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Abstract

Encoding both language-specific and language-
agnostic information into a single high-
dimensional space is a common practice of
pre-trained Multi-lingual Language Models
(pMLM). Such encoding has been shown to
perform effectively on natural language tasks
requiring semantics of the whole sentence (e.g.,
translation). However, its effectiveness appears
to be limited on tasks requiring partial informa-
tion of the utterance (e.g., multi-lingual entity
retrieval, template retrieval, and semantic align-
ment). In this work, a novel Fine-grained Mul-
tilingual Disentangled Autoencoder (FMDA)
is proposed to disentangle fine-grained seman-
tic information from language-specific infor-
mation in a multi-lingual setting. FMDA is
capable of successfully extracting the disentan-
gled template semantic and residual semantic
representations. Experiments conducted on the
MASSIVE dataset demonstrate that the disen-
tangled encoding can boost each other during
the training, thus consistently outperforming
the original pMLM and the strong language
disentanglement baseline on monolingual tem-
plate retrieval and cross-lingual semantic re-
trieval tasks across multiple languages.

1 Introduction

Pre-trained multilingual language models such as
multilingual BERT (mBERT) (Devlin et al., 2019)
and XLM-RoBERTa (XLM-R) (Conneau et al.,
2020) have been extensively explored and used
in academia and industry. These models encode
both language-specific information (e.g., grammar,
tense, syntax) and language-agnostic information
(e.g., semantic, entity, sentiment) into one high-
dimensional embedding. However, it has been
demonstrated that such encoders perform poorly in
some tasks due to a lack of capacity to disentan-
gle fine-grained language-agnostic and language-
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specific information. (Tiyajamorn et al., 2021; Wi-
eting et al., 2020; Roy et al., 2020; Ahuja et al.,
2020; Lin et al., 2021; Asai et al., 2020).

Table 1 presents several application examples
where disentangled language-specific or language-
agnostic encoder might have better performance.
The first example is cross-lingual retrieval, in
which a English utterance with the same language-
agnostic semantic can be retrieved by a German
utterance. Note the semantics in both template and
slot can be maintained. The second example is a
template retrieval, in which "do you show me do-
ing" can be replaced by another similar meaning
template "can you show me how to do" while the
slot value changes. The third example is paraphrase
retrieval, in which the target utterance keeps slot
text but rephrases the template part. Although the
applications shown above are retrieval tasks but all
of them can be used in query reformulation (Pon-
nusamy et al., 2020, 2022) and data augmentation
(Xu et al., 2021; Kale and Rastogi, 2020; Liu et al.,
2021; Gao et al., 2022). For instance, the source
utterance "do you show me doing [exercise: back-
flip]" is a defective sentence with grammar error,
and the disentangled encoder is able to retrieve
a similar meaning but grammar correct utterance
by ignoring the uncommon slot value "backflip".1

The tasks of cross-lingual retrieval and paraphrase
retrieval both are commonly used for data augmen-
tation, especially for languages with data scarcity.

In this work, we proposed a lightweight encod-
ing architecture called Fine-grained Multilingual
Disentangled Autoencoder (FMDA) that can dis-
entangle semantic representations at different as-
pects. The training of proposed encoder adopts
reconstruction loss and contrastive learning. The
contributions of our proposal are as follows:

1For this example, the golden reformulation for the defec-
tive query would be "can you show me how to do backflip".
However, directly performing utterance-level retrieval may
fail to find the golden reformulation because of data scarcity.
Therefore, template-level retrieval is useful here.
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Application Tasks Utterances Language Semantic Template Slot
cross-lingual retrieval source: wecke mich um [time: fünf uhr] auf different same same/similar same

target: wake me up at [time: five am]
template retrieval source: do you show me doing [exercise: backflip] same related same/similar different

target: can you show me how to do [exercise: yoga]
paraphrase retrieval source: what can be seen inside [object: the basket] same same different same

target: what does [object: the basket] mainly contain

Table 1: Applications of Disentangled Semantic

1. The FMDA is able to extract embedding of:

• language agnostic template representation that
contains the semantic information related to
the sentence backbone. E.g., in the sentence
"Can you play the music Green Light", the
template representation aims at encoding the
semantic of the "Can you play the music []";

• language agnostic meaning representation
which contains both template semantic and
residual semantic (e.g., slot name "Green
Light") information;

• language-specific non-semantic representa-
tion that contains unique language facts;

Visualizations of these fine-grained embedding
representations are shown in Figure 4 in Section
4.5.

