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Introduction

Let’s scale natural language understanding technology to every language on Earth!

By 2023 there will be over 8 billion virtual assistants worldwide, the majority of which will be on smart-
phones. Additionally, over 100 million smart speakers have been sold, most of which exclusively use
a voice interface and require Natural Language Understanding (NLU) during every user interaction in
order to function. However, even as we approach the point in which there will be more virtual assistants
than people in the world, major virtual assistants still only support a small fraction of the world’s lan-
guages. This limitation is driven by the lack of labeled data, the expense associated with human-based
quality assurance, model maintenance and update costs, and more. Innovation is how we will jump these
hurdles. The vision of this workshop is to help propel natural language understanding technology into
the 50-language, 100-language, and even the 1,000-language regime, both for production systems and
for research endeavors.

For an overview of the workshop and competition, please see the paper entitled “The Massively Multi-
lingual Natural Language Understanding 2022 (MMNLU-22) Workshop and Competition,” included in
these proceedings.
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Keynote Talk: Fine-grained Multi-lingual Disentangled
Autoencoder for Language-Agnostic Representation Learning

Zhongkai Sun
Amazon

Abstract: Encoding both language-specific and language-agnostic information into a single high-dimensional
space is a common practice of pre-trained Multi-lingual Language Models (pMLM). Such encoding has
been shown to perform effectively on natural language tasks requiring semantics of the whole sentence
(e.g., translation). However, its effectiveness appears to be limited on tasks requiring partial information
of the utterance (e.g., multi-lingual entity retrieval, template retrieval, and semantic alignment). In this
work, a novel Fine-grained Multilingual Disentangled Autoencoder (FMDA) is proposed to disentangle
fine-grained semantic information from language-specific information in a multi-lingual setting. FMDA
is capable of successfully extracting the disentangled template semantic and residual semantic represen-
tations. Experiments conducted on the MASSIVE dataset demonstrate that the disentangled encoding
can boost each other during the training, thus consistently outperforming the original pMLM and the
strong language disentanglement baseline on monolingual template retrieval and cross-lingual semantic
retrieval tasks across multiple languages.

Bio: TBD
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Keynote Talk: Towards Efficient Transfer Learning Across
Languages
Mahdi Namazifar
Amazon Alexa AI

Abstract: Unbalanced distribution of text resources necessary for AI research and development across
languages is well known to result in biases and unfairness in access to benefits of advances in AI. Multi-
lingual language models have played a big role in transferring learnings across languages, facilitating
addressing this imbalance to some extend. This talk focuses on additional approaches that could poten-
tially further enable transfer of learnings across languages.

Bio: Mahdi Namazifar received his PhD in Operations Research with a focus in Optimization from Uni-
versity of Wisconsin-Madison in 2011. After PhD he worked at various companies such as Cisco, Twitter,
and Uber on applications of machine learning in different industries. In 2020 he joined Amazon Alexa’s
Conversation Modeling team where he is working on different problems in NLP and Conversational AI.
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Keynote Talk: Byte-Level Massively Multilingual Semantic
Parsing (Zero-Shot Shared Task Winners)

Massimo Nicosia
Google

Abstract: Token free approaches have been successfully applied to a series of word and span level ta-
sks. In this work, we evaluate a byte-level sequence to sequence model (ByT5) on the 51 languages in
the MASSIVE multilingual semantic parsing dataset. We examine multiple experimental settings: (i)
zero-shot, (ii) full gold data and (iii) zero-shot with synthetic data. By leveraging a state-of-the-art label
projection method for machine translated examples, we are able to reduce the gap in exact match to only
5 points with respect to a model trained on gold data from all the languages. We additionally provide
insights on the cross-lingual transfer of ByT5 and show how the model compares with respect to mT5
across all parameter sizes

Bio: Massimo Nicosia is a Senior Software Engineer in Research at Google in Zurich working on making
natural language understanding models multilingual.
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Keynote Talk: Machine Translation for Multilingual Intent
Detection and Slots Filling (Organizers’ Choice Award)

Maxime De Bruyn
University of Antwerp

Abstract: We expect to interact with home assistants irrespective of our language. However, scaling the
Natural Language Understanding pipeline to multiple languages while keeping the same level of accura-
cy remains a challenge. In this work, we leverage the inherent multilingual aspect of translation models
for the task of multilingual intent classification and slot filling. Our experiments reveal that they wo-
rk equally well with general-purpose multilingual text-to-text models. Furthermore, their accuracy can
be further improved by artificially increasing the size of the training set. Unfortunately, increasing the
training set also increases the overlap with the test set, leading to overestimating their true capabilities.
As a result, we propose two new evaluation methods capable of accounting for an overlap between the
training and test set.

Bio: Maxime is a PhD student in computational linguistics at the University of Antwerp (Belgium)
under the supervision of Prof. Walter Daelemans. His work mainly focuses on conversational agents and
question answering. Prior to starting his PhD, Maxime was a fund manager at a Belgian private bank.

viii



Keynote Talk: Multilingual NLP for Customer Relationship
Management
Géraldine Damnati

Orange Labs

Abstract: Natural Language Processing has become a key technology to improve Customer Relation-
ship Management. Extracting key insights from customer feedbacks, mining opinions from surveys or
reviews, designing interactive chatbots or voicebots for commercial or technical assistance are examples
among several applications where processing language helps managing Customer Relationship. Being
able to handle multiple languages is a central feature for companies, whether when operating in a country
where several languages are spoken or when operating in several countries. Recent advances in multi-
lingual NLP represent a huge opportunity towards leveraging customer feedbacks expressed in different
languages but many challenges remain.
In this talk, I will present some issues encountered in an international company when analyzing its in-
teractions with customers. In the case of Orange, which also operates in Africa and Middle east, low
resource languages are also at stakes. I will address the design of multilingual NLP models in a context
where using multipurpose Large Language Models or even any model needing GPU computation is not
always a realistic scalable solution. I will share experience of data collection in the context of highly
regulated domain with European General Data Protection Regulation and of data annotation in a context
where micro-tasking is generally not used. I will also discuss how to bridge the gap between academic
research on unconstrained benchmark corpora that do not always fit the reality of deployment constraints
and how these constraints can fuel new research questions.

Bio: Géraldine Damnati is a Research Engineer at Orange Innovation, DATA&AI, Lannion, France. Af-
ter an engineering degree from Telecom Bretagne, she obtained in 2000 a PhD in Computer Science from
University of Avignon. Her research interests include Natural Language Processing, Spoken Language
Understanding, Text and Speech Mining, Semantic Analysis, Question Answering and Information Ex-
traction in general. She has a research activity, contributing to collaborative projects, being co-author
of around 80 publications in international conferences. She is also involved in the conception and deve-
lopment of tools in various applicative domains, such as Customer Relationship or Multimedia Content
exploration. She is currently involved in several research projects, including the ARCHIVAL pluridisci-
plinary project (http://archival.msh-paris.fr/) for archive valorisation in the context of Digital Humanities.
She is also active in the French NLP community, as a member of the ATALA board (Association pour le
Traitement Automatique des Langues) and as the coordinator of the French CNRS GDR-TAL partners
club.
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Keynote Talk: Towards Massively Multilingual Modular
Models

Sebastian Ruder
Google

Abstract: State-of-the-art multilingual models are trained on data of around 100 languages. These
models can be adapted to perform better in under-represented languages but such adaptation does not
directly benefit the original models. In order to make progress on NLU capabilities for the next 1,000
languages, we need to make it easier for researchers from diverse backgrounds to build upon and share
improvements on base models. To this end, I will first discuss the tools currently at our disposal for ex-
tending multilingual models, from sparse subnetworks to parameter-efficient adaptation and vocabulary
extension. I will then highlight the benefits of modularity compared to current model monoliths. Finally,
I will sketch a vision of how we can build, train, and evaluate modular multilingual models that can cover
the next 1,000 languages.

Bio: Sebastian is a research scientist at Google based in Berlin, Germany working on natural language
processing (NLP) for under-represented languages. Before that he was a research scientist at DeepMind.
He completed his PhD in Natural Language Processing and Deep Learning at the Insight Research Centre
for Data Analytics, while working as a research scientist at Dublin-based text analytics startup AYLIEN.
Previously, he studied Computational Linguistics at the University of Heidelberg, Germany and at Trinity
College, Dublin. He’s interested in cross-lingual and transfer learning for NLP and making ML and NLP
more accessible.
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Keynote Talk: HIT-SCIR at MMNLU-22: Consistency
Regularization for Multilingual Spoken Language

Understanding (Best Paper and Full-Data Shared Task
Winner)

Bo Zheng
Research Center for Social Computing and Information Retrieval (SCIR) of Harbin Institute of

Technology

Abstract: Multilingual spoken language understanding (SLU) consists of two sub-tasks, namely intent
detection and slot filling. To improve the performance of these two sub-tasks, we propose to use con-
sistency regularization based on a hybrid data augmentation strategy. The consistency regularization
enforces the predicted distributions for an example and its semantically equivalent augmentation to be
consistent. We conduct experiments on the MASSIVE dataset under both full-dataset and zero-shot set-
tings. Experimental results demonstrate that our proposed method improves the performance on both
intent detection and slot filling tasks. Our system ranked 1st in the MMNLU-22 competition under the
full-dataset setting.

Bio: Bo Zheng is a final-year Ph.D. student at the Research Center for Social Computing and Information
Retrieval (SCIR) of Harbin Institute of Technology, advised by Prof. Wanxiang Che. His research
interests include cross-lingual NLP, machine reading comprehension, and language analysis. He has
published many papers in international conferences and journals such as ACL, EMNLP, CoNLL, etc.
He was ranked first on multiple official leaderboards, including the leaderboard of Google’s XTREME
benchmark, Google’s Natural Questions dataset, and Amazon’s MASSIVE dataset. He was also ranked
first in multiple international competitions, including Amazon’s MMNLU-2022 competition, CoNLL
2018 shared task, and NLP-TEA 2016 shared task.
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Keynote Talk: Massively Multilingual NLP in 1600+
Languages
David Yarowsky

Johns Hopkins University

Abstract: The talk will cover a range of topics in massively multilingual and very low-resource NLP
and speech recognition, in core functionalities, at a nearly unprecedented language-universal scale.

Bio: David Yarowsky is a Professor of Computer Science at Johns Hopkins University, and a member of
its Center for Language and Speech Processing. He received his PhD from the University of Pennsylvania
in 1996. He is an ACL Fellow, NSF CAREER award winner, Rockefeller Fellow, summa-cum-laude
graduate from Harvard, ACL Test-of-time award winner, ACL Treasurer, co-founder of the EMNLP
conference series and longtime ACL/SIGDAT executive committee member. He has pioneered the field
of cross-lingual information projection via bilingual word alignments and done extensive work in low-
resource and massively multilingual NLP, and is also known for an eponymous influential algorithm used
for co-training, multi-view machine learning and low-resource bootstrapping.
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Keynote Talk: Learning in the Wild: Modeling Language in
Real-World Scenarios

Anna Rumshisky
University of Massachusetts Lowell

Abstract: Scientific progress in NLP is often measured by model performance on standardized benchma-
rks. But in many cases, existing benchmarks fail to reflect the settings in which algorithmic solutions
are applied in practice. The challenges of modeling language in real-world scenarios often go beyond
covariate shift and related well-studied phenomena. In this talk, I will discuss some of these challenges,
using user interactions with digital assistants as a case study. I will describe some recent work aimed
at addressing such challenges, including (a) learning from a combination of positive and negative noisy
user feedback in a federated setting, and (b) learning from frequency-enriched data in a setting where a
different treatment is required for the head and tail of the distribution.

Bio: Anna Rumshisky is an Associate Professor of Computer Science at the University of Massachusetts
Lowell, where she heads the Text Machine Lab for NLP. Her primary research area is machine learning
for natural language processing, with a focus on deep learning techniques. She has made contributions
in a number of application areas, including computational lexical semantics, temporal reasoning and
argument mining, as well as clinical informatics and computational social science. She received her PhD
from Brandeis University and completed postdoctoral training at MIT CSAIL, where she is currently a
Research Affiliate. She is a recipient of the NSF CAREER award in 2017, and her work won the best
thematic paper award at NAACL-HLT 2019.
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Keynote Talk: Multilingual Information Extraction for
Thousands of Types

Heng Ji
University of Illinois at Urbana-Champaign

Abstract: Supervised information extraction models require a substantial amount of training data to
perform well. However, information annotation requires a lot of human effort and costs much time,
especially for low-resource languages, which limits the application of existing supervised approaches to
new knowledge types. In order to reduce manual labor and shorten the time to build an information ex-
traction system for an arbitrary ontology, we present a new framework to train such systems much more
efficiently without large annotations. Our weak supervision approach only requires a set of keywords,
a small number of examples and an unlabeled corpus in any language, and takes advantage of naturally
existing “hubs” (such as linking to WikiData, Multilingual embedding and universal semantic parsers)
for cross-lingual transfer.

Bio: Heng Ji is a professor at Computer Science Department, and an affiliated faculty member at Elec-
trical and Computer Engineering Department of University of Illinois at Urbana-Champaign. She is an
Amazon Scholar. She received her B.A. and M. A. in Computational Linguistics from Tsinghua Uni-
versity, and her M.S. and Ph.D. in Computer Science from New York University. Her research interests
focus on Natural Language Processing, especially on Multimedia Multilingual Information Extraction,
Knowledge Base Population and Knowledge-driven Generation. She was selected as Young Scientist
and a member of the Global Future Council on the Future of Computing by the World Economic Forum
in 2016 and 2017. The awards she received include AI’s 10 to Watch Award by IEEE Intelligent Sy-
stems in 2013, NSF CAREER award in 2009, Google Research Award in 2009 and 2014, IBM Watson
Faculty Award in 2012 and 2014, Bosch Research Award in 2014-2018, Best-of-ICDM2013 Paper, Best-
of-SDM2013 Paper, ACL2020 Best Demo Paper Award, and NAACL2021 Best Demo Paper Award. She
is elected as the North American Chapter of the Association for Computational Linguistics (NAACL) se-
cretary 2020-2021. She has served as the Program Committee Co-Chair of many conferences including
NAACL-HLT2018, and she has been the coordinator for the NIST TAC Knowledge Base Population
track since 2010.
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Robust Domain Adaptation for Pre-trained Multilingual Neural Machine
Translation Models

Mathieu Grosso, Pirashanth Ratnamogan, Alexis Mathey,
William Vanhuffel, Michael Fotso Fotso

BNP Paribas
(mathieu.grosso, pirashanth.ratnamogan, alexis.mathey, william.vanhuffel,michael.fotsofotso)@bnpparibas.com

Abstract

Recent literature has demonstrated the poten-
tial of multilingual Neural Machine Translation
(mNMT) models. However, the most efficient
models are not well suited to specialized indus-
tries. In these cases, internal data is scarce and
expensive to find in all language pairs. There-
fore, fine-tuning a mNMT model on a special-
ized domain is hard. In this context, we decided
to focus on a new task: Domain Adaptation of
a pre-trained mNMT model on a single pair
of language while trying to maintain model
quality on generic domain data for all language
pairs. The risk of loss on generic domain and
on other pairs is high. This task is key for
mNMT model adoption in the industry and is
at the border of many others. We propose a
fine-tuning procedure for the generic mNMT
that combines embeddings freezing and adver-
sarial loss. Our experiments demonstrated that
the procedure improves performances on spe-
cialized data with a minimal loss in initial per-
formances on generic domain for all languages
pairs, compared to a naive standard approach
(+10.0 BLEU score on specialized data, -0.01
to -0.5 BLEU on WMT and Tatoeba datasets
on the other pairs with M2M100).

1 Introduction

Building a NMT model supporting multiple lan-
guage pairs is an active and emerging area of re-
search (NLLB Team et al., 2022; Fan et al., 2020;
Tang et al., 2020). Multilingual NMT(mNMT) uses
a single model that supports translation in multiple
language pairs. Multilingual models have several
advantages over their bilingual counterparts (Ari-
vazhagan et al., 2019b). This modeling proves to
be both efficient and effective as it reduces the op-
erational cost (a single model is deployed for all
language pairs) and improves translation perfor-
mances, especially for low-resource languages.

All these advantages make mNMT models inter-
esting for real-world applications. However, they

Language
pair i*

mNMT model
pre-trained

Language
pair i**

mNMT model
Adapted

Language
pair 1*

Language
pair N*

*Generic data

** Specialized data

Figure 1: Domain Adaptation of a Pre-trained mNMT

are not suitable for specialized industries that re-
quire domain-specific translation. Training a model
from scratch or fine-tuning all the pairs of a pre-
trained mNMT model is almost impossible for most
companies as it requires access to a large number
of resources and specialized data. That said, fine-
tuning a single pair of a pre-trained mNMT model
in a specialized domain seems possible. Ideally
this domain adaptation could be learned while shar-
ing parameters from old ones, without suffering
from catastrophic forgetting (Mccloskey and Co-
hen, 1989). This is rarely the case. The risk of de-
grading performance on old pairs is high due to the
limited available data from the target domain and
to the extremely high complexity of the pre-trained
model. In our case, overfitting on fine-tuning
data means that the model might not even be
multilingual anymore

In this context, this article focuses on a new
real-world oriented task fine-tuning a pre-trained
mNMT model in a single pair of language on
a specific domain without losing initial perfor-
mances on the other pairs and generic data. Our
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research focuses on fine-tuning two state-of-the-art
pre-trained multilingual mNMT freely available:
M2M100 (Fan et al., 2020) and mBART50 (Tang
et al., 2020) which both provide high performing
BLEU scores and translate up to 100 languages.

We explored multiple approaches for this do-
main adaptation. Our experiments were made on
English to French data from medical domain1. This
paper shows that fine-tuning a pre-trained model
with initial layers freezing, for a few steps and
with a small learning rate is the best performing
approach.

It is organized as follows : firstly, we introduce
standard components of modern NMT, secondly
we describe related works, thirdly we present our
methods. We finally systematically study the im-
pact of some state-of-the-art fine-tuning methods
and present our results.

Our main contributions can be separated into 2
parts:

• Defining a new real-world oriented task that
focuses on domain adaptation and catas-
trophic forgetting on multilingual NMT mod-
els

• Defining a procedure that allows to finetune
a pre-trained generic model on a specific do-
main

2 Background

2.1 Neural Machine Translation
Neural Machine Translation (NMT) has become
the dominant field of machine translation. It studies
how to automatically translate from one language
to another using neural networks.

Most NMT systems are trained using Seq2Seq
architectures (Sutskever et al., 2014; Cho et al.,
2014) by maximizing the prediction of the target
sequence VT = (v1, . . . , vT ), given the source
sentence WS = (w1, . . . , wS):

P (v1, . . . , vT | w1, . . . , wS)

Today the best performing Seq2Seq architecture
for NMT is based on Transformers (Vaswani et al.,
2017) architecture. They are built on different lay-
ers among which the multi-head attention and the

1https://opus.nlpl.eu/EMEA-v3.php

feed-forward layer. These are applied sequentially
and are both followed by a residual connection
(He et al., 2015) and layer normalization (Ba et al.,
2016).
Although powerful, traditional NMT only trans-
lates from one language to another with a high com-
putational cost compared to its statistical predeces-
sor. It has been shown that a simple language token
can condition the network to translate a sentence
in any target language from any source language
(Johnson et al., 2017). It allows to create multi-
lingual models that can translate between multiple
languages. Using previous notation the multilin-
gual model adds the condition on target language
in the previous modeling

P (v1, . . . , vT | w1, . . . , wS , ℓ)

where ℓ is the target language.

2.2 Transfer Learning
Transfer learning is a key topic in Natural Language
Processing (Devlin et al., 2018; Liu et al., 2019).
It is based on the assumption that pre-training a
model on a large set of data in various tasks will
help initialize a network trained on another task
where data is scarce.

