, we used generic data from differ-
ent sources including WMT3 and Tatoeba4. For
the evaluation data on the medical domain, we also
used EMEA3 dataset in different languages.

5.3 Detailed Procedure

We first define a hyperparameters search heuristics
procedure. We chose a range of learning rate and
trained the model with these values. We set prior
threshold between the loss we accept on generic
data and the increase we target on medical data.
Then apply the procedure in algorithm 1. Having
done this, we kept best settings (best learning rate
and number of steps for given threshold), and tried
freezing first layers to reduce the loss on generic
domain. We define ϵ3, a threshold between loss on
medical domain and gain on generic domain. We
reproduce the same procedure and reports our best
results. This allows us to find the optimal model
θopt, representing the best compromise between
not losing performances on generic data and good
adaptation to the medical domain.

2https://opus.nlpl.eu/EMEA.php
3https://opus.nlpl.eu/WMT-News.php
4https://github.com/Helsinki-NLP/Tatoeba-Challenge

Algorithm 1 Hyperparameters search heuristic for
domain adaptation using simple fine-tuning Algo-
rithm
Input: T : the maximum number of steps; L

: the number of layers we have frozen; Lr:
the learning rate, ϵ1: the threshold for ∆1 :
the difference of BLEU between baseline and
adapted model on EN-FR generic domain data,
ϵ2 threshold for ∆2 : the mean difference of
BLEU between baseline and adapted model on
all other generic data, θ0 is the parameters of
the pretrained model, θopt: is the parameters
of the model that has optimal value of BLEU
on domain and generic.

1: T ← 100K
2: L← 1
3: for Lr = 3e− 5, 1e− 5, ..., 1e− 8 do
4: θs ← θ0
5: for s← 1 to T do
6: θs+1 ← AdamUpdate B (θs)
7: Every 2k steps, evaluate model on vali-

dation set and compute ∆1 and ∆2

8: if ∆1 ≤ ϵ1 ∪∆2 ≤ ϵ2 is true then
9: θopt ← θs

10: else
11: θopt ← θs
12: end For loop
13: end if
14: end for
15: end for
Output: θopt

M2M100 We trained M2M100 on the medical
EN-FR dataset. We used the adam optimizer
(β1 = 0.9, β2 = 0.98), label smoothing, a dropout
of 0.1 and a weight decay of 0. We applied our
hyperparameters search heuristic procedure 1 to
find the best model. We set ϵ1 = 2, ϵ2 = 1. On this
configuration, optimal results were reported with a
learning rate of 1e-07, freezing the embeddings at
the encoder level, and 60K steps.
mBART50 We trained mBART50 large on the
medical EN-FR dataset. We used the adam
optimizer (β1 = 0.9, β2 = 0.98), label smoothing,
a dropout of 0.3 and a weight decay of 0. Again,
we applied our hyperparameters search heuristic
procedure to find the best model 1. We had to
increase the value of ϵ1, ϵ2 since mBART50 tends
to forget the generic domain quicker than M2M100.
We set ϵ1 = 4, ϵ2 = 3. On this configuration,
optimal results were reported with a learning rate
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of 6e− 07, freezing the embeddings at the encoder
level and 10K steps.

SMART: We finetuned the model with the SMART
procedure and continue hyperparameters search as
in algorithm 1. In Algorithm 2, we note Rs(θ) =
1
|B|

∑
xi∈B max∥x̄i−xi∥p≤ϵ ℓs (f (x̄i; θ) , f (xi; θ))

and AdamUpdate the ADAM update rule for
optimizing equation 1 using the mini-batch B.
Lastly, we set Tx̃ = 1. For the perturbation, we set
ϵ = 10−5 and σ = 10−5. The learning rate η is set
to 10−3.

Algorithm 2 Adding SMART to procedure

Input: T : the total number of iterations; X : the
dataset; θ0: the parameter of the pre-trained
model; σ2: the variance of the random initial-
ization for x̄i ’s; Tx̃: the number of iterations
for updating x̄i ’s; η: the learning rate for up-
dating x̄i ’s; β: clipping value.

1: θ1 ← θ0
2: for t← 1 to T do
3: θ̄s ← θt
4: Sample a mini-batch B from X
5: For all xi ∈ B, initialize x̄i ← xi+vi with

vi ∼ N
(
0, σ2I

)

6: for m = 1, ..., Tx̃ do
7: x̄i ← x̄i + ηRs(θ̄s)
8: end for
9: θ̄s+1 ← AdamUpdateB

(
θ̄s
)

10: θt+1 ← CLIP (θ̄s+1, 1− β, 1 + β)
11: end for
Output: θT

PDE Finally, we define PDE. It consists in ap-
plying Algorithm 1 and then removing first all the
residual connection in the penultimate Encoder lay-
ers (Chen et al., 2022), then we try removing only
the attention layer residual connections (figure 2).