2. The FMDA designs multiple contrastive learn-
ing objectives to improve the performance of the
disentanglement learning.

3. Compared with the original pMLM and
a language-disentanglement SOTA (Tiyajamorn
et al., 2021), FMDA achieves significant improve-
ment on both monolingual template retrieval and
cross-lingual meaning retrieval tasks, evaluated on
the benchmark MASSIVE (FitzGerald et al., 2022).

4. An ablation study further proves the effec-
tiveness of our model, and a two-stage training
experiment has been conducted to further study the
effect of the fine-grained semantic.

2 Related Work

Multilingual sentence encoders are widely stud-
ied and applied to downstream tasks in recent
years. Self-attention networks based multilingual
sentence encoders, such as mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020), are pre-
trained on multilingual corpora in over 100 lan-
guages. LaBSE (Feng et al., 2022) encodes text
to multilingual sentence embedding by training
with 100 million sentence pairs in bilingual cor-
pora of 109+ languages. Libovický et al. (2020)

proposes a centered embedding method that sub-
tracts the mean embedding for each language from
the sentence embedding, as well as a projection
embedding method that projects bilingual using
a parallel corpus. MUSE (Chidambaram et al.,
2018; Yang et al., 2019) applies a translation based
ranking task to one-billion weblab QA pairs to
obtain a multilingual universal encoder. Multi-
lingual SBERT (Reimers and Gurevych, 2020) ex-
tends pre-trained monolingual SBERT (Reimers
and Gurevych, 2019) to the multi-lingual version
by mapping translations and original utterances
into the same space.

Beyond atomic encoding, some research also
focus on disentangling language specific and
language-agnostic embeddings. (Chen et al., 2019)
learns to disentangle language syntax and seman-
tic information by using aligned paraphrase data
to train semantic and use word-order information
to train syntax. BGT (Wieting et al., 2019) uti-
lizes a deep variational probabilistic model to-
gether with transformers to learn better seman-
tic embeddings in a bi-lingual setting by exclud-
ing language-specific information from the in-
formation shared across languages. Tiyajamorn
et al. (2021) proposes a method for distilling
language-agnostic meaning embeddings by remov-
ing language-specific information from sentence
embeddings generated by off-the-shelf multilingual
sentence encoders. Although these works extract
both language-specific and language-agnostic em-
beddings, they are hard to support fine-grained se-
mantic disentanglement.

Based on the work of Tiyajamorn et al. (2021),
we further extend the semantic extraction to a fine-
grained level. Specifically, our proposed method
FMDA is able to extract not only the semantic
information of the whole utterance but also part of
it, i.e. template/carrier phrase semantic information
by learning to disentangle language information at
different levels.
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(a) Model Overview (b) Reconstruct Objective

(c) Contrastive Objective

Figure 1: The Overview of our model. (a) The FMDA outputs language-specific non-semantic embedding (emblang),
the template semantic embedding (embtp), and the residual-semantic embedding (embrs). Three objectives are
applied to train the FMDA: language identification, reconstruction, and contrastive learning. (b) The embtp, embrs,
and emblang1 are used to reconstruct the original pMLM’s utterance embedding; the emblang1 together with The
embtp or embrs are used for template embedding or residual-semantic embedding reconstruction, respectively; the
emblang2 from the utterance in another language but with same meaning can be used with embtp and embrs for
the cross-lingual reconstruction; (c) Contrastive learning objectives are applied to both embtp and embm (obtained
from both embtp and embrs).

3 Method

This section describes the details of our pro-
posed Fine-grained Multilingual Disentangled Au-
toencoder (FMDA). Figure 1(a) demonstrates the
overview of the method. FMDA is trained to extract
language-specific non-semantic embedding, tem-
plate semantic embedding, and residual-semantic
embedding from a pMLM with three objectives:
language identification, embedding reconstruction,
and contrastive learning. Figure 1(b) presents the
objectives of the embedding reconstruction. Figure
1(c) shows the detailed contrastive learining design,
in which FMDA tries to minimize embedding dif-
ference between two paired utterances in different
languages and maximize the embedding difference

between two non-related utterances in the same
language. Each training step takes four utterances
as inputs: utterance in language 1, utterance with
same-semantic in language 2, and negative utter-
ances with different semantic in language 1 and
2.