It is already a key area of research in NMT where
large set of generic data are freely available (news,
common crawl, ...). However, real-world applica-
tions require specialized models. In-domain data
is rare and more costly to gather for industries
(finance, legal, medical, ...) making specialized
models harder to train. It is even more true for
multilingual model.

In our work, we study how we can adapt a
mNMT model on a specific domain by fine-tuning
on only one language pair, without losing too much
generality for all language pairs.

3 Related works

3.1 Multilingual Neural Machine Translation
While initial research on NMT started with bilin-
gual translation systems (Sutskever et al., 2014;
Cho et al., 2014; Luong et al., 2015; Yang et al.,
2020), it has been shown that the NMT framework
is extendable to multilingual models (Dong et al.,
2015; Firat et al., 2016; Johnson et al., 2017; Dabre
et al., 2020) mNMT has seen a sharp increase in the
number of publications, since it is easily extendable
and it allows both end-to-end modeling and cross

2



lingual language representation (Conneau et al.,
2017; Linger and Hajaiej, 2020; Conneau et al.,
2019).

Competitive multilingual models have been re-
leased and open sourced. mBART (Liu et al.,
2019) first, was trained following the BART (Lewis
et al., 2019) objective before being finetuned on
an English-centric multilingual dataset (Tang et al.,
2020). M2M100 (Fan et al., 2020) scaled large
transformer layers (Vaswani et al., 2017) with a
lot of mined data in order to create a mNMT with-
out using English as pivot, that can perform trans-
lation between any pairs among 100 languages.
More recently, NLLB was released (NLLB Team
et al., 2022), extending the M2M100 framework to
200 languages. Those models are extremely com-
petitive as they have similar performance to their
bilingual counterpart while allowing a pooling of
training and resources.

Our experiments will rely on M2M100 and
mBART but it can be generalized to any new pre-
trained multilingual model (NLLB Team et al.,
2022).

3.2 Domain Adaptation
Domain Adaptation in the field of NMT is a key
real-world oriented task. It aims at maximizing
model performances on a certain in-domain data
distribution. Dominant approaches are based on
fine-tuning a generic model using either in-domain
data only or a mixture of out-of-domain and in-
domain data to reduce overfitting (Servan et al.,
2016a; Van Der Wees et al., 2017). Many works
have extended domain adaptation to multi-domain,
where model is finetuned on multiple and differ-
ent domains (Sajjad et al., 2017; Zeng et al., 2018;
Mghabbar and Ratnamogan, 2020).
However, to the best of our knowledge, our work is
the first exploring domain adaptation in the context
of recent pre-trained multilingual neural machine
translation systems, while focusing on keeping the
model performant in out-of-domain data in all lan-
guages.

3.3 Learning without forgetting
Training on a new task or new data without losing
past performances is a generic machine learning
task, named Learning without forgetting (Li and
Hoiem, 2016).

Limiting pre-trained weights updates using ei-
ther trust regions or adversarial loss is a recent
idea that has been used to improve training stability

in both natural language processing and computer
vision (Zhu et al., 2019; Jiang et al., 2020; Agha-
janyan et al., 2020). These methods haven’t been
explored in the context of NMT but are key assets
that demonstrated their capabilities on other NLP
tasks (Natural Language Inference in particular).
Our work will apply a combination of those meth-
ods to our task.

3.4 Zero Shot Translation

MNMT has shown the capability of direct trans-
lation between language pairs unseen in training:
a mNMT system can automatically translate be-
tween unseen pairs without any direct supervision,
as long as both source and target languages were
included in the training data (Johnson et al., 2017).
However, prior works (Johnson et al., 2017; Firat
et al., 2016; Arivazhagan et al., 2019a) showed
that the quality of zero-shot NMT significantly lags
behind pivot-based translation (Gu et al., 2019).
Based on these ideas, some paper (Liu et al., 2021)
have focused on training a mNMT model support-
ing the addition of new languages by relaxing the
correspondence between input tokens and encoder
representations, therefore improving its zero-shot
capacity. We were interested in using this method
as learning less specific input tokens during the
finetuning procedure could help our model not to
overfit the training pairs. Indeed, generalizing to
a new domain can be seen as a task that includes
generalizing to an unseen language.

4 Methods

Our new real-world oriented task being at the cross-
board of many existing task, we applied ideas from
current literature and tried to combine different
approaches to achieve the best results.

4.1 Hyperparameters search heuristics for
efficient fine-tuning

We seek to adapt generic multilingual model to a
specific task or domain. (Cettolo et al., 2014; Ser-
van et al., 2016b). Recent works in NMT (Domingo
et al., 2019) have proposed methods to adapt incre-
mentally a model to a specific domain. We con-
tinue the training of the generic model on specific
data, through several iterations (see Algorithm 1).
This post-training fine-tuning procedure is done
without dropping the previous learning states of
the multilingual model. The resulting model is
considered as adapted or specialized to a specific
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domain. We want to avoid the model to suffer
from forgetting on generic domain and pairs. To
this end, we include different methods in this fine-
tuning, that have been mentioned in the literature.
These methods includes in particular choosing a
small learning rate (Howard and Ruder, 2018), a
triangular learning schedule (Houlsby et al., 2019),
reducing the number of steps and freezing some of
the layers(Stickland and Murray, 2019).

4.2 Smoothness-inducing Adversarial
Regularizer

We seek to reduce the loss on generic domain and
other pairs. Indeed, due to limited data resources
from downstream tasks and the extremely large ca-
pacity of pre-trained models, aggressive fine-tuning
often causes the adapted model to overfit the data
of downstream tasks and forget the knowledge of
the pre-trained model. To this end, we added a
Smoothness-inducing Adversarial Regularization
(SMART) term during the fine-tuning (Jiang et al.,
2020). Models fine-tuned on GLUE task with
SMART approach outperform even the strongest
pre-trained baseline on all 8 tasks. Comparing with
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019), BERTSMART and RoBERTaSMART

are performing better by a big margin. This ap-
proach gives a smoothness-inducing property to
the model f . This is helpful to prevent overfitting
and to improve generalization on low resource tar-
get domain for a certain task. Therefore, adding
it to our task should avoid overfitting on the new
domain.

Given the model f(.; θ) and n data points of the
target task denoted by {(xi, yi)}ni=1, where xi’s de-
note the embeddings of the input sentences, given
by the first embedding layer of the language model
and yi’s are the associated labels, SMART is adding
a regularization term Rs(θ) to the canonical opti-
misation loss below:

min
θ

(F(θ)) = L(θ) + λsRs(θ) (1)

where L(θ) is the loss function defined as

L(θ) = 1

n

n∑

i=1

ℓ (f (xi; θ) , yi) (2)

and ℓ(·, ·) is the loss function depending on the
target task, λs > 0 is a tuning parameter, andRs(θ)
is the smoothness-inducing adversarial regularizer.

Here we defineRs(θ) as

Rs(θ) =
1

n

n∑

i=1

max
∥x̄i−xi∥p≤ϵ

ℓs (f (x̄i; θ) , f (xi; θ))

(3)
where ϵ > 0 is a tuning parameter. Since NMT

is a classification tasks, f(; θ) outputs a probability
simplex and ℓs is chosen as the symmetrized KL-
divergence, i.e.,

ℓs(P,Q) = DKL(P∥Q) +DKL(Q∥P )

4.3 Enabling the model to learn less
aggressive input tokens

We seek at reducing the loss of performances on the
pairs learned during the pre-training of the model.
A factor causing a too important language-specific
representation is the positional correspondence to
input tokens (Liu et al., 2021). Relaxing it should
help the model learn the new domain while not
focusing too much on the language representation.
Recent advances in mNMT showed that we can
reduce the positional correspondence learned from
the input tokens seen during training thanks to Po-
sitional Disentangling Encoder (PDE) (Liu et al.,
2021). PDE corresponds to removing some of
the residual connections of the model architecture.
PDE is reported to beat by +18.5 BLEU models
that do not use it on zero shot translation pairs
while retaining quality on supervised directions
(Liu et al., 2021). Doing this during the domain
adaptation fine-tuning helps to learn less specific
input tokens (since we train only from English
to French). Therefore, adapting this method to
our domain adaptation training is straightforward
and could bring gain in BLEU on language pairs
seen during pre-training while not sacrificing per-
formances on the new specific domain.

5 Experimental Settings

5.1 Pre-trained Generic Models used

We have worked with two pre-trained mNMT mod-
els: M2M100 and mBART50 large.

M2M100 is a multilingual encoder-decoder
model, based on large Transformer architecture
that can handle 100 languages. It was trained on a
non-English-centric dataset of 7.5B sentences from
generic domain, as such it is the first true many-to-
many NMT model. To ease the fine-tuning process
and due to hardware limitations, we worked with
the lightest version released (418M parameters).
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mBART50 is a multilingual encoder-decoder
model, based on training on an English-centric
dataset and on large Transformer architecture that
can handle 50 languages. It was trained following
the BART objective (Lewis et al., 2019). More
formally, the model aims to reconstruct a text that
has been previously noised.

We will compare the domain adaptation per-
formance between mBART50 which was trained
on English-centric data and M2M100 which was
trained on non English-centric data.

5.2 Datasets and preprocessing

In order to assess the effectiveness of our different
domain adaptation strategies, we focused on the
medical domain on the English to French using
data from the EMEA32 dataset (Tiedemann, 2012).
We used the same preprocessing as the original
publications (BPE joint-tokenization from senten-
cepiece). We split the dataset into a train and a
test dataset. We chose to use the first 5.000 sen-
tences for the testing set and 350.000 sentences
for the training set. For the evaluation data on the
generic domain, we used generic data from differ-
ent sources including WMT3 and Tatoeba4. For
the evaluation data on the medical domain, we also
used EMEA3 dataset in different languages.

5.3 Detailed Procedure

We first define a hyperparameters search heuristics
procedure. We chose a range of learning rate and
trained the model with these values. We set prior
threshold between the loss we accept on generic
data and the increase we target on medical data.
Then apply the procedure in algorithm 1. Having
done this, we kept best settings (best learning rate
and number of steps for given threshold), and tried
freezing first layers to reduce the loss on generic
domain. We define ϵ3, a threshold between loss on
medical domain and gain on generic domain. We
reproduce the same procedure and reports our best
results. This allows us to find the optimal model
θopt, representing the best compromise between
not losing performances on generic data and good
adaptation to the medical domain.

2https://opus.nlpl.eu/EMEA.php
3https://opus.nlpl.eu/WMT-News.php
4https://github.com/Helsinki-NLP/Tatoeba-Challenge

Algorithm 1 Hyperparameters search heuristic for
domain adaptation using simple fine-tuning Algo-
rithm
Input: T : the maximum number of steps; L

: the number of layers we have frozen; Lr:
the learning rate, ϵ1: the threshold for ∆1 :
the difference of BLEU between baseline and
adapted model on EN-FR generic domain data,
ϵ2 threshold for ∆2 : the mean difference of
BLEU between baseline and adapted model on
all other generic data, θ0 is the parameters of
the pretrained model, θopt: is the parameters
of the model that has optimal value of BLEU
on domain and generic.

1: T ← 100K
2: L← 1
3: for Lr = 3e− 5, 1e− 5, ..., 1e− 8 do
4: θs ← θ0
5: for s← 1 to T do
6: θs+1 ← AdamUpdate B (θs)
7: Every 2k steps, evaluate model on vali-

dation set and compute ∆1 and ∆2

8: if ∆1 ≤ ϵ1 ∪∆2 ≤ ϵ2 is true then
9: θopt ← θs

10: else
11: θopt ← θs
12: end For loop
13: end if
14: end for
15: end for
Output: θopt

M2M100 We trained M2M100 on the medical
EN-FR dataset. We used the adam optimizer
(β1 = 0.9, β2 = 0.98), label smoothing, a dropout
of 0.1 and a weight decay of 0. We applied our
hyperparameters search heuristic procedure 1 to
find the best model. We set ϵ1 = 2, ϵ2 = 1. On this
configuration, optimal results were reported with a
learning rate of 1e-07, freezing the embeddings at
the encoder level, and 60K steps.
mBART50 We trained mBART50 large on the
medical EN-FR dataset. We used the adam
optimizer (β1 = 0.9, β2 = 0.98), label smoothing,
a dropout of 0.3 and a weight decay of 0. Again,
we applied our hyperparameters search heuristic
procedure to find the best model 1. We had to
increase the value of ϵ1, ϵ2 since mBART50 tends
to forget the generic domain quicker than M2M100.
We set ϵ1 = 4, ϵ2 = 3. On this configuration,
optimal results were reported with a learning rate
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of 6e− 07, freezing the embeddings at the encoder
level and 10K steps.

SMART: We finetuned the model with the SMART
procedure and continue hyperparameters search as
in algorithm 1. In Algorithm 2, we note Rs(θ) =
1
|B|

∑
xi∈B max∥x̄i−xi∥p≤ϵ ℓs (f (x̄i; θ) , f (xi; θ))

and AdamUpdate the ADAM update rule for
optimizing equation 1 using the mini-batch B.
Lastly, we set Tx̃ = 1. For the perturbation, we set
ϵ = 10−5 and σ = 10−5. The learning rate η is set
to 10−3.

Algorithm 2 Adding SMART to procedure

Input: T : the total number of iterations; X : the
dataset; θ0: the parameter of the pre-trained
model; σ2: the variance of the random initial-
ization for x̄i ’s; Tx̃: the number of iterations
for updating x̄i ’s; η: the learning rate for up-
dating x̄i ’s; β: clipping value.

1: θ1 ← θ0
2: for t← 1 to T do
3: θ̄s ← θt
4: Sample a mini-batch B from X
5: For all xi ∈ B, initialize x̄i ← xi+vi with

vi ∼ N
(
0, σ2I

)

6: for m = 1, ..., Tx̃ do
7: x̄i ← x̄i + ηRs(θ̄s)
8: end for
9: θ̄s+1 ← AdamUpdateB

(
θ̄s
)

10: θt+1 ← CLIP (θ̄s+1, 1− β, 1 + β)
11: end for
Output: θT

PDE Finally, we define PDE. It consists in ap-
plying Algorithm 1 and then removing first all the
residual connection in the penultimate Encoder lay-
ers (Chen et al., 2022), then we try removing only
the attention layer residual connections (figure 2).

Multi-Head
Attention

Multi-Head
Attention

Add & Norm

Add & Norm

Multi-Head
Attention

Multi-Head
Attention

Add & Norm

Add & Norm

Figure 2: PDE Illustration: Removing Residual Connec-
tions on encoder block

6 Results and Analysis

6.1 Hyperparameters search heuristic

6.1.1 Main Results

M2M100 As shown in table 1 we reached more
than 9.00 increase of BLEU score on the medical
dataset without sacrificing performance on generic
domain, the loss is not important on most of the
pairs (between 0.01 and 0.2). In figure 3, we see
that the mean results is rather stable and that the
BLEU on generic English to French data does not
decrease a lot (around -1.5 BLEU). The model
converges after 60K steps so we stop training.

mBART50 Again we reach more than 9.00
BLEU increase (Figure 4). We observe that af-
ter 50K steps mBART50 starts converging around
40.00 BLEU, yet we decided to stop domain adap-
tation training sooner than with M2M100 as a trade-
off between good performance on the EN-FR med-
ical domain and loss of performance on the generic
domain. Globally, we achieved better results with
M2M100 than mBART50.

Figure 3: Domain Adaptation (Medical Domain EN-
FR) of M2M100
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Figure 4: Domain Adaptation (Medical Domain EN-
FR) of mBART50

6.1.2 Catastrophic forgetting with a big
learning rate

We tested several learning rate values and we report
here our results with a bigger learning rate (3e−5).
For both models, it led to a catastrophic forgetting
on the non-finetuned pairs along with a huge per-
formance increase on the EN-FR Medical dataset,
reaching a higher BLEU on the Medical dataset.
We decided to focus on a smaller learning rate as a
trade-off between loss on generic domain and gain
on the medical domain.

Figure 5: Domain Adaptation of M2M100 with big
Learning Rate

6.2 SMART

We have reported our fine-tuning results for
M2M100 and mBART50 with SMART in Table 1.

Our goal with SMART was to reach a higher
BLEU score on the generic domain data without
sacrificing performances on the medical dataset. In
Table 1, we note a good increase in BLEU score.
Moreover, we have noted that the BLEU change
less when moving learning rate in a reasonable

Figure 6: Adding SMART to M2M100 Domain Adap-
tation training

range compared to the other methods that are ex-
tremely sensitive to hyperparameters. In this con-
text, SMART is useful in order to achieve quick
adaptation of a mNMT model to a new domain.
It makes domain adaptation procedure more
consistent. Therefore, SMART training proce-
dure allows efficient and robust domain adaptation.
However if exploring a large scale of hyper param-
eters if feasible simple fine-tuning procedure like
in Algorithm 1 can provide better results as shown
in Table 1.

6.3 PDE
We seek at reducing the loss of performances on the
pairs learned during pre-training of the model (and
that are not used during the post-training domain
adaptation). Relaxing the correspondence to the
input tokens learned during Domain Adaptation.
Fine-tuning was supposed to help learning less spe-
cific input tokens and therefore the model would
be less likely to forgot all the pretrained pairs. As
expected, the model learned less aggressive input
tokens and do not overfit on English input tokens.
However, in practice this does not seem to work
well. Indeed, the model is also likelier to forget the
pretrained input tokens making this method unfit
to our procedure. Using PDE a posteriori (during
fine-tuning) seems to be inefficient, since the model
is performing worse on all pairs and not only on
the English pairs.

We report our results in table 1.

6.4 Analysis
6.4.1 Zero-shot Domain Adaptation on other

pairs
We challenged the approach on domain adaptation
on languages unseen during the post-training on the
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Table 1: Global results on domain adaptation of M2M100 and mBART50

M2M100 mBART50
Baseline Finetuned Finetuned SMART Finetuned PDE Baseline Finetuned Finetuned SMART Finetuned PDE

EN-FR medical data 26.94 36.05 35.93 29.71 23.99 33.87 30.3 26.12
EN-FR (WMT) 28.63 26.90 26.41 25.01 31.25 27.10 26.10 17.56

Mean results 24.97 25.38 25.15 21.70 19.83 16.85 15.1 13.63

DE-EN (WMT) 22.42 22.53 22.39 21.15 26.13 21.85 20.64 19.44
EN-DE (WMT) 19.48 19.52 19.21 17.96 22.72 19.84 18.61 16.83
RU-EN (WMT) 26.3 26.27 25.4 24.90 29.72 24.64 23.55 22.47
FR-DE (WMT) 17.82 17.80 17.58 14.69 10.92 8.98 7.1 4.30
EN-FI (WMT) 12.51 12.72 12.51 11.74 13.39 11.23 10.27 9.74
FI-EN (WMT) 23.55 23.18 23.39 21.40 22.10 18.90 17.75 16.33

BG-IT (Tatoeba) 26.65 27.54 27.01 26.20 * * * *
DA-TR (Tatoeba) 20.22 22.27 21.75 20.23 * * * *
PL-RU (Tatoeba) 33.79 33.72 33.68 29.69 14.45 10.49 10.34 9.87
PT-ES (Tatoeba) 51.49 51.98 52.54 50.34 21.57 18.87 16.80 12.54
JA-ES (Tatoeba) 20.55 21.66 21.58 20.30 17.55 15.42 13.27 11.12

medical domain using EMEA3 dataset available on
other languages. Table 2 shows that for M2M100
all BLEU scores are increasing, moreover the pairs
that implies either English or French are particu-
larly benefiting from this domain adaptation. On
mBART50, we also note improvements, first the
loss is less important than on generic dataset for the
pairs that do not include French as output showing
that the model is learning a bit. When French is
the output, the domain adaptation is working really
fine and we see improvements. Domain-specific
data are often hard to gather, especially for low-
ressource pairs. That’s why being able to improve
the performances on a new domain for several pairs
using a domain-specific dataset from a single pair
is a very interesting propriety from the mNMT
models.