Multi-Head
Attention

Multi-Head
Attention

Add & Norm

Add & Norm

Multi-Head
Attention

Multi-Head
Attention

Add & Norm

Add & Norm

Figure 2: PDE Illustration: Removing Residual Connec-
tions on encoder block

6 Results and Analysis

6.1 Hyperparameters search heuristic

6.1.1 Main Results

M2M100 As shown in table 1 we reached more
than 9.00 increase of BLEU score on the medical
dataset without sacrificing performance on generic
domain, the loss is not important on most of the
pairs (between 0.01 and 0.2). In figure 3, we see
that the mean results is rather stable and that the
BLEU on generic English to French data does not
decrease a lot (around -1.5 BLEU). The model
converges after 60K steps so we stop training.

mBART50 Again we reach more than 9.00
BLEU increase (Figure 4). We observe that af-
ter 50K steps mBART50 starts converging around
40.00 BLEU, yet we decided to stop domain adap-
tation training sooner than with M2M100 as a trade-
off between good performance on the EN-FR med-
ical domain and loss of performance on the generic
domain. Globally, we achieved better results with
M2M100 than mBART50.

Figure 3: Domain Adaptation (Medical Domain EN-
FR) of M2M100
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Figure 4: Domain Adaptation (Medical Domain EN-
FR) of mBART50

6.1.2 Catastrophic forgetting with a big
learning rate

We tested several learning rate values and we report
here our results with a bigger learning rate (3e−5).
For both models, it led to a catastrophic forgetting
on the non-finetuned pairs along with a huge per-
formance increase on the EN-FR Medical dataset,
reaching a higher BLEU on the Medical dataset.
We decided to focus on a smaller learning rate as a
trade-off between loss on generic domain and gain
on the medical domain.

Figure 5: Domain Adaptation of M2M100 with big
Learning Rate

6.2 SMART

We have reported our fine-tuning results for
M2M100 and mBART50 with SMART in Table 1.

Our goal with SMART was to reach a higher
BLEU score on the generic domain data without
sacrificing performances on the medical dataset. In
Table 1, we note a good increase in BLEU score.
Moreover, we have noted that the BLEU change
less when moving learning rate in a reasonable

Figure 6: Adding SMART to M2M100 Domain Adap-
tation training

range compared to the other methods that are ex-
tremely sensitive to hyperparameters. In this con-
text, SMART is useful in order to achieve quick
adaptation of a mNMT model to a new domain.
It makes domain adaptation procedure more
consistent. Therefore, SMART training proce-
dure allows efficient and robust domain adaptation.
However if exploring a large scale of hyper param-
eters if feasible simple fine-tuning procedure like
in Algorithm 1 can provide better results as shown
in Table 1.

6.3 PDE
We seek at reducing the loss of performances on the
pairs learned during pre-training of the model (and
that are not used during the post-training domain
adaptation). Relaxing the correspondence to the
input tokens learned during Domain Adaptation.
Fine-tuning was supposed to help learning less spe-
cific input tokens and therefore the model would
be less likely to forgot all the pretrained pairs. As
expected, the model learned less aggressive input
tokens and do not overfit on English input tokens.
However, in practice this does not seem to work
well. Indeed, the model is also likelier to forget the
pretrained input tokens making this method unfit
to our procedure. Using PDE a posteriori (during
fine-tuning) seems to be inefficient, since the model
is performing worse on all pairs and not only on
the English pairs.

We report our results in table 1.

6.4 Analysis
6.4.1 Zero-shot Domain Adaptation on other

pairs
We challenged the approach on domain adaptation
on languages unseen during the post-training on the
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Table 1: Global results on domain adaptation of M2M100 and mBART50

M2M100 mBART50
Baseline Finetuned Finetuned SMART Finetuned PDE Baseline Finetuned Finetuned SMART Finetuned PDE

EN-FR medical data 26.94 36.05 35.93 29.71 23.99 33.87 30.3 26.12
EN-FR (WMT) 28.63 26.90 26.41 25.01 31.25 27.10 26.10 17.56

Mean results 24.97 25.38 25.15 21.70 19.83 16.85 15.1 13.63

DE-EN (WMT) 22.42 22.53 22.39 21.15 26.13 21.85 20.64 19.44
EN-DE (WMT) 19.48 19.52 19.21 17.96 22.72 19.84 18.61 16.83
RU-EN (WMT) 26.3 26.27 25.4 24.90 29.72 24.64 23.55 22.47
FR-DE (WMT) 17.82 17.80 17.58 14.69 10.92 8.98 7.1 4.30
EN-FI (WMT) 12.51 12.72 12.51 11.74 13.39 11.23 10.27 9.74
FI-EN (WMT) 23.55 23.18 23.39 21.40 22.10 18.90 17.75 16.33