3.1 Fine-grained Model Details

Figure 2 demonstrates the detail of our proposed
fine-grained model. Given an utterance, a pMLM
is first utilized to extract the utterance embedding
embutt ∈ RL×D, where L represents the utterance
length and D represents the embedding dimension.
Note that the pMLM’s parameters are frozen and
the embutt will remain unchanged during the train-
ing and inference. So that the original informa-
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Figure 2: The details of the FMDA. (a) given
the utterance embedding embutt obtained from the
pMLM, a MLP layer is first applied to the [CLS]
token embedding to generate the emblang; four
FFN layers are applied to the embutt to generate
the template value-embedding (V aluetp), template
query-embedding (Querytp), template key-embedding
(Keytp), and the residual-semantic value-embedding
(V aluers). The Querytp and Keytp are first used to
generate the attention-probability Attn−Prob for tem-
plate, therefore the final template embedding can be
generated using V aluerp and Attn − Prob. Besides,
the 1 − Attn − Prob is also calculated to represent
the residual-semantic attention, which can then be used
with the V aluers to generate the final embrs.

Figure 3: Overview of how to generate the template and
residual-semantic reconstruction target embeddings.

tion encoded by the pMLM will be reserved and
our method can be lightweight to extract the em-
beddings of interest. Next, FeedForward-Network
(FFN) layers are applied to the embutt to extract
three different embeddings:

Language-Specific Non-semantic Embedding
The [CLS] token embedding (embcls ∈ R1×D) of
the embutt is extracted and input to a Multi-Layer-
Perceptron (MLP) to obtain the language-specific
non-semantic embedding emblang ∈ R1×D.

Language-agnostic Template Semantic em-
bedding In order to encode the semantic in-
formation more effectively, an attention-based
method is applied to the embutt. Specifi-

cally, three different FFN layers are applied
to the embutt to extract the template value
embeddings (embvalue−tp ∈ RL×D), template
query-embeddings (embquery−tp ∈ RL×D), and
the template key-embeddings (embkey−tp ∈
RL×D). The template attention-probability Attn-
prob ∈ L× L can then be calculated as
Softmax(embquery−tp ·embTkey−tp). The calculated
Attn-prob is thereby used with the template value
embeddings (embvalue−tp) to obtain the attention
based template embeddings sequence embtp−seq ∈
RL×D): embtp−seq = Attn-prob · embvalue−tp.

Finally, the [CLS] token position of the
embtp−seq is extracted as the final template seman-
tic embedding embtp ∈ R1×D.

Language-agnostic residual-semantic embed-
ding FMDA leverages the Attn-prob learned
from the generation of template embedding to gen-
erate the embedding for residual semantic. The
motivation is to disentangle the template semantic
and residual-semantic as much as possible, i.e., the
information that template does not pay attention
to should be used more to generate the residual-
semantic embedding.

Therefore, given the template Attn-prob learned
above, we first calculate its opposite (1 - Attn-
prob) to obtain the residual-semantic Attn-prob ∈
RL×L: RS Attn-prob = softmax(1 − Attn-prob).
Then, the residual-semantic embedding sequence
embrs ∈ R1×D can be obtained.

3.2 Language Identification Objective

To ensure that the extracted language-specific
embedding emblang contains correct language
information, following the idea in Tiyajamorn
et al. (2021), the emblang is used for a language-
identification objective. Specifically, the emblang
will be input to a MLP layer to achieve the language
prediction P , which is used with the true language
label L to calculate the language-identification loss
Losslang = CrossEntropy(P,L).

At each training step, the Losslang is calculated
for both of the utterance in language 1 and the
utterance with same semantic in language 2.

3.3 Reconstruction Objective

Utterance Embedding Reconstruction As
shown in Figure 1(b), for the utterance in
language 1 and its embutt obtained from the
pMLM, the emblang1, embtp, embrs learned
from FMDA are expected to not lose any in-
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formation in the original embutt. Therefore,
emblang1, embtp, embrs are used to reconstruct
the embutt. MSE (mean-squared-error) is used
as the loss function, thus the Lossutt−l1

rec for
the utterance in language 1 can be defined as
Lossutt−l1

rec = MSE(MLP (emblang1 + embtp +
embrs), embutt)

Similarly, the Lossutt−l2
rec is also calculated for

the utterance with same semantic in language 2.

Template Embedding Reconstruction The
emblang and embtp are used to reconstruct the tem-
plate target embedding embTgt

tp ∈ R1×D.
Figure 3 demonstrates how to obtain the target

template embedding embTgt−L1
tp together with the

residual-semantic target embedding embTgt−L1
tp for

the utterance in language 1. Specifically, given an
utterance with token labels indicating if a token
belongs to the template or slots, the original utter-
ance is then masked according to the labels and
input to the pMLM to obtain the [CLS] position’s
embeddings as the template target embedding and
residual-semantic target embedding.