M2M100 mBART50
Baseline Ours Baseline Ours

EN-FI medical 12.93 14.83 10.83 10.1
DE-PL medical 12.62 13.6 11.1 7.85
FR-IT medical 23.07 24.62 10.77 8.58
EN-ES medical 32.38 35.15 15.82 17.5
ES-IT medical 25.43 27.06 8.40 7.50
ES-FR medical 24.37 30.64 19.03 25.6
LT-PL medical 12.49 13.8 8.5 7.9
DE-FR medical 18.85 22.20 13.3 18.19
LT-PT medical 17.44 19.26 * *

Table 2: Zero shot domain adaptation on medical dataset
for other pairs

6.4.2 Comparison of initial pre-trained
mNMT models (mBART 50 vs M2M100)

We investigated why mBART50 was more likely to
forget other pairs compared to M2M100. First, we
have worked with the 418M-parameters version of
M2M100. This is not the largest M2M100 version

released (and certainly not the most optimized) and
this could possibly explain the differences. Then,
another hypothesis is the different dataset used dur-
ing training of both models. Indeed, mBART50
is trained on English-centric data, and M2M100
is not. Non-English centric models are known to
achieve higher BLEU especially on low resource
data (Fan et al., 2020). Extending this study to
domain adaptation, we believe non-English-centric
models might be more robust to domain adaptation.
We noted that when fine-tuning mBART50 with a
bigger learning rate, the first pairs to be forgotten
are the non-English ones. Testing this hypothesis
on NLLB might be useful.

7 Conclusion and Discussion

In this paper, we propose a study of robust domain
adaptation approaches on mNMT models where in-
domain data is available only for a single language
pair. Best performing approach combines embed-
ding freezing and simple fine-tuning with good hy-
perparameters. This approach shows good improve-
ments with few in-domain data on all language
pairs. The framework effectively avoids overfit-
ting and aggressive forgetting on out-of-domain
generic data while quickly adapting to in-domain
data. We demonstrate that this could be a solution
for incremental adaptation of mNMT models. Fi-
nally our work is a call for more research in domain
adaptation for multilingual models as it is key for
real-world applications.

8 Limitations

This study was limited by hardware issues. We did
not have the possibility to fine-tune on M2M100
large version (12B parameters) that requires 64 GB
of VRAM.
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Testing our results with a larger version of
M2M100 might be interesting.

Also, our study focused on two pre-trained mul-
tilingual neural machine translation models. How-
ever, many others exist and will be released (NLLB
Team et al., 2022). We think that our work is
generic enough to be applied on other pre-trained
models but extensive experiments on these new
models should be carried out.

Finally, the work has been realised on English
to French data. We showed domain adaptation is
possible for languages with English morphology
and tested the impact of this training on many dif-
ferent languages morphology (Japanese, English,
Russian, ...). Applying domain adaptation train-
ing on other morphology languages and on other
domains is also an area to investigate.

9 Ethics Statement

The dataset was gathered on OPUS and is largely
open-sourced. It was released by (Tiedemann,
2012) and we have downloaded it from OPUS web-
site. We have reviewed the dataset and have not
noted any issue with these data. They are very spe-
cific to health domain and therefore are not inappro-
priate. The dataset does not deal with demographic
or identity characteristics.

Moreover, these experiments were made using
only 2 GPUs and training were relatively short.
Given the urgency of addressing climate change,
we believe our domain adaptation procedure could
help have high-performing mNMT models at small
carbon and energy costs. Moreover, SMART frame-
work allows for quicker research of the right hy-
perparameters, therefore reducing even further the
number of experiments and the carbon costs of our
method.
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Abstract

Encoding both language-specific and language-
agnostic information into a single high-
dimensional space is a common practice of
pre-trained Multi-lingual Language Models
(pMLM). Such encoding has been shown to
perform effectively on natural language tasks
requiring semantics of the whole sentence (e.g.,
translation). However, its effectiveness appears
to be limited on tasks requiring partial informa-
tion of the utterance (e.g., multi-lingual entity
retrieval, template retrieval, and semantic align-
ment). In this work, a novel Fine-grained Mul-
tilingual Disentangled Autoencoder (FMDA)
is proposed to disentangle fine-grained seman-
tic information from language-specific infor-
mation in a multi-lingual setting. FMDA is
capable of successfully extracting the disentan-
gled template semantic and residual semantic
representations. Experiments conducted on the
MASSIVE dataset demonstrate that the disen-
tangled encoding can boost each other during
the training, thus consistently outperforming
the original pMLM and the strong language
disentanglement baseline on monolingual tem-
plate retrieval and cross-lingual semantic re-
trieval tasks across multiple languages.

1 Introduction

Pre-trained multilingual language models such as
multilingual BERT (mBERT) (Devlin et al., 2019)
and XLM-RoBERTa (XLM-R) (Conneau et al.,
2020) have been extensively explored and used
in academia and industry. These models encode
both language-specific information (e.g., grammar,
tense, syntax) and language-agnostic information
(e.g., semantic, entity, sentiment) into one high-
dimensional embedding. However, it has been
demonstrated that such encoders perform poorly in
some tasks due to a lack of capacity to disentan-
gle fine-grained language-agnostic and language-

∗*This work is finished during the internship at Amazon
Alexa AI

specific information. (Tiyajamorn et al., 2021; Wi-
eting et al., 2020; Roy et al., 2020; Ahuja et al.,
2020; Lin et al., 2021; Asai et al., 2020).

Table 1 presents several application examples
where disentangled language-specific or language-
agnostic encoder might have better performance.
The first example is cross-lingual retrieval, in
which a English utterance with the same language-
agnostic semantic can be retrieved by a German
utterance. Note the semantics in both template and
slot can be maintained. The second example is a
template retrieval, in which "do you show me do-
ing" can be replaced by another similar meaning
template "can you show me how to do" while the
slot value changes. The third example is paraphrase
retrieval, in which the target utterance keeps slot
text but rephrases the template part. Although the
applications shown above are retrieval tasks but all
of them can be used in query reformulation (Pon-
nusamy et al., 2020, 2022) and data augmentation
(Xu et al., 2021; Kale and Rastogi, 2020; Liu et al.,
2021; Gao et al., 2022). For instance, the source
utterance "do you show me doing [exercise: back-
flip]" is a defective sentence with grammar error,
and the disentangled encoder is able to retrieve
a similar meaning but grammar correct utterance
by ignoring the uncommon slot value "backflip".1

The tasks of cross-lingual retrieval and paraphrase
retrieval both are commonly used for data augmen-
tation, especially for languages with data scarcity.

In this work, we proposed a lightweight encod-
ing architecture called Fine-grained Multilingual
Disentangled Autoencoder (FMDA) that can dis-
entangle semantic representations at different as-
pects. The training of proposed encoder adopts
reconstruction loss and contrastive learning. The
contributions of our proposal are as follows:

1For this example, the golden reformulation for the defec-
tive query would be "can you show me how to do backflip".
However, directly performing utterance-level retrieval may
fail to find the golden reformulation because of data scarcity.
Therefore, template-level retrieval is useful here.
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Application Tasks Utterances Language Semantic Template Slot
cross-lingual retrieval source: wecke mich um [time: fünf uhr] auf different same same/similar same

target: wake me up at [time: five am]
template retrieval source: do you show me doing [exercise: backflip] same related same/similar different

target: can you show me how to do [exercise: yoga]
paraphrase retrieval source: what can be seen inside [object: the basket] same same different same

target: what does [object: the basket] mainly contain

Table 1: Applications of Disentangled Semantic

1. The FMDA is able to extract embedding of:

• language agnostic template representation that
contains the semantic information related to
the sentence backbone. E.g., in the sentence
"Can you play the music Green Light", the
template representation aims at encoding the
semantic of the "Can you play the music []";

• language agnostic meaning representation
which contains both template semantic and
residual semantic (e.g., slot name "Green
Light") information;

• language-specific non-semantic representa-
tion that contains unique language facts;

Visualizations of these fine-grained embedding
representations are shown in Figure 4 in Section
4.5.

2. The FMDA designs multiple contrastive learn-
ing objectives to improve the performance of the
disentanglement learning.

3. Compared with the original pMLM and
a language-disentanglement SOTA (Tiyajamorn
et al., 2021), FMDA achieves significant improve-
ment on both monolingual template retrieval and
cross-lingual meaning retrieval tasks, evaluated on
the benchmark MASSIVE (FitzGerald et al., 2022).

4. An ablation study further proves the effec-
tiveness of our model, and a two-stage training
experiment has been conducted to further study the
effect of the fine-grained semantic.

2 Related Work

Multilingual sentence encoders are widely stud-
ied and applied to downstream tasks in recent
years. Self-attention networks based multilingual
sentence encoders, such as mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020), are pre-
trained on multilingual corpora in over 100 lan-
guages. LaBSE (Feng et al., 2022) encodes text
to multilingual sentence embedding by training
with 100 million sentence pairs in bilingual cor-
pora of 109+ languages. Libovický et al. (2020)

proposes a centered embedding method that sub-
tracts the mean embedding for each language from
the sentence embedding, as well as a projection
embedding method that projects bilingual using
a parallel corpus. MUSE (Chidambaram et al.,
2018; Yang et al., 2019) applies a translation based
ranking task to one-billion weblab QA pairs to
obtain a multilingual universal encoder. Multi-
lingual SBERT (Reimers and Gurevych, 2020) ex-
tends pre-trained monolingual SBERT (Reimers
and Gurevych, 2019) to the multi-lingual version
by mapping translations and original utterances
into the same space.

Beyond atomic encoding, some research also
focus on disentangling language specific and
language-agnostic embeddings. (Chen et al., 2019)
learns to disentangle language syntax and seman-
tic information by using aligned paraphrase data
to train semantic and use word-order information
to train syntax. BGT (Wieting et al., 2019) uti-
lizes a deep variational probabilistic model to-
gether with transformers to learn better seman-
tic embeddings in a bi-lingual setting by exclud-
ing language-specific information from the in-
formation shared across languages. Tiyajamorn
et al. (2021) proposes a method for distilling
language-agnostic meaning embeddings by remov-
ing language-specific information from sentence
embeddings generated by off-the-shelf multilingual
sentence encoders. Although these works extract
both language-specific and language-agnostic em-
beddings, they are hard to support fine-grained se-
mantic disentanglement.

Based on the work of Tiyajamorn et al. (2021),
we further extend the semantic extraction to a fine-
grained level. Specifically, our proposed method
FMDA is able to extract not only the semantic
information of the whole utterance but also part of
it, i.e. template/carrier phrase semantic information
by learning to disentangle language information at
different levels.
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(a) Model Overview (b) Reconstruct Objective

(c) Contrastive Objective

Figure 1: The Overview of our model. (a) The FMDA outputs language-specific non-semantic embedding (emblang),
the template semantic embedding (embtp), and the residual-semantic embedding (embrs). Three objectives are
applied to train the FMDA: language identification, reconstruction, and contrastive learning. (b) The embtp, embrs,
and emblang1 are used to reconstruct the original pMLM’s utterance embedding; the emblang1 together with The
embtp or embrs are used for template embedding or residual-semantic embedding reconstruction, respectively; the
emblang2 from the utterance in another language but with same meaning can be used with embtp and embrs for
the cross-lingual reconstruction; (c) Contrastive learning objectives are applied to both embtp and embm (obtained
from both embtp and embrs).

3 Method

This section describes the details of our pro-
posed Fine-grained Multilingual Disentangled Au-
toencoder (FMDA). Figure 1(a) demonstrates the
overview of the method. FMDA is trained to extract
language-specific non-semantic embedding, tem-
plate semantic embedding, and residual-semantic
embedding from a pMLM with three objectives:
language identification, embedding reconstruction,
and contrastive learning. Figure 1(b) presents the
objectives of the embedding reconstruction. Figure
1(c) shows the detailed contrastive learining design,
in which FMDA tries to minimize embedding dif-
ference between two paired utterances in different
languages and maximize the embedding difference

between two non-related utterances in the same
language. Each training step takes four utterances
as inputs: utterance in language 1, utterance with
same-semantic in language 2, and negative utter-
ances with different semantic in language 1 and
2.

3.1 Fine-grained Model Details

Figure 2 demonstrates the detail of our proposed
fine-grained model. Given an utterance, a pMLM
is first utilized to extract the utterance embedding
embutt ∈ RL×D, where L represents the utterance
length and D represents the embedding dimension.
Note that the pMLM’s parameters are frozen and
the embutt will remain unchanged during the train-
ing and inference. So that the original informa-
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Figure 2: The details of the FMDA. (a) given
the utterance embedding embutt obtained from the
pMLM, a MLP layer is first applied to the [CLS]
token embedding to generate the emblang; four
FFN layers are applied to the embutt to generate
the template value-embedding (V aluetp), template
query-embedding (Querytp), template key-embedding
(Keytp), and the residual-semantic value-embedding
(V aluers). The Querytp and Keytp are first used to
generate the attention-probability Attn−Prob for tem-
plate, therefore the final template embedding can be
generated using V aluerp and Attn − Prob. Besides,
the 1 − Attn − Prob is also calculated to represent
the residual-semantic attention, which can then be used
with the V aluers to generate the final embrs.

Figure 3: Overview of how to generate the template and
residual-semantic reconstruction target embeddings.

tion encoded by the pMLM will be reserved and
our method can be lightweight to extract the em-
beddings of interest. Next, FeedForward-Network
(FFN) layers are applied to the embutt to extract
three different embeddings:

Language-Specific Non-semantic Embedding
The [CLS] token embedding (embcls ∈ R1×D) of
the embutt is extracted and input to a Multi-Layer-
Perceptron (MLP) to obtain the language-specific
non-semantic embedding emblang ∈ R1×D.

Language-agnostic Template Semantic em-
bedding In order to encode the semantic in-
formation more effectively, an attention-based
method is applied to the embutt. Specifi-

cally, three different FFN layers are applied
to the embutt to extract the template value
embeddings (embvalue−tp ∈ RL×D), template
query-embeddings (embquery−tp ∈ RL×D), and
the template key-embeddings (embkey−tp ∈
RL×D). The template attention-probability Attn-
prob ∈ L× L can then be calculated as
Softmax(embquery−tp ·embTkey−tp). The calculated
Attn-prob is thereby used with the template value
embeddings (embvalue−tp) to obtain the attention
based template embeddings sequence embtp−seq ∈
RL×D): embtp−seq = Attn-prob · embvalue−tp.

Finally, the [CLS] token position of the
embtp−seq is extracted as the final template seman-
tic embedding embtp ∈ R1×D.

Language-agnostic residual-semantic embed-
ding FMDA leverages the Attn-prob learned
from the generation of template embedding to gen-
erate the embedding for residual semantic. The
motivation is to disentangle the template semantic
and residual-semantic as much as possible, i.e., the
information that template does not pay attention
to should be used more to generate the residual-
semantic embedding.

Therefore, given the template Attn-prob learned
above, we first calculate its opposite (1 - Attn-
prob) to obtain the residual-semantic Attn-prob ∈
RL×L: RS Attn-prob = softmax(1 − Attn-prob).
Then, the residual-semantic embedding sequence
embrs ∈ R1×D can be obtained.

3.2 Language Identification Objective

To ensure that the extracted language-specific
embedding emblang contains correct language
information, following the idea in Tiyajamorn
et al. (2021), the emblang is used for a language-
identification objective. Specifically, the emblang
will be input to a MLP layer to achieve the language
prediction P , which is used with the true language
label L to calculate the language-identification loss
Losslang = CrossEntropy(P,L).

At each training step, the Losslang is calculated
for both of the utterance in language 1 and the
utterance with same semantic in language 2.

3.3 Reconstruction Objective

Utterance Embedding Reconstruction As
shown in Figure 1(b), for the utterance in
language 1 and its embutt obtained from the
pMLM, the emblang1, embtp, embrs learned
from FMDA are expected to not lose any in-
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formation in the original embutt. Therefore,
emblang1, embtp, embrs are used to reconstruct
the embutt. MSE (mean-squared-error) is used
as the loss function, thus the Lossutt−l1

rec for
the utterance in language 1 can be defined as
Lossutt−l1

rec = MSE(MLP (emblang1 + embtp +
embrs), embutt)

Similarly, the Lossutt−l2
rec is also calculated for

the utterance with same semantic in language 2.

Template Embedding Reconstruction The
emblang and embtp are used to reconstruct the tem-
plate target embedding embTgt

tp ∈ R1×D.
Figure 3 demonstrates how to obtain the target

template embedding embTgt−L1
tp together with the

residual-semantic target embedding embTgt−L1
tp for

the utterance in language 1. Specifically, given an
utterance with token labels indicating if a token
belongs to the template or slots, the original utter-
ance is then masked according to the labels and
input to the pMLM to obtain the [CLS] position’s
embeddings as the template target embedding and
residual-semantic target embedding.

Both emblang and embtp are used to reconstruct
the embTgt

tp as embtp should contain language-
agnostic template-semantic only, while the tem-
plate target embTgt

tp contains some language-
specific information obtained from the pMLM.

In order to calculate the loss, the sum of the
embtp and emblang1 is obtained as embtpL1 ∈
R1×D, which is then used to reconstruct the
embTgt−L1

tp . Therefore, the LosscpL1rec can be de-
fined as:

LosstpL1rec = MSE(embtpL1, embTgt−L1
tp ) (1)

Besides, the embtp is also combined with
emblang2, which is obtained from the utterance
with the same semantic but in language 2, to build
the to embtpL1−CL to reconstruct the template tar-
get embedding in language2 (embTgt−L2

tp ). This ob-
jective further guarantees that the embtp contains
language-agnostic template semantic information.
The cross-lingual template loss LosstpL1−CL

rec can
then be defined as:

LosstpL1−CL
rec = MSE(embtpL1−CL, embTgt−L2

tp )

(2)

The same process is also applied to the utterance
with the same semantic in language 2, to calculate
the LosstpL2rec and LosstpL2−CL

rec .

Residual-semantic Embedding Reconstruction
Similar reconstruction objectives are applied to the
residual-semantic. After obtaining the residual-
semantic target embedding embTgt

rs as illustrated in
Figure 3, the LossrsL1rec and LossrsL1−CL

rec can be
calculated for the utterance in language 1 with the
same process in the template reconstruction.

Similarly, the functions LossrsL2rec and
LossrsL2−CL

rec are calculated for the utterance with
the same semantic in language 2.

3.4 Contrastive Objective
Figure 1 (c) demonstrates the idea of the contrastive
learning objective. The contranstive learning is ap-
plied to both of the template semantic embeddings
and the utterance-level semantic (meaning) embed-
dings. For the utterances with the same semantic in
different languages, their template semantic embed-
dings and meaning embeddings should be similar;
for the utterances in the same language but with
different semantics, their template semantic embed-
dings and meaning embeddings should be different.

Given the inputs as the followings: utterance in
language 1, utterance with same-semantic in lan-
guage 2, and negative utterances with different se-
mantic in language 1 and 2, the contrastive loss for
the template semantic Losstpcon can be calculated
as:

Losscpcon =− Cos-sim(embL1tp , embL2tp )

+ Cos-sim(embL1tp , embL1neg−tp)

+ Cos-sim(embL2tp , embL2neg−tp)

(3)

where embL1tp and embL2tp come from the utter-
ances with the same semantic but in language 1 and
2; embL1neg−tp and embL2neg−tp denote the template
semantic embeddings of negative utterances that
with different semantic in language 1 and 2.