BG-IT (Tatoeba) 26.65 27.54 27.01 26.20 * * * *
DA-TR (Tatoeba) 20.22 22.27 21.75 20.23 * * * *
PL-RU (Tatoeba) 33.79 33.72 33.68 29.69 14.45 10.49 10.34 9.87
PT-ES (Tatoeba) 51.49 51.98 52.54 50.34 21.57 18.87 16.80 12.54
JA-ES (Tatoeba) 20.55 21.66 21.58 20.30 17.55 15.42 13.27 11.12

medical domain using EMEA3 dataset available on
other languages. Table 2 shows that for M2M100
all BLEU scores are increasing, moreover the pairs
that implies either English or French are particu-
larly benefiting from this domain adaptation. On
mBART50, we also note improvements, first the
loss is less important than on generic dataset for the
pairs that do not include French as output showing
that the model is learning a bit. When French is
the output, the domain adaptation is working really
fine and we see improvements. Domain-specific
data are often hard to gather, especially for low-
ressource pairs. That’s why being able to improve
the performances on a new domain for several pairs
using a domain-specific dataset from a single pair
is a very interesting propriety from the mNMT
models.

M2M100 mBART50
Baseline Ours Baseline Ours

EN-FI medical 12.93 14.83 10.83 10.1
DE-PL medical 12.62 13.6 11.1 7.85
FR-IT medical 23.07 24.62 10.77 8.58
EN-ES medical 32.38 35.15 15.82 17.5
ES-IT medical 25.43 27.06 8.40 7.50
ES-FR medical 24.37 30.64 19.03 25.6
LT-PL medical 12.49 13.8 8.5 7.9
DE-FR medical 18.85 22.20 13.3 18.19
LT-PT medical 17.44 19.26 * *

Table 2: Zero shot domain adaptation on medical dataset
for other pairs

6.4.2 Comparison of initial pre-trained
mNMT models (mBART 50 vs M2M100)

We investigated why mBART50 was more likely to
forget other pairs compared to M2M100. First, we
have worked with the 418M-parameters version of
M2M100. This is not the largest M2M100 version

released (and certainly not the most optimized) and
this could possibly explain the differences. Then,
another hypothesis is the different dataset used dur-
ing training of both models. Indeed, mBART50
is trained on English-centric data, and M2M100
is not. Non-English centric models are known to
achieve higher BLEU especially on low resource
data (Fan et al., 2020). Extending this study to
domain adaptation, we believe non-English-centric
models might be more robust to domain adaptation.
We noted that when fine-tuning mBART50 with a
bigger learning rate, the first pairs to be forgotten
are the non-English ones. Testing this hypothesis
on NLLB might be useful.

7 Conclusion and Discussion

In this paper, we propose a study of robust domain
adaptation approaches on mNMT models where in-
domain data is available only for a single language
pair. Best performing approach combines embed-
ding freezing and simple fine-tuning with good hy-
perparameters. This approach shows good improve-
ments with few in-domain data on all language
pairs. The framework effectively avoids overfit-
ting and aggressive forgetting on out-of-domain
generic data while quickly adapting to in-domain
data. We demonstrate that this could be a solution
for incremental adaptation of mNMT models. Fi-
nally our work is a call for more research in domain
adaptation for multilingual models as it is key for
real-world applications.

8 Limitations

This study was limited by hardware issues. We did
not have the possibility to fine-tune on M2M100
large version (12B parameters) that requires 64 GB
of VRAM.
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Testing our results with a larger version of
M2M100 might be interesting.

Also, our study focused on two pre-trained mul-
tilingual neural machine translation models. How-
ever, many others exist and will be released (NLLB
Team et al., 2022). We think that our work is
generic enough to be applied on other pre-trained
models but extensive experiments on these new
models should be carried out.

Finally, the work has been realised on English
to French data. We showed domain adaptation is
possible for languages with English morphology
and tested the impact of this training on many dif-
ferent languages morphology (Japanese, English,
Russian, ...). Applying domain adaptation train-
ing on other morphology languages and on other
domains is also an area to investigate.

9 Ethics Statement

The dataset was gathered on OPUS and is largely
open-sourced. It was released by (Tiedemann,
2012) and we have downloaded it from OPUS web-
site. We have reviewed the dataset and have not
noted any issue with these data. They are very spe-
cific to health domain and therefore are not inappro-
priate. The dataset does not deal with demographic
or identity characteristics.

Moreover, these experiments were made using
only 2 GPUs and training were relatively short.
Given the urgency of addressing climate change,
we believe our domain adaptation procedure could
help have high-performing mNMT models at small
carbon and energy costs. Moreover, SMART frame-
work allows for quicker research of the right hy-
perparameters, therefore reducing even further the
number of experiments and the carbon costs of our
method.
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