Both emblang and embtp are used to reconstruct
the embTgt

tp as embtp should contain language-
agnostic template-semantic only, while the tem-
plate target embTgt

tp contains some language-
specific information obtained from the pMLM.

In order to calculate the loss, the sum of the
embtp and emblang1 is obtained as embtpL1 ∈
R1×D, which is then used to reconstruct the
embTgt−L1

tp . Therefore, the LosscpL1rec can be de-
fined as:

LosstpL1rec = MSE(embtpL1, embTgt−L1
tp ) (1)

Besides, the embtp is also combined with
emblang2, which is obtained from the utterance
with the same semantic but in language 2, to build
the to embtpL1−CL to reconstruct the template tar-
get embedding in language2 (embTgt−L2

tp ). This ob-
jective further guarantees that the embtp contains
language-agnostic template semantic information.
The cross-lingual template loss LosstpL1−CL

rec can
then be defined as:

LosstpL1−CL
rec = MSE(embtpL1−CL, embTgt−L2

tp )

(2)

The same process is also applied to the utterance
with the same semantic in language 2, to calculate
the LosstpL2rec and LosstpL2−CL

rec .

Residual-semantic Embedding Reconstruction
Similar reconstruction objectives are applied to the
residual-semantic. After obtaining the residual-
semantic target embedding embTgt

rs as illustrated in
Figure 3, the LossrsL1rec and LossrsL1−CL

rec can be
calculated for the utterance in language 1 with the
same process in the template reconstruction.

Similarly, the functions LossrsL2rec and
LossrsL2−CL

rec are calculated for the utterance with
the same semantic in language 2.

3.4 Contrastive Objective
Figure 1 (c) demonstrates the idea of the contrastive
learning objective. The contranstive learning is ap-
plied to both of the template semantic embeddings
and the utterance-level semantic (meaning) embed-
dings. For the utterances with the same semantic in
different languages, their template semantic embed-
dings and meaning embeddings should be similar;
for the utterances in the same language but with
different semantics, their template semantic embed-
dings and meaning embeddings should be different.

Given the inputs as the followings: utterance in
language 1, utterance with same-semantic in lan-
guage 2, and negative utterances with different se-
mantic in language 1 and 2, the contrastive loss for
the template semantic Losstpcon can be calculated
as:

Losscpcon =− Cos-sim(embL1tp , embL2tp )

+ Cos-sim(embL1tp , embL1neg−tp)

+ Cos-sim(embL2tp , embL2neg−tp)

(3)

where embL1tp and embL2tp come from the utter-
ances with the same semantic but in language 1 and
2; embL1neg−tp and embL2neg−tp denote the template
semantic embeddings of negative utterances that
with different semantic in language 1 and 2.

To conduct the contrastive learning for the mean-
ing embedding, a MLP is first used to generate the
meaning embedding embm ∈ R1×D using the sum
of embtp and embrs. Then the contrastive loss for
the meaning Lossmcon can be calculated as:

Lossmcon =− Cos-sim(embL1m , embL2m )

+ Cos-sim(embL1m , embL1neg−m)

+ Cos-sim(embL2m , embL2neg−m)

(4)

Similarly, embL1m and embL2m represent the
utterance-level semantic meaning of the utterances
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with the same semantic but from language 1 and 2;
embL1neg−m and embL2neg−m denote the meaning em-
beddings from negative utterances that with differ-
ent semantic from language 1 and 2, respectively.

3.5 Total Training Objective
During the training stage, all of the objectives’ loss
functions will be optimized together. Therefore,
the total loss can be written as:

Losstotal = LossL1lang + LossL2lang

+ Lossutt−L1
rec + Lossutt−L2

rec

+ LosstpL1rec + LosstpL2rec

+ LosstpL1−CL
rec + LosstpL2−CL

rec

+ LossrsL1rec + LossrsL2rec

+ LossrsL1−CL
rec + LossrsL2−CL

rec

+ Losstpcon + Lossmcon

(5)

4 Experiments

This section describes the experiments conducted
on various language pairs using the multilingual
natural language understanding dataset MASSIVE
(FitzGerald et al., 2022). To evaluate the proposed
FMDA, two retrieval tasks introduced in Table 1 are
used: (1) cross-lingual semantic retrieval, where
the goal is to find the best semantically matching
utterance pairs from two languages; and (2) mono-
linugal template retrieval, where the goal is to find
utterances with different slot values but similar tem-
plate in one language.