To conduct the contrastive learning for the mean-
ing embedding, a MLP is first used to generate the
meaning embedding embm ∈ R1×D using the sum
of embtp and embrs. Then the contrastive loss for
the meaning Lossmcon can be calculated as:

Lossmcon =− Cos-sim(embL1m , embL2m )

+ Cos-sim(embL1m , embL1neg−m)

+ Cos-sim(embL2m , embL2neg−m)

(4)

Similarly, embL1m and embL2m represent the
utterance-level semantic meaning of the utterances
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with the same semantic but from language 1 and 2;
embL1neg−m and embL2neg−m denote the meaning em-
beddings from negative utterances that with differ-
ent semantic from language 1 and 2, respectively.

3.5 Total Training Objective
During the training stage, all of the objectives’ loss
functions will be optimized together. Therefore,
the total loss can be written as:

Losstotal = LossL1lang + LossL2lang

+ Lossutt−L1
rec + Lossutt−L2

rec

+ LosstpL1rec + LosstpL2rec

+ LosstpL1−CL
rec + LosstpL2−CL

rec

+ LossrsL1rec + LossrsL2rec

+ LossrsL1−CL
rec + LossrsL2−CL

rec

+ Losstpcon + Lossmcon

(5)

4 Experiments

This section describes the experiments conducted
on various language pairs using the multilingual
natural language understanding dataset MASSIVE
(FitzGerald et al., 2022). To evaluate the proposed
FMDA, two retrieval tasks introduced in Table 1 are
used: (1) cross-lingual semantic retrieval, where
the goal is to find the best semantically matching
utterance pairs from two languages; and (2) mono-
linugal template retrieval, where the goal is to find
utterances with different slot values but similar tem-
plate in one language.

4.1 Dataset
Both training and evaluation of our experiment
were conducted using the MASSIVE dataset
(FitzGerald et al., 2022), which is a cross-lingual
corpus that contains virtual assistant utterances
across 51 languages. Domains, intents, and slots
have been labeled for each utterance.

We chose four languages from MASSIVE -
English (EN), German (DE), Spanish (ES) and
Japanese (JA) - to form three language pairs (EN-
DE, EN-ES, EN-JA) to conduct the experiment.
Such selection covers both languages that are sim-
ilar (e.g. EN-DE) and languages that belongs to
distant families (e.g. EN-JA). Our training and
evaluation sets were prepared by pre-processing on
MASSIVE’s train split (containing 11k utterances
in each language) and test split (containing 2974
utterances in each language), respectively.

4.2 Setup

XLM-R (base) (Conneau et al., 2020) is used as
the backbone encoder to train our proposed FMDA
model on three language pairs: EN-DE, EN-ES
and EN-JA. As described in Section 3, each train-
ing step takes four utterances as inputs: a pair of
parallel utterances from language 1 and language
2, and negative utterances with different semantic
in language 1 and 2. The following is an example
of the training data for EN-DE language pair:

utt_en: Wake me up at nine am on Friday.
utt_de: Weck mich am freitag um neun uhr auf.
neg_utt_en: Quiet.
neg_utt_de: Zeit zu schlafen. (Time to sleep.)
The parallel utterances are directly from the

MASSIVE dataset. Negative utterances, on the
other hand, are sampled from negative utterance
pools. We built a negative utterance pool for each
language from the whole training set. For each
utterance in the training set, we calculated BLEU
scores between it and all other utterances in the
same language. We add an utterance into the nega-
tive pool if its scores are all smaller than 0.1, which
guarantees that utterances in the pool are dissimilar
from all other utterances in the training set except
itself.

During training, the weights of XLM-R were
frozen and only the layers in the FMDA were fine-
tuned. The development set from MASSIVE was
used to determine the best stop point of training.
The other hyperparameters were similar with those
used in Tiyajamorn et al., 2021.

To evaluate the output embeddings of our FMDA
model, we performed two retrieval tasks as de-
scribed in Section 4.3.1 and 4.3.2, and com-
pared our results with (a) XLM-R’s original
[CLS] embedding, and (b) the SOTA language-
disentanglement model (Tiyajamorn et al., 2021)
trained with our data.

4.3 Results

4.3.1 Cross-lingual Semantic Retrieval Task
We used MASSIVE’s test split (containing 2974
sets of parallel utterances) to conduct cross-lingual
semantic retrieval evaluation. Given one utterance
(query) in the source language, we expect to locate
its exact translation from the 2974 candidates in
the target language. This was done by calculating
cosine similarity between each query and all candi-
dates in the embedding space as the ranking score.
The retrieval performance was measure by accu-
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Model Embedding EN-DE DE-EN EN-ES ES-EN EN-JA JA-EN
XLM-R cls 0.182 0.203 0.194 0.198 0.050 0.037
Tiyajamorn et al. (2021) meaning 0.550 0.575 0.583 0.602 0.364 0.359

meaning 0.594 0.605 0.645 0.650 0.400 0.380
Our model Template(TP) 0.583 0.589 0.630 0.643 0.388 0.371

Residual(RS) 0.283 0.268 0.369 0.321 0.070 0.075

Table 2: Results of cross-lingual semantic retrieval. X-Y in the column headers represents the language pairs for
evaluation, where X is the source language and Y is the target language. The training language pair is the same as
the corresponding evluation language pair for each column. The retrieval performance is measured by accuracy@1.

Model Embedding ENEN_DE ENEN_ES ENEN_JA DE ES JA
XLM-R cls 0.371 0.371 0.371 0.351 0.427 0.120
Tiyajamorn et al. (2021) meaning 0.393 0.392 0.299 0.381 0.434 0.267

meaning 0.427 0.437 0.356 0.387 0.441 0.314
Our model TP 0.427 0.439 0.441 0.396 0.436 0.340

RS 0.330 0.348 0.241 0.354 0.420 0.094

Table 3: Results of mono-lingual template retrieval. Column headers show the training and evaluation languages.
For example, ENEN_DE means the model is trained on EN-DE language pair and evaluated on EN. For language X
other than EN, the training language pair is EN-X. The retrieval performance is measured by accuracy@1.

racy@1, i.e. the fraction that the top-1 retrieval
matches the target.

Table 2 shows the cross-lingual retrieval result
of different models and embeddings. The first
row shows the performance of XLM-R’s original
[CLS] embedding, and the second row shows the
performance of the language-agnostic meaning em-
bedding by training the network from Tiyajamorn
et al., 2021. The meaning embedding from our
FMDA model constantly outperforms both base-
lines. Diving deeper, we notice that the meaning
embedding from Tiyajamorn et al., 2021 may re-
trieve an utterance with related semantic but of
different template and slots; whereas our meaning
embedding, which is reconstructed using the fine-
grained components, is able to capture the exact
translation (as demonstrated by the case in Table
7 of Appendix). The ablation study in Section 4.4
also proves the importance of the fine-grained re-
construction for cross-lingual retrieval.

Comparing the three embedding representations
of our model, we find the meaning embedding out-
performs the template embedding (TP) as expected,
since the former contains more semantic informa-
tion than the latter (as shown by the case in Table 8
in Appendix). Residual-semantic embedding (RS)
in the bottom row has the worst performance be-
cause it encodes the least semantic information.

We also notice the differences between language
pairs when comparing the columns in Table 2. All
embeddings perform much worse on EN-JA than

EN-DE/ES, because Japanese belongs to a lan-
guage family distant from the others. We will fur-
ther discuss this in Appendix C.

4.3.2 Mono-lingual Template Retrieval Task
To validate the capacity of our model for extract-
ing the carrier phrase/template information from an
utterance, we further carried out the mono-lingual
template retrieval as the second evaluation task.
The evaluation pairs were generated from MAS-
SIVE’s test split by manually replacing the slot
value of utterances, such that the source and target
utterances are from the same language, share the
same template, but differs in their slot values (for
utterances without a slot labelled, we just discarded
them). This pre-processing resulted in about 1.9k
evaluation pairs for each language. The following
is one of the evaluation pair from EN:

source_utt: I like Senatra songs.
target_utt: I like Taylor Swift songs.
Similar with the cross-lingual semantic retrieval,

given a source utterance we expect to find the tar-
get utterance from the pool. The performance of
the retrieval measured by accuracy@1 is shown in
Table 3. As can be seen, the template embedding
from our model have consistent better performance
than the embedding from the baseline model by
Tiyajamorn et al. (2021). Besides, our meaning
embedding has the similar performance compared
to the template embedding, which means that the
meaning embedding is able to contain most of the
information from the template embedding.
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To make the conclusion of the template retrieval
experiment more solid, we prepared an alterna-
tive evaluation set, where multiple target utterances
were generated from one source, all sharing the
same template. Then the retrieval performance
measured by mean average precision (MAP) is
shown in Table 6 in the Appendix, which matches
the observation from Table 3.

4.4 Ablation Study
To understand the importance of each set of losses
in the FMDA model, we conducted an ablation
study for the cross-lingual retrieval as shown in
Table 4. Removing the contrastive loss leads to a
significant drop on the retrieval performance, since
such loss between a pair of parallel utterances is
essential to build up the language alignment.

In addition, among the three sets of reconstruc-
tion losses, we find the utterance reconstruction
loss Lossuttrec brings significant benefit, while the
residual-semantic reconstruction loss Lossrsrec has
little function. It needs to noted that when remov-
ing all three reconstruction losses, the performance
is worse than the original FMDA model, but bet-
ter than removing Lossuttrec only. This is because
in the latter setting, the model with partial recon-
struction may lead to a sub-optimal by learning
partial information of the utterance. This further
proves the effectiveness of the interaction among
each reconstruction loss.

Model EN-DE DE-EN
XLM-R 0.182 0.203
Tiyajamorn et al. (2021) 0.550 0.575
Our model 0.594 0.605
w/o all reconstruction losses 0.580 0.603
w/o utterance reconstruction loss 0.569 0.586
w/o template reconstruction loss 0.583 0.600
w/o residual reconstruction loss 0.584 0.610
w/o contrastive loss 0.241 0.234

Table 4: The performance of models with different train-
ing settings on cross-lingual semantic retrieval tasks
(measured by accuracy@1).

4.5 Visualization
The fine-grained embeddings from our FMDA
model are visualized using t-SNE plotting as shown
in Figure 4. Figure 4a and 4b show the language
embeddings and meaning embeddings of 800 EN-
DE utterance pairs, respectively. These embed-
dings are generated from the FMDA model de-

scribed in Section 3. Clearly, the language embed-
dings shows separated language clusters. While the
meaning embeddings shows the translation align-
ment between two languages. In addition, Figure
4b contains multiple clusters, which correspond to
different domains/intents in the corpus.

Figure 4c visualizes the template embeddings
(generated from the two-stage FMDA model as
described in Section 4.6) of 20 English utterances.
All of them are from play-music intent, but of 4
different templates. The plot shows clearly that our
template embedding is efficient in extracting the
template information from different sentences.

4.6 Further Exploration with the Two-Stage
FMDA

Former experiments demonstrate the effectiveness
of fine-grained decomposition and reconstruction
of embedding representations using our proposed
FMDA model, and its benefit for different applica-
tions. However, the training of the FDMA involves
multiple different loss functions, which may affect
the optimization of each component. Therefore,
we would like to investigate if training different
components of FDMA in separating steps can lead
to better embedding representations.

Here we conducted a two-stage training proce-
dure to obtain better template representation. For
the first stage, we focused on template encoder in
FMDA and template related loss terms, i.e. the
template reconstruction loss and the template con-
trastive loss. Mono-lingual template pairs data,
in the same format as that described in Section
4.3.2, were built as positive pairs for the training.
Therefore, the template encoder in FMDA can be
better learned on this pure template data. In the sec-
ond stage, the template encoder in the FMDA was
frozen and all other losses except template-related
ones were used together on the dual-lingual pair
training data described in section 4.

Results of the model trained in two-stage setting
are shown in Tabel 5. For mono-lingual template
retrieval tasks (columns EN and DE), the template
embedding (TP) obtained through two-stage train-
ing is far better than that from the original FMDA
model. The meaning embedding also benefits from
the boost of TP. For cross-lingual semantic retrieval
tasks (columns EN-DE and DE-EN), although the
performance of two-stage TP is low (since the tem-
plate encoder hasn’t been trained with dual-lingual
pair data in the two-stage setting), the performance
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(a) Language embedding (b) Meaning embedding (c) Template embedding

Figure 4: Visualisation of fine-grained embeddings from our FMDA model.

of the meaning embedding is similar with that from
the original FMDA model.

This experiment demonstrates that the two-stage
based FMDA is able to learn a much better tem-
plate embedding while the meaning embedding still
effectively encodes the whole semantic.

Method Embedding EN-DE DE-EN EN DE
All-together meaning 0.594 0.605 0.427 0.387

TP 0.583 0.589 0.427 0.396
Two-stage meaning 0.595 0.601 0.584 0.566

TP 0.241 0.251 0.811 0.802

Table 5: Comparison of all-together training and two-
stage training. The numbers of all-together training are
from Table 2 and Table 3.

5 Conclusion

In this paper, we introduced FMDA, a lightweight
encoding architecture that is able to disentangle
fine-grained semantic information from language-
specific information in a multilingual setting. Com-
pared with previous works, the FMDA distils 1) lan-
guage embedding emblang to encode the language-
specific information, 2) template embedding embtp
to encode the the backbone template of the sen-
tence, and 3) the residual embedding embrs to en-
code the residual information such as slot. Such
fine-grained representations allow retrieval applica-
tions at different levels under the NLU setting.

Two retrieval tasks conducted on the MAS-
SIVE dataset demonstrate that FMDA’s mean-
ing embedding achieves the best performance
on the cross-lingual semantic retrieval task and
FMDA’s template embedding achieves the best
performance on the mono-lingual template re-
trieval task. Both constantly outperform the SOTA

language-disentanglement baseline across multiple
languages.
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A Multi-target Template Retrieval

In Section 4.3.2, we introduced the mono-lingual
template retrieval experiment, which was evaluated
using source-target utterance pairs generated by
slot replacement. In order to make the conclusion
of the experiment more solid, here we prepared an
alternative evaluation set, where five target utter-
ances were generated from each source, all of them
sharing the same template but with different slot
values. Then, mean average precision (MAP) was
used to evaluate whether all of the ground-truth
targets can be retrieved at high rank. The result
is shown in Table 6, which is consistent with the
observations from Table 3.

B Case Study

For better understanding of the cross-lingual se-
mantic retrieval results (Section 4.3.1), we pulled
out some examples from the EN-DE retrieval ex-
periment to demonstrate the different behaviors of
different embeddings.

Table 7 shows a case where the result from our
model is different from that of the baseline model
(Tiyajamorn et al. (2021)). The meaning embed-
ding from our FMDA model is able to retrieve
the correct target, which is the exact translation of
the source query. Whereas the embedding from the
baseline model retrieves a wrong answer, which has
the same intent as the source but differs in template
and slot. This is because the semantic representa-
tion from our FMDA model is reconstructed from
finer grains (template and residual-semantic/slots)
and is able to capture detailed information in the
sentence more accurately.

Table 8 shows an example where the meaning
embedding from our FMDA model captures the cor-
rect target while the template embedding from the
same model retrieves a wrong one – though its tem-
plate is same as the query, the slot doesn’t match.
This is as expected, since the residual-semantic
information (slot) is decoupled from the template
embedding.

In conclusion, our template embeddings are able
to capture necessary template information an utter-
ance, while our meaning embeddings are able to
cover the whole semantic of the utterance.

C Extend FMDA to a Unified
Multilingual Model

In the former experiments, the models were all
trained on dual-lingual pairs, e.g. EN-DE, EN-

ES. To further validate if the model can benefit
from training multiple languages together, a multi-
lingual training experiment is conducted and ana-
lyzed. The model architecture remains the same,
while the input is not only a dual-lingual pair, but
multiple dual-lingual pairs together, i.e., the model
is trained on the mixture of EN-DE, EN-ES and
EN-JA pairs in one epoch.

Table 9 demonstrates the results of the multi-
language pairs training. First, for languages like
English (EN), German (DE), and Spanish (ES), the
performance of the multi-lingual training model is
actually worse than the dual-lingual training model.
However, the multi-lingual model performs better
on Japanese (JA). Second, for all languages, the
multi-lingual training model still outperforms the
baseline model from Tiyajamorn et al. (2021).

We argue that the reason of this results is: lan-
guages from similar families like EN, DE, and ES
have been well learned in the original XLM-R and
may have more in common. However, language
like JA is a single-family language which does not
share common scripts nor in the same genre with
others, and is not well-studied in the original XLM-
R. Therefore, the performance of the EN, DE, and
ES part in the model trained under the multi-lingual
setting is affected by JA so that to be worse , while
JA, which is insufficient leanred in the XLM-R, can
benefit more from other well-learned languages.
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Model Embedding ENEN_DE ENEN_ES ENEN_JA DE ES JA
XLM-R cls 0.370 0.370 0.370 0.355 0.379 0.117
Tiyajamorn et al. (2021) meaning 0.397 0.386 0.310 0.386 0.380 0.283
Our model meaning 0.421 0.432 0.360 0.409 0.423 0.350

TP 0.421 0.434 0.395 0.405 0.425 0.375
RS 0.328 0.344 0.234 0.360 0.379 0.088

Table 6: Results of mono-lingual template retrieval under multi-target retrieval setup. The retrieval performance is
measured by mean average precision (MAP). Other settings are the same as Table 3.

Query wake me up at five am this week
Our model (meaning):
wecke mich in dieser woche um fünf uhr auf

Top-1 retrieval (wake me up at five am this week)
Tiyajamorn et al. (2021) model (meaning):
ich muss morgen um zehn uhr aufstehen
(i need to get up at ten tomorrow)

Table 7: An example from the EN-DE cross-lingual
retrieval experiment, for which our meaning embedding
retrieved the correct target, whereas the embedding from
Tiyajamorn et al. (2021) retrieved a wrong answer.

Query what’s the time in sweden
Our model (meaning):
wie spät ist es in schweden

Top-1 retrieval (what’s the time in sweden)
Our model (template):
welche uhrzeit ist es in einer stadt
(what time is it in a city)

Table 8: An example from the EN-DE cross-lingual
retrieval experiment, for which our meaning embedding
retrieved the correct target, whereas our template em-
bedding retrieved a wrong answer.

Eval.
Task

Tiyajamorn et al.
(2021)

Dual-lingual
Training

Multi-lingual
Training

DE-EN 0.575 0.605 0.572
ES-EN 0.602 0.650 0.617
JA-EN* 0.359 0.380 0.397
EN 0.361 0.436 0.429
DE 0.381 0.396 0.395
ES 0.434 0.436 0.433
JA* 0.267 0.340 0.341

Table 9: Comparison of dual-lingual training with multi-
lingual training. Results shown are the performance of
cross-lingual semantic retrieval (top rows) and mono-
lingual template retrieval (bottom rows) respectively,
measured by accuracy@1. For dual-lingual training, the
model is trained on one language pair and evaluated
on the corresponding language (pair), as described in
Table 2 and Table 3. For multi-lingual training, a unified
model is trained using data from multiple language pairs.
Specifically, JA data is not included in the training set
except for the rows marked by *.
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Abstract

Token free approaches have been successfully
applied to a series of word and span level
tasks. In this work, we compare a byte-
level (ByT5) and a wordpiece based (mT5) se-
quence to sequence model on the 51 languages
of the MASSIVE multilingual semantic pars-
ing dataset. We examine multiple experimen-
tal settings: (i) zero-shot, (ii) full gold data and
(iii) zero-shot with synthetic data. By leverag-
ing a state-of-the-art label projection method
for machine translated examples, we are able
to reduce the gap in exact match accuracy to
only 5 points with respect to a model trained
on gold data from all the languages. We addi-
tionally provide insights on the cross-lingual
transfer of ByT5 and show how the model
compares with respect to mT5 across all pa-
rameter sizes.