4.1 Dataset
Both training and evaluation of our experiment
were conducted using the MASSIVE dataset
(FitzGerald et al., 2022), which is a cross-lingual
corpus that contains virtual assistant utterances
across 51 languages. Domains, intents, and slots
have been labeled for each utterance.

We chose four languages from MASSIVE -
English (EN), German (DE), Spanish (ES) and
Japanese (JA) - to form three language pairs (EN-
DE, EN-ES, EN-JA) to conduct the experiment.
Such selection covers both languages that are sim-
ilar (e.g. EN-DE) and languages that belongs to
distant families (e.g. EN-JA). Our training and
evaluation sets were prepared by pre-processing on
MASSIVE’s train split (containing 11k utterances
in each language) and test split (containing 2974
utterances in each language), respectively.

4.2 Setup

XLM-R (base) (Conneau et al., 2020) is used as
the backbone encoder to train our proposed FMDA
model on three language pairs: EN-DE, EN-ES
and EN-JA. As described in Section 3, each train-
ing step takes four utterances as inputs: a pair of
parallel utterances from language 1 and language
2, and negative utterances with different semantic
in language 1 and 2. The following is an example
of the training data for EN-DE language pair:

utt_en: Wake me up at nine am on Friday.
utt_de: Weck mich am freitag um neun uhr auf.
neg_utt_en: Quiet.
neg_utt_de: Zeit zu schlafen. (Time to sleep.)
The parallel utterances are directly from the

MASSIVE dataset. Negative utterances, on the
other hand, are sampled from negative utterance
pools. We built a negative utterance pool for each
language from the whole training set. For each
utterance in the training set, we calculated BLEU
scores between it and all other utterances in the
same language. We add an utterance into the nega-
tive pool if its scores are all smaller than 0.1, which
guarantees that utterances in the pool are dissimilar
from all other utterances in the training set except
itself.

During training, the weights of XLM-R were
frozen and only the layers in the FMDA were fine-
tuned. The development set from MASSIVE was
used to determine the best stop point of training.
The other hyperparameters were similar with those
used in Tiyajamorn et al., 2021.

To evaluate the output embeddings of our FMDA
model, we performed two retrieval tasks as de-
scribed in Section 4.3.1 and 4.3.2, and com-
pared our results with (a) XLM-R’s original
[CLS] embedding, and (b) the SOTA language-
disentanglement model (Tiyajamorn et al., 2021)
trained with our data.

4.3 Results

4.3.1 Cross-lingual Semantic Retrieval Task
We used MASSIVE’s test split (containing 2974
sets of parallel utterances) to conduct cross-lingual
semantic retrieval evaluation. Given one utterance
(query) in the source language, we expect to locate
its exact translation from the 2974 candidates in
the target language. This was done by calculating
cosine similarity between each query and all candi-
dates in the embedding space as the ranking score.
The retrieval performance was measure by accu-
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Model Embedding EN-DE DE-EN EN-ES ES-EN EN-JA JA-EN
XLM-R cls 0.182 0.203 0.194 0.198 0.050 0.037
Tiyajamorn et al. (2021) meaning 0.550 0.575 0.583 0.602 0.364 0.359

meaning 0.594 0.605 0.645 0.650 0.400 0.380
Our model Template(TP) 0.583 0.589 0.630 0.643 0.388 0.371

Residual(RS) 0.283 0.268 0.369 0.321 0.070 0.075

Table 2: Results of cross-lingual semantic retrieval. X-Y in the column headers represents the language pairs for
evaluation, where X is the source language and Y is the target language. The training language pair is the same as
the corresponding evluation language pair for each column. The retrieval performance is measured by accuracy@1.

Model Embedding ENEN_DE ENEN_ES ENEN_JA DE ES JA
XLM-R cls 0.371 0.371 0.371 0.351 0.427 0.120
Tiyajamorn et al. (2021) meaning 0.393 0.392 0.299 0.381 0.434 0.267

meaning 0.427 0.437 0.356 0.387 0.441 0.314
Our model TP 0.427 0.439 0.441 0.396 0.436 0.340

RS 0.330 0.348 0.241 0.354 0.420 0.094

Table 3: Results of mono-lingual template retrieval. Column headers show the training and evaluation languages.
For example, ENEN_DE means the model is trained on EN-DE language pair and evaluated on EN. For language X
other than EN, the training language pair is EN-X. The retrieval performance is measured by accuracy@1.

racy@1, i.e. the fraction that the top-1 retrieval
matches the target.

Table 2 shows the cross-lingual retrieval result
of different models and embeddings. The first
row shows the performance of XLM-R’s original
[CLS] embedding, and the second row shows the
performance of the language-agnostic meaning em-
bedding by training the network from Tiyajamorn
et al., 2021. The meaning embedding from our
FMDA model constantly outperforms both base-
lines. Diving deeper, we notice that the meaning
embedding from Tiyajamorn et al., 2021 may re-
trieve an utterance with related semantic but of
different template and slots; whereas our meaning
embedding, which is reconstructed using the fine-
grained components, is able to capture the exact
translation (as demonstrated by the case in Table
7 of Appendix). The ablation study in Section 4.4
also proves the importance of the fine-grained re-
construction for cross-lingual retrieval.

Comparing the three embedding representations
of our model, we find the meaning embedding out-
performs the template embedding (TP) as expected,
since the former contains more semantic informa-
tion than the latter (as shown by the case in Table 8
in Appendix). Residual-semantic embedding (RS)
in the bottom row has the worst performance be-
cause it encodes the least semantic information.

We also notice the differences between language
pairs when comparing the columns in Table 2. All
embeddings perform much worse on EN-JA than

EN-DE/ES, because Japanese belongs to a lan-
guage family distant from the others. We will fur-
ther discuss this in Appendix C.

4.3.2 Mono-lingual Template Retrieval Task
To validate the capacity of our model for extract-
ing the carrier phrase/template information from an
utterance, we further carried out the mono-lingual
template retrieval as the second evaluation task.
The evaluation pairs were generated from MAS-
SIVE’s test split by manually replacing the slot
value of utterances, such that the source and target
utterances are from the same language, share the
same template, but differs in their slot values (for
utterances without a slot labelled, we just discarded
them). This pre-processing resulted in about 1.9k
evaluation pairs for each language. The following
is one of the evaluation pair from EN:

source_utt: I like Senatra songs.
target_utt: I like Taylor Swift songs.
Similar with the cross-lingual semantic retrieval,

given a source utterance we expect to find the tar-
get utterance from the pool. The performance of
the retrieval measured by accuracy@1 is shown in
Table 3. As can be seen, the template embedding
from our model have consistent better performance
than the embedding from the baseline model by
Tiyajamorn et al. (2021). Besides, our meaning
embedding has the similar performance compared
to the template embedding, which means that the
meaning embedding is able to contain most of the
information from the template embedding.
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To make the conclusion of the template retrieval
experiment more solid, we prepared an alterna-
tive evaluation set, where multiple target utterances
were generated from one source, all sharing the
same template. Then the retrieval performance
measured by mean average precision (MAP) is
shown in Table 6 in the Appendix, which matches
the observation from Table 3.

4.4 Ablation Study
To understand the importance of each set of losses
in the FMDA model, we conducted an ablation
study for the cross-lingual retrieval as shown in
Table 4. Removing the contrastive loss leads to a
significant drop on the retrieval performance, since
such loss between a pair of parallel utterances is
essential to build up the language alignment.

In addition, among the three sets of reconstruc-
tion losses, we find the utterance reconstruction
loss Lossuttrec brings significant benefit, while the
residual-semantic reconstruction loss Lossrsrec has
little function. It needs to noted that when remov-
ing all three reconstruction losses, the performance
is worse than the original FMDA model, but bet-
ter than removing Lossuttrec only. This is because
in the latter setting, the model with partial recon-
struction may lead to a sub-optimal by learning
partial information of the utterance. This further
proves the effectiveness of the interaction among
each reconstruction loss.

Model EN-DE DE-EN
XLM-R 0.182 0.203
Tiyajamorn et al. (2021) 0.550 0.575
Our model 0.594 0.605
w/o all reconstruction losses 0.580 0.603
w/o utterance reconstruction loss 0.569 0.586
w/o template reconstruction loss 0.583 0.600
w/o residual reconstruction loss 0.584 0.610
w/o contrastive loss 0.241 0.234

Table 4: The performance of models with different train-
ing settings on cross-lingual semantic retrieval tasks
(measured by accuracy@1).

4.5 Visualization
The fine-grained embeddings from our FMDA
model are visualized using t-SNE plotting as shown
in Figure 4. Figure 4a and 4b show the language
embeddings and meaning embeddings of 800 EN-
DE utterance pairs, respectively. These embed-
dings are generated from the FMDA model de-

scribed in Section 3. Clearly, the language embed-
dings shows separated language clusters. While the
meaning embeddings shows the translation align-
ment between two languages. In addition, Figure
4b contains multiple clusters, which correspond to
different domains/intents in the corpus.