1 Introduction

Semantic parsers map natural languages utterances
into logical forms (LFs). In the context of con-
versational agents (Artzi and Zettlemoyer, 2011),
robotics (Dukes, 2014) or question answering sys-
tems (Berant et al., 2013), task-oriented semantic
parsers map user queries (e.g. “set an 8 am alarm”)
to machine readable LFs (e.g. [IN:CREATE_ALARM
[SL:TIME 8 am ]]), in the form of structured in-
terpretations that can be understood and executed
by downstream components. Learning parsers re-
quires training data in the form of <utterance, LF>
pairs. Such data is costly to obtain especially at
large scale (Berant et al., 2013), since expert anno-
tators have to derive the correct LFs given an input
utterance. This problem is exacerbated in a multi-
lingual setting, where the availability of annotators,
especially for non top-tier languages, is scarce and
therefore even more expensive.

With the release of MASSIVE (FitzGerald et al.,
2022), the research community has now access to
a massively multilingual semantic parsing dataset

that can be used to evaluate large language models
fine-tuned on the task and to study cross-lingual
transfer for numerous languages.

On the multilinguality front, token-free mod-
els with byte or character based vocabularies have
gained strength given their competitiveness with
respect to traditional subword-based pretrained lan-
guage models. Models such as ByT5 (Xu et al.,
2020), Canine (Clark et al., 2022) and the Char-
former (Tay et al., 2022) have been applied to pop-
ular multilingual benchmarks obtaining state-of-
the-art results.

In this paper, we perform the first in-depth eval-
uation of a token-free model in the context of mul-
tilingual semantic parsing. We compare the ByT5
and mT5 (Xue et al., 2021) models across different
parameter sizes and data regime settings. In addi-
tion to that, we build a map of the cross-lingual
transfer for all the languages in MASSIVE. Lastly,
we show that with the use of machine translated
synthetic data the accuracy of a state-of-the-art mul-
tilingual parser can be just 5 points lower than the
same parser trained with all the available multilin-
gual supervision. To incentivize research on syn-
thetic data augmentation approaches, we release
the MASSIVE English training utterances trans-
lated to 50 languages.1

2 The MASSIVE Dataset

MASSIVE (FitzGerald et al., 2022) is a semantic
parsing dataset covering 51 languages, 18 domains,
60 intents and 55 slots. The dataset was created
by professional translators starting from the En-
glish SLURP dataset (Bastianelli et al., 2020). A
significant portion of the translations have been
localized too, following the recent trend in multi-
lingual benchmarks of replacing western-centric

1We release the translations in 50 languages of
the MASSIVE English training examples obtained with
an in-house translation system at https://goo.gle/
massive-translations
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entities with entities that are more relevant for the
target languages (Lin et al., 2021; Ding et al., 2022;
Majewska et al., 2022).

2.1 Pre and Post Processing
The annotated instances in the MASSIVE dataset
come in the following format:
intent: alarm_set
annot_utt: despiértame a las [time :

↪→ nueve de la mañana] el [date :
↪→ viernes]

To shorten the target output and save the model
from generating and potentially hallucinating un-
necessary words, we map the former to the follow-
ing format taken from MTOP (Li et al., 2021):
[IN:ALARM_SET [SL:TIME nueve de la mañ

↪→ ana ] [SL:DATE viernes ] ]

For evaluation, we use a simple inverse post-
processing step based on string matching to convert
the model outputs back to MASSIVE format.

2.2 Synthetic Data with Translate-and-Fill
A common approach to create multilingual syn-
thetic data from available examples is to use ma-
chine translation (Moradshahi et al., 2020; Sher-
borne et al., 2020). Utterances are translated and
LF annotations are projected using word aligners
and noise reduction heuristics. We instead adopt
the approach from Nicosia et al. (2021), Translate-
and-Fill (TAF), a label projection method in which
a filler model reconstructs the full LF starting from
an utterance and its LF signature.

We train an mT5-xxl filler model on English
instances and then directly generate the LFs of
translated examples in a zero-shot fashion. Since
the slot order between English and translated ut-
terances may differ, we canonicalize the generated
synthetic interpretations reordering the slots as they
would occur in the translations. We have also no-
ticed in the filler output that for some languages
the slot boundaries may fall inside words. For lan-
guages with white space tokenization, we move
slot boundaries to word boundaries if needed.

As an example, given an input utterance
“despiértame a las nueve el viernes” and
[IN:ALARM_SET [SL:DATE el vier ] [SL:TIME
nueve ] ] as LF, the process looks as follows.
First the arguments are reordered according to
the order of appearance in the original sentence:
[IN:ALARM_SET [SL:TIME nueve ] [SL:DATE
vier ] ]. Then slot boundaries that fall within
words are extended, correcting the prediction for

the second argument from [SL:DATE vier ] to
[SL:DATE viernes ].

3 Experiments

We use MASSIVE as a test bed for two model fam-
ilies, ByT5 and mT5, evaluating them at all sizes
in three different data settings. We report Intent Ac-
curacy (IA) and Exact Match (EM) accuracy. We
do not perform any hyper-parameter tuning: we
train for 30K steps with a fixed learning rate of
0.0001 and a batch size of 128 for all models but
xxl, for which batch size was reduced to 32. We
run fine tuning on Cloud TPU v3 with an input/-
target length of 1024/512 for ByT5 and 512/512
for mT5. To minimize compute, all the reported
results are from single runs. We experiment with
three different settings, summarized below:

1. Zero-shot setting. Training is performed on
English data only, and the model selection is
done on the English development set. Results
are reported in Table 1.

2. Gold-data setting. Training is performed on
all the MASSIVE data, that includes 51 lan-
guages. Model selection is performed averag-
ing the accuracy on the multilingual develop-
ment sets. Results are reported Table 2.

3. Synthetic data setting (TAF). Training is
performed on English and multilingual data
that is synthetically generated via TAF. Re-
sults are reported in Table 3. Our entry based
on this approach ranked 1st in the Zero-Shot
Task of the MMNLU-22 Multilingual Seman-
tic Parsing competition organized by Amazon
and co-located with EMNLP 2022.2

We can see a pattern that is common to all the ex-
periments: at smaller sizes, ByT5 has much better
EM accuracy then the corresponding mT5 mod-
els. As stated in Xu et al. (2020), this may be
explained by the fact that at these sizes less than
0.3% of ByT5 parameters are locked in embedding
tables and a larger amount of dense parameters is
updated during training. mT5 parameters are in-
stead dominated by the embedding tables, which
are updated less often than the dense layers. In ad-
dition to that, ByT5-large is worse than ByT5-base
at span labeling, which is a word level task. Both
our observations confirm the findings in Xu et al.
(2020).

2https://mmnlu-22.github.io
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Model IA EM

ByT5-small 49.26 20.36
ByT5-base 64.3 33.47
ByT5-large 66.53 28.43
ByT5-xl 80.96 41.7
ByT5-xxl 81.73 38.28

mT5-small 51.75 17.59
mT5-base 55.91 17.73
mT5-large 67.23 25.14
mT5-xl 79.97 45.60
mT5-xxl 82.44 50.21

Table 1: Zero-shot *T5 parsers performance when
training on English only.

Model IA EM

ByT5-small 85.59 66.60
ByT5-base 85.93 67.54
ByT5-large 84.02 62.92
ByT5-xl 87.01 68.29
ByT5-xxl 87.27 68.66

mT5-small 73.29 46.65
mT5-base 82.03 58.24
mT5-large 85.58 64.13
mT5-xl 87.24 68.47
mT5-xxl 86.79 63.33

Table 2: *T5 parsers performance when training on all
the available gold data.

In the synthetic data setting (Table 3), IA al-
most matches the IA of models from the gold data
setting. If we consider EM accuracy, we are only
5% points behind the upper bound performance
of the multilingually supervised -xxl models (see
Table 2). This indicates that synthetic data augmen-
tation is a viable approach for the i18n of semantic
parsers. Please refer to Table 9 in the appendix for
results on individual languages.

4 Additional Experiments and Results

In zero-shot evaluations, English is the most stud-
ied language given the availability of labeled data.
Recent work has shown that this language may not
be the best at cross-lingual transfer (Turc et al.,
2021). Since MASSIVE provides training and
test data for all its languages, we can evaluate the
zero-shot performance of each language. We train
51 ByT5-base model for a fixed number of steps

Model IA EM

ByT5-small 83.32 59.32
ByT5-base 84.59 61.24
ByT5-large 82.82 58.09
ByT5-xl 85.90 62.98
ByT5-xxl 86.48 64.18

mT5-small 73.64 43.19
mT5-base 80.79 51.76
mT5-large 83.99 57.43
mT5-xl 86.07 62.33
mT5-xxl 86.69 62.49

Table 3: *T5 parsers performance when training on En-
glish and synthetic TAF data.

(1k steps, 128 batch size) and collect the results
on the development sets in Figure 2. By summing
the EMs on rows we can understand how much a
fine-tuning language (donor) improves the others.
If we sum over columns, we can see how much
transfer a target language (receiver) gets from the
others. We report some statistics about best/worst
donor/receiver languages in Table 4. Interestingly,
English is not among the top donors, while it is
the one that is being improved the most by other
languages. We speculate that the better English
LM representations may already have an intrinsic
notion of semantic concepts that are then quickly
individuated if supervision for such concepts is pro-
vided in other languages. From Figure 2, we see
that some languages (am, sw, km, cy) clearly need
annotated data. We hope that this map could help
prioritize data collection efforts.

MASSIVE examples contain an interesting
piece of metadata that indicates if an utterance has
been translated and localized (i.e. original entities
have been substituted with entities more culturally
relevant for the target language), or translated only.
We split the test sets in two parts according to this
information and report in Figure 1 the EM accura-
cies of the same mT5-xxl model. We examine the
three data settings studied in this paper. Accuracies
on localized utterances are consistently lower. The
performance difference in the synthetic data setting
is relatively small but it still suggests that creating
synthetic examples with entities that are local to
the target language may improve the robustness of
the parser.

In the appendix, we report the accuracy for each
individual intent on the union of the test set ex-
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Figure 1: Differences in EM for an mT5-xxl model
evaluated on queries of the test set that have been both
translated and localized, vs only translated.

Best to worst

Donor fr, de, es, nl, pl, · · ·, mn, am, sw, km, cy

Receiver en, de, pt, fr, sv, · · ·, zh, am, mn, sw, cy

Table 4: Top-5 Best/worst donor/receiver.

amples from all languages (Table 8). In Table 5,
we report the 6 intents with the lowest accuracy.
Most examples belong to the GENERAL_QUIRKY in-
tent. The latter is likely a bucket intent covering
all the utterances that are generic or out-of-domain
(we could not find an exhaustive description of
this intent in the SLURP dataset(Bastianelli et al.,
2020)). The common parser mistake is to classify
such queries as belonging to a more specific intent
that can plausibly be associated with that query.

Finally, we compare our NMT translations of
the training set with the corresponding gold trans-
lations produced by professional translators. We
summarize the most interesting information in Ta-

Intent IA Support

GENERAL_GREET 19.6 51
MUSIC_SETTINGS 27.1 306
AUDIO_VOLUME_OTHER 54.9 306
GENERAL_QUIRKY 55.6 8619
IOT_HUE_LIGHTON 61.4 153
MUSIC_DISLIKENESS 74.5 204

Table 5: IA of the ByT5-xxl+TAF model for the lowest
scoring intents (considering all languages).

Language sets Avg Match (%)

All languages 21.3
All but Indic languages 17.3
Indic languages 50.8

Table 6: Percentages of NMT translations matching hu-
man translations in MASSIVE training set.

ble 6 (full comparison in Table 7 included in the ap-
pendix). Indic languages (*_IN and bn_BD) have
an higher average match than other languages. This
may suggest that translations in these languages are
more unambiguous or that translators may have re-
lied on a MT during the translation task.

5 Related Work

Multilingual models are architecturally similar to
monolingual transformer-based models but they
are pretrained on multilingual corpora. These
models include XLM (Lample and Conneau,
2019), XLM-R (Conneau et al., 2020) and mT5
(Xue et al., 2021), the multilingual version of
T5 (Raffel et al., 2020). They all use a subword
vocabulary, a choice that may result in poor
performance for languages with limited amount of
data (Wang et al., 2021). Token-free models such
as ByT5 (Xu et al., 2020), Canine (Clark et al.,
2022) and Charformer (Tay et al., 2022) were
designed to avoid this issue and have been applied
to popular multilingual benchmarks obtaining
state-of-the-art results. In this work, we compare
the multilinguality and the generative capabilities
of mT5 and ByT5 in a massively multilingual
semantic parsing task.

Data augmentation is the process of creat-
ing synthetic labeled data from available annotated
examples. One approach in the multilinguality
space is to translate annotated data in one language,
e.g. English, to other languages. Neural machine
translation is a strong baseline as it has been shown
in recent cross-lingual evaluation benchmarks
(Hu et al., 2020; Ladhak et al., 2020). While
translation works quite well for classification
tasks where the label is at instance level, sequence
tagging or parsing tasks require an annotation
projection step because labels are at token level.
Translate-and-align methods use bilingual word
aligners, statistical (Brown et al., 1993; Vogel
et al., 1996; Och and Ney, 2000, 2003), and neural
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Figure 2: Zero-shot EM accuracies of individual ByT5-base models fine-tuned on a single language (y-axis) and
evaluated on dev sets from all languages (x-axis).

(Schuster et al., 2019; Chen et al., 2020; Zenkel
et al., 2020). More recent works removes this
explicit alignment requirement (Dong and Lapata,
2018; Zhang et al., 2019; Wiseman et al., 2018). In
our work, we use a label projection method based
on pretrained language models (Nicosia et al.,
2021) that reconstructs a full semantic parse from
an utterance and a signature of the same parse.

6 Conclusions

In this paper, we evaluated ByT5 and mT5 (Xue
et al., 2021) models in a massively multilingual
semantic parsing task, showing that ByT5 is par-
ticularly competitive at smaller sizes. We have
provided a map of the cross-lingual transfer for all

the languages in MASSIVE and demonstrated that
synthetic examples created with NMT are effective
for building accurate semantic parsers.

Limitations

This work uses seq2seq models as parsers. Differ-
ent output formats can yield better or worse results
as shown in Paolini et al. (2021). We do not focus
on tweaking formats or on modeling improvements
such as constrained decoding for a more faithful
generation. We adopt a compact output representa-
tion that reduces the text the model has to generate
(and hallucinations) and gives us competitive re-
sults. In the cross-lingual transfer experiments,
we train each model for a small fixed number of

29



steps. If we train for longer, the representations
start to change significantly and cross-lingual per-
formances vary quite unpredictably. We leave for
the future an investigation of the learning dynamics
in this setting and the design of possible remedies.
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A Comparing NMT with Gold
Translations

In Table 7, we compare how many times the NMT
translated utterances match the gold translations
produced by professional translators. We restrict
the match to utterances that have been translated
and not localized in the target language, since NMT
cannot perform the localization step. In addition,
we preprocess all compared utterances with uni-
code normalization, we strip whitespaces and punc-
tuation. In general, indic locales have higher match
rates compared to other locales. Please also note
that we translate English to pt_BR (Brazilian Por-
tuguese) and this explains the low match for pt_PT.

B Intent Accuracy Performance

In Table 8, we report the accuracy for each indi-
vidual intent on the union of the test set examples
from all languages using ByT5-xxl + TAF.

C Performance on all Languages

In Table 9, we report Exact Match on all the 51 lan-
guages, for the three different experimental setups
described in Section 3, across two models (mT5
and ByT5) and two model sizes (base and xxl).
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NMT vs Gold Non-localized
Translations Matches sentences

Language (%) (#) (#)

kn_IN 68.7 6524 9497
te_IN 54.1 4841 8941
bn_BD 52.6 4458 8471
ta_IN 48.3 4301 8898
hi_IN 46.5 4101 8827
nl_NL 38.5 3878 10 070
fr_FR 36.0 3736 10 385
ml_IN 34.7 2985 8607
tl_PH 34.0 3397 10 000
af_ZA 32.8 3160 9640
tr_TR 32.1 2998 9330
sw_KE 26.1 2336 8965
sv_SE 25.9 2465 9504
nb_NO 23.8 2402 10 083
vi_VN 21.6 2000 9255
ms_MY 21.6 1880 8702
jv_ID 21.1 1947 9208
pl_PL 21.0 2017 9618
da_DK 20.4 1933 9470
id_ID 20.4 1882 9227
es_ES 19.5 1876 9596
zh_CN 19.0 1661 8727
zh_TW 18.2 1638 8976
it_IT 17.9 1596 8916
fi_FI 17.5 1669 9558
ru_RU 17.4 1550 8912
hy_AM 16.9 1809 10 707
is_IS 16.1 1491 9270
km_KH 16.1 1491 9276
cy_GB 15.9 1578 9936
sl_SL 14.7 1313 8913
am_ET 14.6 1267 8658
hu_HU 14.5 1331 9198
ur_PK 14.4 1260 8761
de_DE 14.2 1422 9992
lv_LV 12.4 1071 8650
he_IL 12.3 1123 9159
sq_AL 12.2 1035 8460
az_AZ 12.1 1102 9081
th_TH 11.7 1041 8894
ro_RO 10.9 1001 9197
el_GR 10.5 934 8879
pt_PT 9.9 934 9392
ar_SA 9.9 871 8814
mn_MN 8.9 785 8826
fa_IR 8.3 718 8686
ja_JP 7.4 704 9487
ka_GE 7.4 701 9528
ko_KR 3.9 341 8804
my_MM 2.0 171 8765

Table 7: Number of verbatim matches between Gold
translation and NMT translations.

Intent IA Support

GENERAL_GREET 19.6 51
MUSIC_SETTINGS 27.1 306
AUDIO_VOLUME_OTHER 54.9 306
GENERAL_QUIRKY 55.6 8619
IOT_HUE_LIGHTON 61.4 153
MUSIC_DISLIKENESS 74.5 204
DATETIME_CONVERT 75.6 765
IOT_WEMO_ON 76.3 510
PLAY_AUDIOBOOK 78.0 2091
TRANSPORT_QUERY 78.1 2601
RECOMMENDATION_EVENTS 78.3 2193
RECOMMENDATION_MOVIES 79.2 1020
CALENDAR_QUERY 80.6 6426
QA_FACTOID 82.4 7191
IOT_HUE_LIGHTUP 82.5 1377
LISTS_QUERY 82.6 2601
AUDIO_VOLUME_UP 83.0 663
SOCIAL_QUERY 83.9 1275
MUSIC_QUERY 84.0 1785
EMAIL_ADDCONTACT 84.5 612
MUSIC_LIKENESS 84.7 1836
EMAIL_QUERYCONTACT 84.8 1326
TAKEAWAY_QUERY 85.0 1785
LISTS_CREATEORADD 85.6 1989
QA_DEFINITION 86.3 2907
LISTS_REMOVE 86.3 2652
COOKING_RECIPE 86.6 3672
NEWS_QUERY 86.9 6324
PLAY_MUSIC 87.1 8976
TAKEAWAY_ORDER 87.3 1122
IOT_HUE_LIGHTDIM 87.4 1071
PLAY_PODCASTS 87.6 3213
PLAY_GAME 87.7 1785
ALARM_SET 89.5 2091
PLAY_RADIO 90.0 3672
CALENDAR_SET 90.2 10 659
RECOMMENDATION_LOCATIONS 90.4 1581
QA_MATHS 90.7 1275
AUDIO_VOLUME_DOWN 90.7 561
SOCIAL_POST 91.1 4131
IOT_WEMO_OFF 91.3 918
AUDIO_VOLUME_MUTE 91.7 1632
ALARM_QUERY 91.8 1734
GENERAL_JOKE 92.0 969
EMAIL_QUERY 93.0 6069
TRANSPORT_TICKET 93.1 1785
CALENDAR_REMOVE 93.4 3417
EMAIL_SENDEMAIL 94.0 5814
IOT_CLEANING 94.2 1326
WEATHER_QUERY 94.6 7956
IOT_HUE_LIGHTOFF 94.8 2193
TRANSPORT_TAXI 95.3 1173
IOT_HUE_LIGHTCHANGE 95.4 1836
ALARM_REMOVE 95.5 1071
QA_STOCK 95.6 1326
DATETIME_QUERY 95.8 4488
TRANSPORT_TRAFFIC 96.3 765
QA_CURRENCY 96.6 1989
IOT_COFFEE 97.9 1836

Table 8: IA of the ByT5-xxl+TAF model for all intents
(all languages).
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Zero Shot Synthetic (TAF) Gold
base xxl base xxl base xxl

Language mT5 ByT5 mT5 ByT5 mT5 ByT5 mT5 ByT5 mT5 ByT5 mT5 ByT5

af_ZA 21.6 51.1 58.0 59.7 53.7 64.7 65.6 66.8 59.4 68.5 65.9 69.3
am_ET 4.7 15.9 40.7 22.0 40.8 54.4 61.2 61.0 48.7 61.3 62.0 65.8
ar_SA 14.6 27.8 43.6 23.3 45.9 56.1 60.1 60.5 52.3 64.7 61.1 66.0
az_AZ 8.9 31.2 41.8 34.0 46.4 61.6 61.9 63.6 57.0 69.0 62.6 69.6
bn_BD 10.8 19.5 45.9 25.3 51.0 62.1 64.3 65.6 57.6 67.6 64.6 69.5
cy_GB 5.9 16.4 42.8 40.2 35.7 56.1 61.5 64.2 42.1 65.3 61.4 69.2
da_DK 30.2 53.1 60.9 54.2 57.8 67.5 67.3 68.7 64.4 71.7 67.9 71.3
de_DE 28.3 55.3 59.8 59.5 60.2 67.8 67.5 68.8 64.1 70.4 68.0 70.2
el_GR 17.4 31.5 57.2 27.9 55.5 64.2 65.5 66.6 62.0 68.3 66.6 68.7
en_US 65.5 72.2 74.0 73.3 68.5 72.6 73.7 73.0 68.9 72.7 73.3 72.6
es_ES 26.1 50.8 55.6 52.2 58.7 65.1 65.0 65.9 61.1 67.2 65.9 66.2
fa_IR 17.6 32.8 54.4 24.0 54.9 62.2 63.2 64.4 59.9 69.1 63.4 69.7
fi_FI 16.3 36.9 52.5 47.4 51.2 65.9 65.6 68.2 59.4 71.1 66.8 71.5
fr_FR 29.9 53.5 58.5 54.3 59.3 64.4 65.1 65.6 62.3 66.5 65.8 67.2
he_IL 9.7 21.0 40.4 24.0 50.1 59.4 61.0 63.2 57.5 67.3 62.3 68.4
hi_IN 14.1 26.3 52.9 26.2 54.4 62.6 64.2 64.4 59.3 66.5 64.5 67.2
hu_HU 17.5 33.5 45.3 32.9 51.8 62.2 64.2 64.2 58.2 68.5 65.2 69.5
hy_AM 11.7 20.5 44.6 24.7 49.8 58.4 60.3 62.2 57.8 67.7 61.7 68.9
id_ID 24.1 48.3 58.6 61.5 59.0 64.6 65.5 67.1 63.4 68.8 66.2 69.0
is_IS 11.6 32.1 47.2 31.7 47.6 60.9 63.4 65.9 54.6 68.5 63.4 69.6
it_IT 25.3 52.5 59.5 59.5 57.2 63.0 64.6 65.5 60.2 67.6 65.7 67.3
ja_JP 26.8 23.3 46.6 29.3 51.0 55.6 57.3 58.8 60.5 65.8 58.7 67.0
jv_ID 10.7 22.9 45.8 46.2 42.5 58.9 62.1 63.9 48.5 66.5 62.6 68.5
ka_GE 9.7 17.9 39.9 22.1 45.4 52.9 54.8 57.1 54.5 63.8 56.2 66.8
km_KH 11.4 18.0 44.8 23.6 39.2 51.8 51.7 55.7 54.7 63.8 54.3 67.0
kn_IN 8.8 20.2 41.9 25.4 47.4 58.6 55.8 61.7 52.1 63.8 56.6 65.8
ko_KR 11.0 16.3 49.8 24.8 54.1 61.5 65.6 65.8 60.2 68.7 66.4 70.3
lv_LV 11.6 40.3 51.9 33.7 52.4 61.2 63.0 64.6 59.0 69.6 64.1 70.4
ml_IN 10.1 19.4 41.2 25.8 47.9 55.3 55.0 58.5 59.4 68.2 55.6 69.2
mn_MN 7.4 13.4 38.9 22.2 46.9 57.0 60.2 62.7 53.8 66.1 61.5 68.7
ms_MY 21.7 45.0 54.8 59.9 57.1 65.7 67.7 68.0 60.6 69.3 68.4 68.9
my_MM 10.7 13.8 48.7 23.1 51.5 59.8 61.9 66.1 59.3 68.8 64.3 72.6
nb_NO 26.9 50.6 60.7 56.3 60.7 68.0 68.8 70.2 65.0 70.5 69.9 70.7
nl_NL 28.3 55.2 60.1 63.3 60.2 66.5 67.4 67.5 64.7 68.4 68.3 70.0
pl_PL 19.0 47.1 50.7 46.0 56.2 61.8 62.0 63.3 59.7 65.9 62.5 66.5
pt_PT 28.1 52.0 60.8 50.6 61.5 65.9 66.8 67.6 63.6 68.7 67.5 68.2
ro_RO 22.8 45.7 57.4 52.7 55.8 64.5 65.7 67.1 60.2 68.5 65.9 69.6
ru_RU 19.0 26.1 49.0 26.1 56.9 61.6 63.5 63.8 63.5 68.8 64.0 69.5
sl_SL 15.8 43.7 52.8 47.8 53.2 63.5 64.5 64.8 57.7 68.0 64.5 68.8
sq_AL 15.3 42.1 48.0 39.9 48.8 61.1 61.2 63.5 54.2 68.9 61.3 68.5
sv_SE 26.0 54.4 61.8 53.0 62.6 70.1 70.6 71.1 65.9 72.0 71.2 71.5
sw_KE 9.6 15.6 44.0 41.9 44.2 58.7 58.2 59.6 48.0 66.3 58.6 66.8
ta_IN 10.9 19.9 41.1 24.3 48.2 55.5 56.4 58.3 56.6 64.9 58.0 66.0
te_IN 7.8 21.6 46.4 25.1 43.6 60.0 55.4 62.7 51.4 65.0 55.1 67.5
th_TH 21.8 31.3 55.0 26.8 47.4 62.1 62.2 66.9 63.2 72.0 64.6 74.2
tl_PH 18.9 42.0 56.9 58.7 53.2 62.4 65.7 66.1 56.7 66.5 66.5 68.5
tr_TR 14.4 35.2 48.4 38.5 51.6 64.9 65.5 66.2 58.5 69.4 65.5 69.4
ur_PK 9.7 22.7 49.2 22.8 50.5 59.5 61.5 61.9 54.1 63.3 62.6 65.7
vi_VN 15.1 35.1 55.9 36.4 49.8 57.5 61.0 62.3 55.5 67.0 62.1 68.2
zh_CN 22.1 17.3 31.7 24.1 45.6 54.1 53.0 57.9 60.8 65.9 54.9 66.6
zh_TW 21.2 16.5 32.4 24.2 45.2 51.8 52.0 54.5 58.2 62.2 53.8 63.9

Average 17.7 33.5 50.2 38.3 51.8 61.2 62.5 64.2 58.2 67.5 63.3 68.7

Table 9: *T5 parsers Exact Match on individual languages in the Zero-Shot, TAF and Gold settings.
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Abstract

Multilingual spoken language understanding
(SLU) consists of two sub-tasks, namely intent
detection and slot filling. To improve the per-
formance of these two sub-tasks, we propose
to use consistency regularization based on a
hybrid data augmentation strategy. The consis-
tency regularization enforces the predicted dis-
tributions for an example and its semantically
equivalent augmentation to be consistent. We
conduct experiments on the MASSIVE dataset
under both full-dataset and zero-shot settings.
Experimental results demonstrate that our pro-
posed method improves the performance on
both intent detection and slot filling tasks. Our
system1 ranked 1st in the MMNLU-22 compe-
tition under the full-dataset setting.

1 Introduction

The MMNLU-22 evaluation focuses on the prob-
lem of multilingual natural language understanding.
It is based on the MASSIVE dataset (FitzGerald
et al., 2022), a multilingual spoken language under-
standing (SLU) dataset with two sub-tasks, includ-
ing intent detection and slot filling. Specifically,
given a virtual assistant utterance in an arbitrary
language, the model is designed to predict the cor-
responding intent label and extract the slot results.
An English example is illustrated in Figure 1.

Fine-tuning pre-trained cross-lingual language
models allows task-specific supervision to be
shared and transferred across languages (Conneau
and Lample, 2019; Conneau et al., 2020; Xue et al.,
2021). This motivates the two setting for the
MMNLU-22 evaluation, namely the full-dataset
setting and the zero-shot setting. Participants are
allowed to use training data in all languages under
the full-dataset setting, while they can only access
the English training data under the zero-shot setting.

∗Email corresponding.
1The code will be available at https://github.com/

bozheng-hit/MMNLU-22-HIT-SCIR.

Utterance

Slot

Intent

Wake me up at five am Friday this week

O O O O time time date date date

set alarm

Figure 1: An English example from the MASSIVE
dataset. The slot label ‘O’ stands for the ‘Other’ label.

The latter is also called zero-shot cross-lingual SLU
in previous work (Qin et al., 2020, 2022).

Cross-lingual data augmentation methods have
been proven effective to improve cross-lingual
transferability, e.g., code-switch substitution (Qin
et al., 2020) and machine translation (Conneau and
Lample, 2019; Singh et al., 2019). Most previ-
ous work directly utilizes the data augmentations
as additional training data for fine-tuning. How-
ever, they ignore the inherent correlation between
the original example and its semantically equiva-
lent augmentation, which can be fully exploited
with the consistency regularization (Zheng et al.,
2021b). The consistency regularization enforces
the model predictions to be more consistent for
semantic-preserving augmentations.

Motivated by this, we propose to apply consis-
tency regularization based on a hybrid data aug-
mentation strategy, including data augmentation of
machine translation and subword sampling (Kudo,
2018). We use machine translation augmentation
to align the model predictions of the intent detec-
tion task. Meanwhile, subword sampling augmen-
tation is used to align the model predictions of
both intent detection and slot filling tasks. The
proposed method consistently improves the SLU
performance on the MASSIVE dataset under both
full-dataset and zero-shot settings. It is worth men-
tioning that our system ranked 1st in the MMNLU-
22 competition under the full-dataset setting. We
achieved an exact match accuracy of 49.65 points,
outperforming the 2nd system by 1.02 points.
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2 Background

2.1 Task Description
The task of SLU is that given an utterance with
a word sequence x = (x1, ..., xn) with length n.
The model is required to solve two sub-tasks. The
intent detection task can be seen as an utterance
classification task to decide the intent label oI , and
the slot filling task is a sequence labeling task that
generates a slot label for each word in the utterance
to obtain the slot sequence oS = (oS1 , ..., o

S
n).

2.2 Dataset Description
The MASSIVE dataset is composed of realistic,
human-created virtual assistant utterance text span-
ning 51 languages, 60 intents, 55 slot types, and
18 domains (FitzGerald et al., 2022). There are
11,514 training utterances for each language. For
the full-dataset setting, all training data can be used.
For the zero-shot setting, only English training data
can be used, yet we can translate them into other
languages using commercial translators. There are
2,033, 2,974, and 3,000 utterances for each lan-
guage in the development, test, and evaluation set,
respectively. The average performance in all lan-
guages should be reported under the full-dataset
setting. Meanwhile, the average performance in all
languages except English should be reported under
the zero-shot setting.

2.3 Related Work
Pre-trained cross-lingual language models (Con-
neau and Lample, 2019; Conneau et al., 2020; Chi
et al., 2021a,b, 2022; Xue et al., 2021) encode dif-
ferent languages into universal representations and
significantly improve cross-lingual transferability.
These models usually consist of a multilingual vo-
cabulary (Conneau and Lample, 2019; Conneau
et al., 2020; Xue et al., 2021; Zheng et al., 2021a)
and a Transformer model (Vaswani et al., 2017).

A simple yet effective way to improve cross-
lingual fine-tuning is to populate the training data
with cross-lingual data augmentation (Conneau
et al., 2020). Singh et al. (2019) replace a segment
of source language input text with its translation
in another language as data augmentation. Qin
et al. (2020) randomly replace words in the source-
language training example with target-language
words using the bilingual dictionaries. Then the
model is fine-tuned on the generated code-switched
data. Instead of directly treating cross-lingual data
augmentation as extra training data, Zheng et al.

(2021b) proposed to better use data augmentations
based on consistency regularization.

3 Method

Given the input utterance x = (x1, ..., xn) with
length n and the corresponding intent label oI and
slot labels oS = (oS1 , ..., ...o

S
n) from training cor-

pus D, we define the loss for the two sub-tasks of
SLU in our fine-tuning process as:

LI =
∑

(x,oI)∈D
CE(fI(x), oI),

LS =
∑

(x,oS)∈D
CE(fS(x),oS),

where LI and LS stand for the intent detection task
and the slot filling task, fI(·) and fS(·) denote the
model which predicts task-specific probability dis-
tributions for the input example x, CE(·, ·) denotes
cross-entropy loss.

3.1 Consistency Regularization
In order to make better use of data augmentations,
we introduce the consistency regularization used
in Zheng et al. (2021b), which encourages consis-
tent predictions for an example and its semantically
equivalent augmentation. We apply consistency
regularization on intent detection and slot filling
tasks, which is defined as follows:

RI =
∑

x∈D
KL(fI(x)∥fI(A(x, z))),

RS =
∑

x∈D
KL(fS(x)∥fS(A(x, z))),

KLS(P∥Q) = KL(stopgrad(P )∥Q)+

KL(stopgrad(Q)∥P )

where KLS(·∥·) is the symmertrical Kullback-
Leibler divergence,A(x, z) denotes the augmented
version of input utterance x with data augmenta-
tion strategy z. The regularizer encourages the
predicted distributions of the original training ex-
ample and its augmented version to agree with
each other. The stopgrad(·) operation2 is used to
stop back-propagating gradients, which is also em-
ployed in (Jiang et al., 2020; Liu et al., 2020; Zheng
et al., 2021b).

3.2 Data Augmentations
We consider two types of data augmentation strate-
gies for our consistency regularization method, in-
cluding subword sampling and machine translation.

2Implemented by .detach() in PyTorch.
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Figure 2: Illustration of our fine-tuning framework. ‘MT’ denotes machine translation augmentation and ‘SS’
denotes subword sampling augmentation.

3.2.1 Subword Sampling
Subword sampling is to generate multiple subword
sequences from the original text as data augmen-
tation. We apply the on-the-fly subword sampling
algorithm from the unigram language model (Kudo,
2018) in SentencePiece (Kudo and Richardson,
2018). The output distributions of slot labels are
generated on the first subword of each word in the
input utterance. Therefore, the subword sampling
augmentation can be used to align the output dis-
tribution of both intent detection and slot filling
tasks.

3.2.2 Machine Translation
Machine translation is a common and effective
data augmentation strategy in the cross-lingual sce-
nario (Conneau and Lample, 2019; Singh et al.,
2019). Due to the difficulty of accessing ground-
truth labels in translation examples, machine trans-
lation can not be an available data augmentation
strategy in the slot filling task. To improve the
quality of our translations, we employ a variety
of approaches (See Section 4.2). Unlike subword
sampling, the output distributions of slot labels be-
tween the translation pairs can not be aligned. Thus,
we only use machine translation to align the output
distributions of the intent detection task.

3.3 Consistency Regularization based on
Hybrid Data Augmentations

We illustrate our fine-tuning framework in Figure 2.
We propose to use consistency regularization based
on a hybrid data augmentation strategy, which in-
cludes data augmentation of machine translation
and subword sampling. During the training pro-

cess, we perform task fine-tuning and consistency
regularization for an input example simultaneously.
Then the final training loss is defined as follows:

L = LI + λ1LS + λ2RI + λ3RS

where λ1 is the slot loss coefficient, λ2 and λ3

are the corresponding weights of the consistency
regularization for two tasks. We sample different
data augmentation for the input example with the
pre-defined distribution.

4 Experiments

4.1 Experimental Setup
We consider two types of pre-trained cross-lingual
language models, which are encoder-only models
and Text-to-Text models.

We use XLM-Align Base (Chi et al., 2021b) for
the encoder-only model setting. We use a two-layer
feed-forward network with a 3,072 hidden size. We
use the first representation of sentences “<s>” for
the intent detection task and the first subword of
each word for the slot filling task.

We use mT5 Base (Xue et al., 2021) for the Text-
to-Text model setting. We follow FitzGerald et al.
(2022) to concatenate “Annotate: ” and the unla-
beled input utterance as the input of the encoder,
and generate the text concatenation of the intent
label and the slot labels as the decoder output. The
labels are separated with white spaces and then
tokenized into subwords.

We select the model that performs the best on
the development dataset to run prediction on the
test and evaluation dataset. We mainly select the
batch size in [32, 64, 128, 256], dropout rate in
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Text Type Text Content Slot Translation Text Translation Aligned or Not
Plain Text Wake me up at five am Friday this week five am: 凌晨五点

Friday this week: 本周周五
本周周五凌晨五点叫我起床 Yes

Text with Slots in Brackets Wake me up at [five am] [Friday this week] 在[凌晨五点][本周星期五]叫醒我 No
Plain Text set an alarm for two hours from now two hours from now:

从现在起两小时后
从现在开始设置两个小时的闹钟 No

Text with Slots in Brackets set an alarm for [two hours from now] 设置[从现在起两小时后]的闹钟 Yes

Table 1: Examples of aligning slots into machine translations.

Model Test Set Evaluation Set
Intent Acc Slot F1 EMA Intent Acc Slot F1 EMA

XLM-R Base 85.10 73.60 63.69 - - -
XLM-Align Base 86.16 76.36 66.42 - - -
mT5 Base Text-to-Text 85.33 76.77 66.64 - - -

XLM-Align Base + Ours 87.12 77.99 68.76 85.00 68.45 48.64
mT5 Base Text-to-Text + Ours 87.60 78.22 69.60 85.10 69.08 49.65

Table 2: Test and evaluation results on the MASSIVE dataset under the full-dataset setting. Results of XLM-R Base
and mT5 Base Text-to-Text are taken from FitzGerald et al. (2022).

[0.05, 0.1, 0.15], and the hyper-parameters used in
our proposed method, including slot loss coeffi-
cient λ1 in [1, 2, 4], weights of consistency regu-
larization λ2 and λ3 in [2, 3, 5, 10]. We select the
learning rate in [5e−5, 8e−5, 1e−4] for Text-to-Text
models. As for encoder-only models, we select the
learning rate in [4e−6, 6e−6, 8e−6].

4.2 Data Processing

For the full-dataset setting, we use examples with
the same id in different languages as machine trans-
lation augmentation in our fine-tuning framework.
For the zero-shot setting, we translated the entire
English training set into 50 languages using com-
mercial translation APIs, such as DeepL translator
and Google translator. These translations refer to
plain text translations and can be used for intent
detection training and consistency regularization.