Figure 4c visualizes the template embeddings
(generated from the two-stage FMDA model as
described in Section 4.6) of 20 English utterances.
All of them are from play-music intent, but of 4
different templates. The plot shows clearly that our
template embedding is efficient in extracting the
template information from different sentences.

4.6 Further Exploration with the Two-Stage
FMDA

Former experiments demonstrate the effectiveness
of fine-grained decomposition and reconstruction
of embedding representations using our proposed
FMDA model, and its benefit for different applica-
tions. However, the training of the FDMA involves
multiple different loss functions, which may affect
the optimization of each component. Therefore,
we would like to investigate if training different
components of FDMA in separating steps can lead
to better embedding representations.

Here we conducted a two-stage training proce-
dure to obtain better template representation. For
the first stage, we focused on template encoder in
FMDA and template related loss terms, i.e. the
template reconstruction loss and the template con-
trastive loss. Mono-lingual template pairs data,
in the same format as that described in Section
4.3.2, were built as positive pairs for the training.
Therefore, the template encoder in FMDA can be
better learned on this pure template data. In the sec-
ond stage, the template encoder in the FMDA was
frozen and all other losses except template-related
ones were used together on the dual-lingual pair
training data described in section 4.

Results of the model trained in two-stage setting
are shown in Tabel 5. For mono-lingual template
retrieval tasks (columns EN and DE), the template
embedding (TP) obtained through two-stage train-
ing is far better than that from the original FMDA
model. The meaning embedding also benefits from
the boost of TP. For cross-lingual semantic retrieval
tasks (columns EN-DE and DE-EN), although the
performance of two-stage TP is low (since the tem-
plate encoder hasn’t been trained with dual-lingual
pair data in the two-stage setting), the performance
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(a) Language embedding (b) Meaning embedding (c) Template embedding

Figure 4: Visualisation of fine-grained embeddings from our FMDA model.

of the meaning embedding is similar with that from
the original FMDA model.

This experiment demonstrates that the two-stage
based FMDA is able to learn a much better tem-
plate embedding while the meaning embedding still
effectively encodes the whole semantic.

Method Embedding EN-DE DE-EN EN DE
All-together meaning 0.594 0.605 0.427 0.387

TP 0.583 0.589 0.427 0.396
Two-stage meaning 0.595 0.601 0.584 0.566

TP 0.241 0.251 0.811 0.802

Table 5: Comparison of all-together training and two-
stage training. The numbers of all-together training are
from Table 2 and Table 3.

5 Conclusion

In this paper, we introduced FMDA, a lightweight
encoding architecture that is able to disentangle
fine-grained semantic information from language-
specific information in a multilingual setting. Com-
pared with previous works, the FMDA distils 1) lan-
guage embedding emblang to encode the language-
specific information, 2) template embedding embtp
to encode the the backbone template of the sen-
tence, and 3) the residual embedding embrs to en-
code the residual information such as slot. Such
fine-grained representations allow retrieval applica-
tions at different levels under the NLU setting.

Two retrieval tasks conducted on the MAS-
SIVE dataset demonstrate that FMDA’s mean-
ing embedding achieves the best performance
on the cross-lingual semantic retrieval task and
FMDA’s template embedding achieves the best
performance on the mono-lingual template re-
trieval task. Both constantly outperform the SOTA

language-disentanglement baseline across multiple
languages.
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A Multi-target Template Retrieval

In Section 4.3.2, we introduced the mono-lingual
template retrieval experiment, which was evaluated
using source-target utterance pairs generated by
slot replacement. In order to make the conclusion
of the experiment more solid, here we prepared an
alternative evaluation set, where five target utter-
ances were generated from each source, all of them
sharing the same template but with different slot
values. Then, mean average precision (MAP) was
used to evaluate whether all of the ground-truth
targets can be retrieved at high rank. The result
is shown in Table 6, which is consistent with the
observations from Table 3.

B Case Study

For better understanding of the cross-lingual se-
mantic retrieval results (Section 4.3.1), we pulled
out some examples from the EN-DE retrieval ex-
periment to demonstrate the different behaviors of
different embeddings.

Table 7 shows a case where the result from our
model is different from that of the baseline model
(Tiyajamorn et al. (2021)). The meaning embed-
ding from our FMDA model is able to retrieve
the correct target, which is the exact translation of
the source query. Whereas the embedding from the
baseline model retrieves a wrong answer, which has
the same intent as the source but differs in template
and slot. This is because the semantic representa-
tion from our FMDA model is reconstructed from
finer grains (template and residual-semantic/slots)
and is able to capture detailed information in the
sentence more accurately.