We used two methods to obtain a translated ex-
ample that aligned at the slot level. One is based
on the plain text translation. Each slot value in an
English training example is translated into a target
language. If the translation results of each slot can
be found in the plain text translation, a slot-aligned
translation is obtained. The other is based on the
annotated English training examples. We translated
the annotated English training example with brack-
ets for slot values (without slot type in brackets).
Using brackets explicitly allows the translator to
align slots to consecutive spans. And we also trans-
lated each slot value into the target language. If
the translation result of each slot can be found in
the annotated utterance translation, we obtain a slot
alignment example after removing the brackets.

In practice, slot-aligned examples based on plain

text translations are preferred as the final result of
the slot alignment. If no such example is avail-
able, we use the slot-aligned results from annotated
translations. Examples of slot alignment are shown
in Table 1. For those plain text translations where
we can not align the slot labels, we only use them
for the training of the intent detection task.

4.3 Evaluation Metrics
The evaluation in competition is mainly conducted
using three metrics:

• Exact Match Accuracy (EMA): The percent-
age of utterance-level predictions where the
intent and all slots are exactly correct.

• Intent Accuracy (Intent Acc): The percentage
of predictions in which the intent is correct.

• Slot Micro F1 (Slot F1): The micro-averaged
F1 score is calculated over all slots.

4.4 Results
Table 2 shows our results on the MASSIVE dataset
under the full-set setting. We tried different cross-
lingual pre-trained language models under the base-
line setting. Among them, XLM-Align Base per-
forms the best on the intent detection task, while
the mT5 Base Text-to-Text model performs the
best on the slot filling task and exact match ac-
curacy. When applying our consistency regular-
ization method, the mT5 Base Text-to-Text model
outperforms the XLM-Align Base model by 0.84
points and 0.99 points on exact match accuracy on
the test dataset and the evaluation set, respectively.
Meanwhile, compared to the baseline model, us-
ing consistency regularization achieves an absolute
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Model Test Set Evaluation Set
Intent Acc Slot F1 EMA Intent Acc Slot F1 EMA

XLM-R Base 70.62 50.27 38.70 - - -
XLM-Align Base 68.49 54.69 40.91 - - -
mT5 Base Text-to-Text 62.92 44.77 34.72 - - -

XLM-Align Base + Ours 85.12 71.27 62.18 83.18 62.84 43.05
XLM-Align Base + Ours + KD 85.76 73.55 64.44 83.89 64.60 44.84
mT5 Base Text-to-Text + Ours 84.58 69.24 60.59 82.56 60.00 40.93

Table 3: Test and evaluation results on the MASSIVE dataset under the zero-shot setting. Results of XLM-R Base
and mT5 Base Text-to-Text are taken from FitzGerald et al. (2022).

Model Intent Acc Slot F1 EMA

XLM-Align Base + Ours 87.12 77.99 68.76
- Subword Sampling 87.50 76.08 67.40
- Consistency Regularization 86.16 76.32 66.57

Table 4: Ablation studies on the MASSIVE test dataset
under the full-dataset setting.

2.96-point improvement on exact match accuracy
with the mT5 Base Text-to-Text model.

Table 3 shows our results on the MASSIVE
dataset under the zero-shot setting. For the base-
line models, XLM-Align Base performs the best on
all three metrics. Difference from the full-dataset
setting, mT5 Base Text-to-Text models perform
poorly under the zero-shot setting. We attribute
it to the fact that Text-to-Text models strongly
rely on the training data quality since most of the
training data under the zero-shot setting are ob-
tained with machine translation systems. When
applying our consistency regularization method,
the XLM-Align Base model outperforms the base-
line model by 21.27 points. Distilled from the In-
foXLM Large (Chi et al., 2021a) model will further
improve the performance by an absolute 2.26-point.

4.5 Ablation Studies

We conduct ablation studies on the test dataset of
MASSIVE under the two settings. Table 4 shows
the results under the full-dataset setting. Ablating
subword sampling will degrade the performance
by 1.36 points on the exact match accuracy, where
the performance drop comes mainly from the slot
filling task, indicating the subword sampling aug-
mentation mainly works on slot filling. Ablating
consistency regularization will degrade the perfor-
mance by 2.19 points on the exact match accuracy.
The performances on both intent detection and slot
filling tasks are decreased.

The zero-shot setting results are presented in Ta-

Model Intent Acc Slot F1 EMA

XLM-Align Base + Ours 85.12 71.27 62.18
- Subword Sampling 85.14 69.52 60.94
- Machine Translation 72.27 58.37 45.50
- Consistency Regularization 83.90 69.37 59.95

Table 5: Ablation studies on the MASSIVE test dataset
under the zero-shot setting.

ble 5. It can be observed that when machine trans-
lation augmentation is removed, the exact match
accuracy drops by 16.68 points, while the perfor-
mance on intent detection and slot filling are also
significantly worse. We also removed the subword
sampling augmentation, and the performance is
found to have the same trend as in the full-dataset
setting. An absolute 1.24-point drop on the exact
match accuracy and an absolute 1.75-point drop
on slot micro F1 demonstrate that subword sam-
pling is more beneficial for the slot filling task. By
removing the consistency regularization, the per-
formance of exact match accuracy will degrade by
2.23 points. The performance shows a significant
performance drop on both intent detection and slot
filling tasks.

5 Conclusion

We propose to use consistency regularization based
on a hybrid data augmentation strategy to improve
the performance of multilingual SLU. The pro-
posed method is flexible and can be easily plugged
into the fine-tuning process of both the encoder-
only model and the Text-to-Text model. The ex-
perimental results demonstrate the importance of
consistency regularization and the hybrid data aug-
mentation strategy, respectively.
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Abstract

Cross-lingual phenomena are quite common
in informal contexts like social media, where
users are likely to mix their native language
with English or other languages. However,
few studies have focused so far on analyz-
ing cross-lingual interactions in voice-assistant
data, which present peculiar features in terms
of sentence length, named entities, and use of
spoken language. Also, little attention has been
posed to European countries, where English is
frequently used as a second language. In this
paper, we present a large-scale empirical analy-
sis of cross-lingual phenomena (code-mixing,
linguistic borrowing, foreign named entities) in
the interactions with Alexa in European coun-
tries. To do this, we first introduce a general,
highly-scalable technique to generate synthetic
mixed training data annotated with token-level
language labels and we train two neural net-
work models to predict them. We evaluate the
models both on the synthetic dataset and on a
real dataset of code-switched utterances, show-
ing that the best performance is obtained by a
character convolution based model. The results
of the analysis highlight different behaviors
between countries, having Italy with the high-
est ratio of cross-lingual utterances and Spain
with a marked preference in keeping Spanish
words. Our research, paired to the increase of
the cross-lingual phenomena in time, motivates
further research in developing multilingual Nat-
ural Language Understanding (NLU) models,
which can naturally deal with cross-lingual in-
teractions.

1 Introduction

The interaction of different languages produces a
variety of linguistic phenomena, the most promi-
nent examples being code-switching and lexical

borrowing. Code-swiching (CS), or code-mixing1,
refers to the alternation of languages within an ut-
terance or a conversation (Poplack, 2004), while
linguistic borrowing occurs when a word is adopted
from a language and integrated into another without
translation. Examples of these are: (i) “Play música
alegre” (ii) “Bravo, that was a great performance”,
with the former being a case of code-switching
and the latter exhibiting lexical borrowing. These
phenomena are particularly frequent in bilingual
countries, where the local language, called frame-
language, is influenced by a second language,
which is instead called the mixing-language. This
phenomenon is abstracted by the Matrix Language
Frame model (Poulisse, 1998) in code-switching lit-
erature. Common pairs of frame-mixing languages
are for example Spanglish (Spanish-English) and
Hinglish (Hindi-English).

Countries for which these phenomena happen
usually undergo a broader influence which also per-
meates their culture, as it happens for example with
American artistic production of cinema and music.
As a side effect, utterances originated in the frame
language are rich in foreign named entities, which
contribute to their linguistic heterogeneity. Voice
assistants operating in these locales have to face a
significant amount of foreign words while being in
most cases trained on monolingual corpora, hence
posing a severe threat to their performance.

Indeed, the growing interest in multi-lingual
models (Devlin et al., 2019; Alexis and Lample,
2019; Conneau et al., 2020) and datasets (FitzGer-
ald et al., 2022; Xu et al., 2020) may help mitigate
the problem. We will use in the rest of the paper

1We will use the terms code-switching and code-mixing
interchangeably, despite they are sometimes used in linguistic
literature to denote different phenomena.
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the term cross-lingual to denote utterances which
contain one or more words from a mixing language
while belonging to a frame language. These may
be caused by any of the mentioned phenomena,
i.e. code-switching, lexical borrowing and foreign
named entities.

A major challenge, both in improving the per-
formances of multilingual models on cross-lingual
data and in their overall evaluation, is the scarcity
of cross-lingual datasets. Nevertheless, while
human annotation is already costly and time-
consuming in general, annotating cross-lingual data
is made harder by the fact that bilingual annotators
are needed for each pair of languages of interest;
these may be especially hard to find for less com-
mon languages. In particular, while there has been
some interest for different kinds of data (e.g. social
media), voice assistant data, which is the focus of
this paper, has been mostly ignored. Although such
datasets may be obtained by crowdsourcing, the
process would be expensive and time-consuming.
This reason leads to the necessity of a procedure
to generate synthetic data over several language
pairs while providing large-scale datasets. These
can be used to train a learning model to infer cross-
lingual utterances. The trained model can finally
be employed on voice assistants data to detect real
cross-lingual utterances.

Our contribution is three-fold: (i) We propose
in section 3 a scalable synthetic data generation
technique to obtain challenging benchmarks which
exhibit a significant ratio of cross-lingual influ-
ences. The method is language agnostic and here
we employ it on four common European languages
(German, French, Italian, Spanish) with English
as mixing language. (ii) We compare the perfor-
mance of different baselines in detecting cross-lin-
gual utterances by solving the more fine-grained
task of word level language identification. To vali-
date the generation procedure, we test the models
trained on the synthetic distribution over a bench-
mark dataset obtained through an extremely precise
heuristic. (iii) Finally, we analyze in section 6 the
phenomenon of cross-lingual influence in a large
set of cross-lingual utterances detected using our
method on Alexa user queries.

2 Related work

Code-switching has received significant interest
both in the linguistic literature (Poplack, 2004,
1980; Lipski, 2005; Bhatt and Bolonyai, 2011) and

de fr it es

code switched 31359 5391 6139 4256
non code switched 63944 18491 20100 23744

Table 1: Size of the four benchmark datasets.

in Natural Language Processing (NLP); (Sitaram
et al., 2019) provide a survey of code-switching
in NLP. From a linguistic point of view, the two
phenomena differ in the fact that the latter occurs in
the lexicon, while code-switching mostly regards
the utterance-construction level (Muysken, 1995).
Despite the apparently different definitions, the two
are not always clearly distinct from one another,
and may be thought of as lying on a continuum
(Sitaram et al., 2019; Bali et al., 2014).

Various efforts have been made to collect code-
switched annotated data over which to perform
core NLP tasks, such as NER (Aguilar et al., 2018;
Singh et al., 2018), POS (Vyas et al., 2014; Barman
et al., 2016) and ASR (Lyu et al., 2015; Deuchar
et al., 2014). Nevertheless, most of the available
resources have been gathered from Twitter, and
therefore do not resemble the distribution of data
encountered by a voice assistant. Few works exist
on generating synthetic CS data: in (Pratapa et al.,
2018), a synthetic dataset is obtained by applying
linguistic theory-based rules, while in (Gupta et al.,
2020) an encoder-decoder architecture is used for
the generation. These approaches, however, fo-
cus on strict code-switching, while we aim to also
encompass lexical borrowing and foreign named
entities.

The de-facto standard way to infer code-
switched utterances is to train models on the task of
word-level language identification. Again, existing
datasets of code-switched text annotated with word-
level language labels have been collected from
Twitter (Patro et al., 2017; Maharjan et al., 2015) or
Facebook (Barman et al., 2014), leaving conversa-
tional data out of the scope. Provided a word-level
annotated dataset, any sequence-labeling algorithm
can be employed to solve the task. Approaches in-
clude conditional random fields (Sikdar and Gam-
bäck, 2016; Shrestha, 2016), recurrent neural net-
works (Chang and Lin, 2014; Samih et al., 2016)
and transfer learning (Aguilar and Solorio, 2020).
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3 Data

3.1 Synthetic data generation

As anticipated in section 1, the cost in time and re-
sources of annotating large-scale datasets by crowd-
sourcing makes synthetic generation the only vi-
able alternative. However, these phenomena show
a significant degree of mutability both in time and
space (Sitaram et al., 2019), making them elusive
to be addressed in a unified manner which is theo-
retically sound. While some have tried to generate
linguistically-correct code-switched data (Pratapa
et al., 2018), we trade off a rigorous formulation
with a simpler one to deal with all the considered
phenomena in a unified manner. Requiring no
real cross-lingual (CL) samples, our scalable ap-
proach generalizes among any pair of languages.
We show that this relaxation does not undermine
the effectiveness of the approach by benchmark-
ing a model trained on such generated data over a
high-precision CL dataset (“benchmark dataset”).
Indeed, our objective is to generate a dataset rich of
cross-linguality which can be used to train a model
able to detect any CL utterance (code-switching,
language borrowing etc.).

The generation follows (Gella et al., 2014),
where each utterance can have at most two lan-
guages and at most one switching point. While
these may not be true in general, they mostly hold
in voice assistant data, where utterances are usually
short.

Slot switching Our procedure leverages slot res-
olution artifacts which are typically available to
conversational agents2: these, in fact, need to
map entities to actionable items, e.g. both ‘chap-
ter’, ‘section’ and ‘paragraph’ are mapped to a
coarser entity type which denotes more generally
a part of a book. Slot resolution artifacts are usu-
ally implemented as human-authored many-to-one
maps, where the fine-grained entities are language-
specific and the coarser entity type is language-
agnostic. The latter can be used as a syntactically
safe switching point to obtain cross-lingual utter-
ances. A cross-lingual dataset can be obtained
from a chosen monolingual dataset in the frame
language by matching instantiations of entity types

2As an alternative, publicly available resources may also
be used: a slot can replaced with a word in the same WordNet
synset (Fellbaum, 1998). WordNet has been translated and
adapted to many languages, like German, French, Italian, and
Spanish (Hamp and Feldweg, 1997; Sagot and Fišer, 2008;
Toral et al., 2010; Gonzalez-Agirre et al., 2012).

in the frame-locale utterances and replacing them
with random instantiations of the same entity type
in the mixing locale. Then, to obtain the token-
level language annotations, it is sufficient to assign
each switched token to the mixing language. For
example, for

(1) “AIT cheIT capitoloIT sonoIT arrivatoIT”

we use the map {capitolo, sezione, paragrafo →
BOOKSECTION} to obtain the language-agnostic
entity ‘BOOKSECTION’ which contains a set of
its instantiations in English (or any other language)
{chapter, section, paragraph→ BOOKSECTION},
allowing us to pick one to produce

(2) “AIT cheIT chapterEN sonoIT arrivatoIT”.

We empirically set the mixing probability to 70%
after inspecting a subset of utterances. As the map-
ping from the language-agnostic entities to their
instantiations in a chosen language is not univocal,
we choose one of the latter at random.

Named-entities switching Nevertheless, slot res-
olution artifacts only cover specific slots. Another
common phenomenon is the use of English words
in named entities, such as song names, video names
or app names. To obtain a reliable language anno-
tation for named entities, we use a high-precision
and low-recall heuristic that checks that each to-
ken of the named entity is part of only a specific
language dictionary. For instance, when using IT
as a frame language and EN as a mixing language,
given a song such as “nel blu dipinto di blu” we
check if ‘nel’, ‘blu’, ‘dipinto’, ‘di’, ‘blu’ are all part
of the IT dictionary and none of them is part of the
EN dictionary. Only in that case they are placed
in the IT catalog; if the converse happens, they
are placed in the EN catalog. Entities for which
none of these events happens are not switched. We
populate the language-specific catalogs from the
data and replace the named entities sampling from
either the frame or mixing catalogs of the same
entity type (e.g. “Song”→ sample using the song
names catalogs) with a probability proportional to
the catalog size. This method creates fairly rep-
resentative utterances in the context of personal
assistants, since we mainly have short sentences
with cross-linguality concentrated on named enti-
ties and loanwords. While the framework is general
and can be used for any pair of languages, we used
English as mixing language for the four considered
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European languages to mimic the real linguistic
phenomenon. We applied our method to manually
annotated, de-identified and anonymized Alexa ut-
terances. These span more than two years of data
for all the languages considered. Starting from
these data we create our cross-lingual data set. We
generated four datasets of ≈ 100k utterances for
the four corresponding locales, each split in train-
ing, validation and test with a 80-10-10 ratio. This
size was chosen to keep a fairly high variance of
the English words present in the utterances.

It is worth to note that we do not require, and
hence do not expect, the generated utterances to
faithfully resemble the cross-lingual phenomena
that we aim to capture. In fact, adhering to the
definition of cross-linguality that we outlined in
section 1, we more simply aim to generate utter-
ances in a frame language containing one or more
words from a mixing language, possibly preserv-
ing the original syntax and semantics. If we now
consider the set of natural cross-lingual utterances
to be a subset of all the possible cross-lingual utter-
ances, we have that a model capable of detecting
samples from the former should also be able to
detect those from the latter. Given that the set of
natural cross-lingual utterances is constrained by
the linguistic patterns of the considered phenom-
ena, the subset assumption makes intuitive sense
but is not assumed to hold for all distributions. We
show, however, that this assumption is valid enough
to capture most of the cross-linguality in conversa-
tional data, assessing the effectiveness of models
trained on the synthetic distribution on a bench-
mark of real cross-lingual utterances.

3.2 Benchmark dataset

To validate our data generation technique, we need
a ground-truth dataset over which to evaluate the
proposed models after they have been trained on
the generated distribution. Provided that no such
dataset exists for conversational data, we take in-
spiration from (Mendels et al., 2018) to obtain a
high-precision set of utterances from de-identified
and anonymized live traffic. The approach lever-
ages the idea of anchor words, i.e. words belonging
specifically to one language among a large pool of
languages. Provided anchor words for both the
frame and mixing languages, an utterance is code-
switched if it contains both an anchor from the
frame and one from the mixing language. Anal-
ogously to (Mendels et al., 2018), we relax the

definition of anchor word by restricting the pool
of languages to contain only the mixing language,
yielding what are called weak anchor words. This
is motivated by the fact that most foreign words in
the considered frame languages are English, so this
relaxation significantly improves the recall while
keeping its false positive rate minimum. The set of
weak anchor words for the frame language L can
be computed as the set difference between its word
lexicon VL and the lexicon of the mixing language
VL′

AnchorSet(L) = VL \ VL′ . (1)

The set of weak anchor words for the mixing lan-
guage can be computed in the symmetric way.

While this procedure has limitations in terms
of recall, the obtained set of utterances exhibits
almost no false positives. Nevertheless, to obtain
a benchmark dataset over which to evaluate both
False Positive Rate (FPR) and recall of the trained
models, negative samples are also needed. For this
we use the set of utterances for which all the words
are anchor words of the frame language. As be-
fore, although many not code-switched utterances
will be this way ignored, the resulting ones will be
negative samples with extremely high confidence.

To avoid making assumptions on the ratio of
code-switched utterances, the two datasets are
kept separated. The one consisting of only code-
switched utterances is used to compute the recall,
while the one containing only non-code-switched
utterances is used to compute the FPR. Table 1
shows the dimensions of the four datasets.