Table 8 shows an example where the meaning
embedding from our FMDA model captures the cor-
rect target while the template embedding from the
same model retrieves a wrong one – though its tem-
plate is same as the query, the slot doesn’t match.
This is as expected, since the residual-semantic
information (slot) is decoupled from the template
embedding.

In conclusion, our template embeddings are able
to capture necessary template information an utter-
ance, while our meaning embeddings are able to
cover the whole semantic of the utterance.

C Extend FMDA to a Unified
Multilingual Model

In the former experiments, the models were all
trained on dual-lingual pairs, e.g. EN-DE, EN-

ES. To further validate if the model can benefit
from training multiple languages together, a multi-
lingual training experiment is conducted and ana-
lyzed. The model architecture remains the same,
while the input is not only a dual-lingual pair, but
multiple dual-lingual pairs together, i.e., the model
is trained on the mixture of EN-DE, EN-ES and
EN-JA pairs in one epoch.

Table 9 demonstrates the results of the multi-
language pairs training. First, for languages like
English (EN), German (DE), and Spanish (ES), the
performance of the multi-lingual training model is
actually worse than the dual-lingual training model.
However, the multi-lingual model performs better
on Japanese (JA). Second, for all languages, the
multi-lingual training model still outperforms the
baseline model from Tiyajamorn et al. (2021).

We argue that the reason of this results is: lan-
guages from similar families like EN, DE, and ES
have been well learned in the original XLM-R and
may have more in common. However, language
like JA is a single-family language which does not
share common scripts nor in the same genre with
others, and is not well-studied in the original XLM-
R. Therefore, the performance of the EN, DE, and
ES part in the model trained under the multi-lingual
setting is affected by JA so that to be worse , while
JA, which is insufficient leanred in the XLM-R, can
benefit more from other well-learned languages.
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Model Embedding ENEN_DE ENEN_ES ENEN_JA DE ES JA
XLM-R cls 0.370 0.370 0.370 0.355 0.379 0.117
Tiyajamorn et al. (2021) meaning 0.397 0.386 0.310 0.386 0.380 0.283
Our model meaning 0.421 0.432 0.360 0.409 0.423 0.350

TP 0.421 0.434 0.395 0.405 0.425 0.375
RS 0.328 0.344 0.234 0.360 0.379 0.088

Table 6: Results of mono-lingual template retrieval under multi-target retrieval setup. The retrieval performance is
measured by mean average precision (MAP). Other settings are the same as Table 3.

Query wake me up at five am this week
Our model (meaning):
wecke mich in dieser woche um fünf uhr auf

Top-1 retrieval (wake me up at five am this week)
Tiyajamorn et al. (2021) model (meaning):
ich muss morgen um zehn uhr aufstehen
(i need to get up at ten tomorrow)

Table 7: An example from the EN-DE cross-lingual
retrieval experiment, for which our meaning embedding
retrieved the correct target, whereas the embedding from
Tiyajamorn et al. (2021) retrieved a wrong answer.

Query what’s the time in sweden
Our model (meaning):
wie spät ist es in schweden

Top-1 retrieval (what’s the time in sweden)
Our model (template):
welche uhrzeit ist es in einer stadt
(what time is it in a city)

Table 8: An example from the EN-DE cross-lingual
retrieval experiment, for which our meaning embedding
retrieved the correct target, whereas our template em-
bedding retrieved a wrong answer.

Eval.
Task

Tiyajamorn et al.
(2021)

Dual-lingual
Training

Multi-lingual
Training

DE-EN 0.575 0.605 0.572
ES-EN 0.602 0.650 0.617
JA-EN* 0.359 0.380 0.397
EN 0.361 0.436 0.429
DE 0.381 0.396 0.395
ES 0.434 0.436 0.433
JA* 0.267 0.340 0.341

Table 9: Comparison of dual-lingual training with multi-
lingual training. Results shown are the performance of
cross-lingual semantic retrieval (top rows) and mono-
lingual template retrieval (bottom rows) respectively,
measured by accuracy@1. For dual-lingual training, the
model is trained on one language pair and evaluated
on the corresponding language (pair), as described in
Table 2 and Table 3. For multi-lingual training, a unified
model is trained using data from multiple language pairs.
Specifically, JA data is not included in the training set
except for the rows marked by *.
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