4 Models

We describe in this section the proposed baselines,
namely an ad hoc deterministic heuristic and two
neural models. These will be trained over the syn-
thetic datasets generated according to section 3 and
used to infer real code-switched Alexa utterances.

We consider as baseline a dictionary-based
heuristic parameterized by two thresholds t1 and t2.
The latter deterministically classifies an utterance
as code mixed if at least t1% of the lemmatized
words do not appear in the frame language vocabu-
lary while appearing in the mixing language vocab-
ulary and no more than t2% appear in the mixing
vocabulary while not belonging to the frame vocab-
ulary. Despite its simplicity, the heuristic allows to
arbitrarily trade-off recall and precision by manu-
ally tweaking the two parameters.
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We then propose two neural models, one char-
acter based and the other transformer based. The
intuition behind the former is that character-level
convolutions (Sitaram et al., 2019) should be able
to capture the distinguishing morphological fea-
tures of the considered languages which are key
to the task. In particular, given an input utterance,
each word is split in characters and embedded via
a trainable embedding layer to obtain w ∈ Rl×d,
where l is the maximum word length encountered
in the data and d = 50 is the chosen embedding
dimension. The embedded word is then passed
through a set of m = 256 1-D convolutional filters
with kernel size k = 3, yielding a tensor ∈ Rm×o,
where o is given by (l − k + 1). At this point,
the maximum is taken along the axis on which the
resulting feature maps are stacked, so to have a
new word embedding tensor e ∈ Ro. Three dif-
ferent sets of filters of different kernel sizes are
then passed over e, having sizes 3, 4 and 5 in our
implementation. Max pooling over time allows to
obtain a fixed-dimension digest for each of the re-
sulting maps, which can be concatenated to form
a single tensor to be fed to a bidirectional LSTM
along with the rest of the utterance. The latter re-
turns a dynamic representation of the word and its
context, which is then mapped to the label space by
a standard fully-connected layer. A visual overview
of the architecture is given in fig. 1. We will refer
to this model as ‘CharBased’. The second pro-
posed neural model leverages multilingual BERT
(Devlin et al., 2019) to obtain contextualized em-
beddings which are then fed to a standard sequence
classification pipeline, as can be seen in fig. 2. In
details, each word is first tokenized and encoded
by the mBERT tokenizer and fed to a pretrained
mBERT model along with the whole utterance. The
embedding is then provided by the last hidden state
of the pretrained model. Since the tokenizer is
based on the Wordpiece model (Schuster and Naka-
jima, 2012), words are often split in subwords: the
word ‘microfono’ for example would be split in
‘micro’ and ‘##fono’. To still obtain word-level
predictions, the resulting embeddings are averaged.
Utterances are finally fed to a bidirectional LSTM
whose output is mapped to the label space again by
a fully-connected layer. We will refer to this model
as ‘BertBased’ in the rest of the paper.

Figure 1: Diagram of the character-convolution-based
model.

Figure 2: Diagram of the contextual model.
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Code-Switching Detection on synthetic data

DE FR IT ES
F1 prec recall F1 prec recall F1 prec recall F1 prec recall

Baseline +0% +0% +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%
CharBased +25.1% +35.9% +9% +23.9% +35.7% +8% +29.4% +40.7% +12.7% +29.7% +40.0% +13.3%
BertBased +26.4% +37.7% +10.5% +25.8% +36.2% +11.2% +30.6% +40.9% +15.1% +31.2% +42.2% +14.1%

Table 2: Evaluation results for the task of code-switched utterance detection of the two neural models expressed
as relative improvement over the threshold based Baseline presented in section 4, performed over a held-out
artificially generated test set.

Code-Switching Detection on benchmark data

DE FR IT ES
recall FPR recall FPR recall FPR recall FPR

Baseline +0% +0% +0% +0% +0% +0% +0% +0%
BertBased +7.7% −22.4% −1.9% −48.4% +2.5% −46.6% −0.2% −35.5%
CharBased +18.4% −21.3% +2.9% −48.7% +7.9% −46.2% +3.4% −35.4%

Table 3: Evaluation results for the task of code-switched utterance detection of the two neural models expressed as
relative improvement over the threshold based Baseline presented in section 4, performed over the benchmark
dataset obtained as in section 3.

DE FR IT ES

DE +16% −1% +53%
FR −15% +31%
IT +54%

Table 4: Relative difference in % of utterances con-
taining cross-lingual phenomena by country. Cell ij
contains the difference in the ratio of cross-lingual utter-
ances between language i and language j.

5 Evaluation

As can be seen in table 2, the two neural models ob-
tain similar results on a held-out test set generated
according to the same procedure presented in sec-
tion 3, with BertBased slightly outperforming
the character based model. On the other hand, ta-
ble 3 shows that the latter obtains the best results on
the benchmark dataset, yielding much higher recall
while maintaining a low False Positive Rate (FPR).
The results are expressed as relative improvements
of the two models over the deterministic heuris-
tic introduced in section 4. Precision and recall
are given in table 3 because they are computed
on two separate datasets to avoid having to pick
an arbitrary ratio between code-switched and non-
code-switched utterances.

6 Results

Object of this analysis are code-switched utterances
detected from real Alexa queries by a model trained
on an artificial dataset generated according to sec-
tion 3. A separate model was trained for each lo-
cale versus English, and the inference was made

on real data coming from the corresponding lo-
cale. As can be seen in table 4, German, French
and Italian exhibit similar ratios of cross-lingual
utterances, with Italy being the country where they
are most common. On the other hand, Spanish
shows a remarkably different situation. As shown
in fig. 4, this difference is mostly attributable to
English words which do not represent named en-
tities: in Spain, people for example do not use
‘timer’, ‘computer’ or ‘film’, as they prefer their
Spanish correspondants ‘temporizadora’, ‘compu-
tatora’ and ‘pelicula’. This phenomenon is con-
firmed in fig. 3, where we see the most common
words causing cross-linguality. Figure 3 also shows
that the distribution is extremely skewed: for in-
stance, ‘timer’ in Italian causes almost the 10% of
all the cross-lingual utterances. This phenomenon
reflects the underlying distribution of voice assis-
tant utterances, where a set of frequent queries
make up for a large part of all of utterances. Fi-
nally, we can see in fig. 5 the way cross-lingual
utterances are distributed in different domains is
common to the different locales. Coherently with
the large amount of foreign named entities causing
cross-linguality, we can see that most utterances
belong to ‘Media & Entertainment’, which is ex-
pected to contain many international artists and
song names. ‘DeviceControl’ also accounts for
a significant part of the utterances; these usually
contain commands, like for example ‘play’, ‘next’,
‘stop’ etc., which are traditionally expressed in En-
glish even in non-English speaking countries.
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Figure 3: Most common English words used when interacting with Alexa in the four considered locales.

7 Conclusions

In this paper, we have presented a large-scale analy-
sis of the cross-lingual phenomena encountered by
voice assistants. We first have proposed an artificial
data generation technique, then we have presented
two neural models that can be trained on the syn-
thetic data to infer real cross-lingual utterances. Fi-
nally, we have employed the top-performing model
to infer such utterances from real data. The fact that
loanwords and foreign named entities cover most
of the found cross-lingual utterances may indicate
that code-switching is rare in voice assistants in
the considered locales. This may be explained by
the fact that users code-switch the most in collo-
quial situations, while their way of speaking when
querying a voice assistant is constrained by its un-
derstanding capacity. Nonetheless, multilingual
models still have a great opportunity of transfer
learning on the large amount of foreign named enti-
ties and loanwords that are present in the data. The
results show that the use of English words in DE,
FR, IT, ES is strongly skewed on popular entities
such as ‘Amazon’, ‘Netflix’, and ‘YouTube’, and
on specific loanwords such as ‘timer’, ‘computer’
and ‘stop’. The use of these popular named en-
tities is consistent across locales and the ratio of
cross-lingual interactions is similar, except for ES,
where users tend to prefer Spanish words to En-
glish loanwords. The analysis also shows that most
of the mixing words are contained in the ‘Media
& Entertainment’ domains and on named entities
such as Service Names, Media names, Item names

and Dish names.

As we have explained in section 3, the current
generation technique does not aim to model the
complex phenomenon of code-switching in a theo-
retically correct manner. The simplicity of the pro-
cedure nevertheless allows it to be repurposed to
focus on the latter. An interesting future direction
could be to limit the attention to code-switching
in the data generation, so that a model trained on
that data could be used to collect a code-switched
dataset of voice assistant queries. Given the low
FPR exhibited by the model, the collected utter-
ances represent an high-quality resource which
could in future be used to train generative mod-
els to produce better synthetic data, which in turn
can be used to train detectors in an iterative manner.

From an architectural prospective, models tack-
ling word-level language identification expressly
designed to solve the task of cross-lingual or code-
switched detection could benefit from the utterance-
level information about their distribution in the
dataset. This could encourage the design of a multi-
headed model tackling both tasks in an end-to-end
approach.

Finally, we aim to expand the set of considered
languages to encompass other frame and mixing
languages, for example considering Hinglish in In-
dia. It might be particularly interesting to compare
the obtained results for Spanish with ones obtained
over Spanish spoken in the United States and in
Mexico, as they may involve more code-switching.
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Figure 4: Distribution of a set of ≈ 60k cross-lingual utterances.

Figure 5: Distribution of domains in cross-linguistic utterances.
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8 Limitations

An overall limitation of the work stands from the
lack of absolute results, as the latter can only be
disclosed as relative improvements over a baseline
due to internal policy. As stated in sections 1 and 3,
the analysis only regards four European languages
(German, French, Italian and Spanish) with English
as mixing language. Therefore, while the same ap-
proach can be used with different languages, the
reported findings only regard the mentioned ones.
Moreover, the quality of the generated synthetic
data heavily depends on the quality of the slot reso-
lution artifacts presented in section 3. In this work,
these artifacts are human-curated according to the
highest industry standards, but are subject to IP
and hence not publicly accessible. Unfortunately,
this also makes the code non disclosable. Finally,
as discussed in section 3, the data generation tech-
nique may not fully capture the complex linguistic
patterns involved in code-switching. We argue that
it is however enough to encompass a large quantity
of cross-lingual utterances encountered by vocal
assistants, and prove it by showing the efficacy of
the models trained over synth data in dealing with
a high-precision benchmark dataset of real cross-
lingual utterances.
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Abstract

The joint intent classification and slot filling
task seeks to detect the intent of an utterance
and extract its semantic concepts. In the zero-
shot cross-lingual setting, a model is trained on
a source language and then transferred to other
target languages through multi-lingual rep-
resentations without additional training data.
While prior studies show that pre-trained
multilingual sequence-to-sequence (Seq2Seq)
models can facilitate zero-shot transfer, there
is little understanding on how to design the
output template for the joint prediction tasks.
In this paper, we examine three aspects of
the output template – (1) label mapping, (2)
task dependency, and (3) word order. Experi-
ments on the MASSIVE dataset consisting of
51 languages show that our output template
significantly improves the performance of pre-
trained cross-lingual language models.

1 Introduction

The joint intent classification and slot filling task is
crucial for goal-oriented dialogue systems, seeking
to detect the intent of an utterance and extract se-
mantic concepts. This task has been widely studied
in the literature (Hakkani-Tür et al., 2016; Zhang
and Wang, 2016; Goo et al., 2018). However, due
to the difficulty of collecting and annotating large
data sets, most studies focus on only a few high-
resource languages (e.g., English). To broaden
the language coverage of models, zero-shot cross-
lingual transfer technique has been proposed (Xu
et al., 2020; Li et al., 2021; FitzGerald et al., 2022).
Under the zero-shot cross-lingual setting, models
are trained on a source language (e.g., English)
with sufficient annotated training data and transfer
to other target languages.

In particular, recently, FitzGerald et al. (2022)
show that pre-trained generative cross-lingual lan-
guage models (XLMs) (Liu et al., 2020; Xue et al.,

∗This work is done during Fei Wang and Kuan-Hao’s in-
ternship at Amazon.

Intent: alarm_set. slot: (time, five o’clock), (date, this week).

Wake me up at five o’clock this week

Seq2Seq 
Model

alarm_set Other Other Other Other time time date date

post-processing

Figure 1: Illustration of Seq2Seq generation for the
joint intent classification and slot filling task. Given
an input on the bottom, the Seq2Seq model generates
the output sequence based on a template – the template
forces the model first output the intent label and then
slot label of each word in the input sentence. Based on
the template, a post-processing step translates the out-
put sequence into structured labels for the task.

2021) can be applied to the joint intent classifica-
tion and slot filling task. They formulate the joint
task as sequence-to-sequence (Seq2Seq) genera-
tion, where the model generates the slot label for
each word and the intent label for the utterance in
a sequential manner based on an output template.
However, the design of the output template is usu-
ally ad hoc and there is lack of understanding on
how different template designs affect the perfor-
mance of the zero-shot transfer. For example, in
Fig. 1, the intent label “alarm set” can be rep-
resented by “set alarm”. We found that the
change of the surface form of the label significantly
affects model’s performance.

In this paper, we examine three aspects in the de-
sign of output template, i.e. label mapping, task de-
pendency, and word order. We found that all these
aspects have significant influence on model perfor-
mance. First, based on our observation on label
mapping, we propose a concise hierarchical label
mapping that leads to a better performance than the
default label mapping used in annotation. Second,
we observed that generating the intent label before
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the slots labels leads to better performance. This is
because intent classification is a relatively simpler
task compared to slot filling and thus the correct
task order prevents error propagation. Finally, we
found that word shuffle improves the diversity of
data and therefore leads to better intent accuracy.

Experiments on the MASSIVE dataset (FitzGer-
ald et al., 2022) consisting of 51 languages demon-
strate that our proposed template design can sig-
nificantly improve the performance of pre-trained
generative XLMs on this joint task in the zero-shot
transfer setting. We also provide detailed ablation
studies and discussion. We intend to release the
source code for reproducing our experiments upon
paper acceptance.

2 Method

We first provide an overview of the Seq2Seq gener-
ation method with pretrained generative XLMs for
the joint intent classificaiton and slot filling task.
Then, we discuss the design of output template for
Seq2Seq generation.

2.1 Seq2Seq for the Joint Prediction Task
Following FitzGerald et al. (2022), we formulate
the joint task as Seq2Seq generation, and adopt
pretrained XLMs for this task. In this way, we can
take advantage of the rich cross-lingual knowledge
possessed in the pre-trained XLMs. As shown in
Fig. 1, the model generates the intent label for the
utterance and the slot label for each word in a se-
quential manner based on an output template. We
insert Annotate: at the beginning of the input
sequence to indicate the task type. We also insert
word separators to indicate the tokens belonging
to each word, as we want to generate word-level
slot labels. We then use the following objective
function to fine-tune the text generation model:

L = − 1

|y|

|y|∑

k=1

log p(yk|y<k,x), (1)

where x is the input utterance sequence and y is the
output label sequence. We provide the ground-truth
y during training. In the following, we explore
three aspects of the design of the output template.

2.2 Label Mapping
The first aspect we examine is the label mapping,
i.e. the surface form of the labels. When annotat-
ing data, the annotators are given a set of output
labels. The choice of vocabulary for these labels

is often arbitrary as long as the human annotators
understand the meaning. However, for a Seq2Seq
model, different surface forms of the output labels
may lead to different performance even though
they are synonyms. For example, the intent la-
bel iot_wemo_on could be difficult for a fine-
tuned XLMs to understand and transfer to other
languages. Moreover, labels hold hierarchical rela-
tions. For example, some intent labels may belong
to the same scenario and some slot labels belong to
the same intent. By rephrasing the output labels and
leveraging their relations, the model performance
can greatly improve.

We propose a concise and hierarchical label
mapping based on these observations. For la-
bels belonging to the same scenario or intent, we
add the same prefix to them. Some slot labels
may belong to multiple scenarios or intents, so
we do not add any prefix to them. For example,
both email_folder and email_address be-
longs to the same scenario so we give them the
same prefix email, while time belongs to multi-
ple scenarios, so we do not give it a prefix. We also
remove or replace the redundant and rare words in
the labels (e.g. wemo in iot_wemo_on).

2.3 Task Dependency
The second aspect is the dependency between in-
tent classification and slot filling. In Seq2Seq de-
coding, the label yk is conditioned on previously
generated tokens y<k. When solving the joint task,
the label of one task serves as the condition to gen-
erate the label of the other task. Due to this, the
later task may benefit from the labels of the former
task, but may also suffer from inaccurate predic-
tions of the former task (i.e. error propagation).In
particular, we consider two different orders: (1)
intent labels before slot labels, and (2) slot labels
before intent labels.

2.4 Word Order
Prior works show that reducing word order informa-
tion in sequence labeling can improve cross-lingual
transferability (Ahmad et al., 2019; Liu et al., 2021).
This is mainly due to different languages have dif-
ferent word orders (e.g., some languages present
adjectives before nouns and some have reverse or-
der), which cause a misalignment in language trans-
fer. In Seq2Seq decoding, changing word orders
results in different label order. To make the model
more robust on different word orders, we augment
the training data by shuffling the utterances and
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their corresponding labels. However, different from
prior works, we shuffle the utterances at the seg-
ment level, where words belonging to the same slot
is considered as one segment and adjacent words
that do not belong to any slot are considered an-
other segment.

3 Experiment

In this section, we evaluate our approach on a mas-
sive number of target languages.

3.1 Setup

Dataset. We adopt the MASSIVE (FitzGerald
et al., 2022) dataset, which consists of 51 lan-
guages, 18 domains, 60 intents, 55 slots and 19,521
utterance per language. We use English data for
training and development, data in all the other lan-
guages are used for testing.1 We report the intent
accuracy, micro-average slot F1 and exact match
accuracy.2

Baseline. We compare our method with both clas-
sification based and generation based methods. The
classification method based on XLM-R (Conneau
et al., 2020) formulates the joint task as sequence
classification and sequence tagging. Two classifi-
cation heads are added on top of the pre-trained
language model. The generation method based on
mT5 (Xue et al., 2021) generates the tag of each
word and the intent label in a sequence-to-sequence
manner. Following FitzGerald et al. (2022), we use
the base version of pre-trained models.

Implementation Details. We evaluate our method
based on mT5 with the original model-related
hyper-parameters. We follow the hyper-parameters
of FitzGerald et al. (2022) for training, except for
batch size, learning rate and epochs, which we set
to 96, 5e-5 and 200, respectively. We investigate
three design choices listed in Sec. 2. We found that
better label mapping and task dependency signifi-
cantly improves the model performance. However,
while input shuffle improves intent accuracy, the
slot F1 and exact match performance drop. In the
following, we will first compare our best model
(w/ label mapping and w/ task dependency) with
the current state-of-the-art approach, then we will
provide detailed ablation study.

1This setting is more strict than FitzGerald et al. (2022)’s,
where they use data in target languages for development.

2Exact match means both the intent and slots are correct.

3.2 Results

Tab. 1 shows the overall model performance on
MASSIVE. In comparison with the vanilla mT5,
our proposed techniques improve average intent
accuracy by 1.5%, average slot F1 by 10.7% and
average exact match accuracy by 5.2%. It also
changes the highest performing languages in terms
of slot F1 and exact match accuracy. These results
indicate that task order, label mapping, and other
key components in text generation have significant
influence on model performance when performing
sequence tagging in a sequence-to-sequence gener-
ation manner. The key differences between XLM-R
based and mT5 based methods are that the latter
ones use pre-trained token embeddings as labels
and generate each label conditioned on previously
generated labels. The vanilla mT5 performs much
worse than the prior SOTA method, XLM-R, on
all metrics. However, our method based on mT5
achieves better performance than XLM-R in terms
of average slot F1 (+5.0%) and exact match accu-
racy (+2.2%). The failure of vanilla mT5 further
shows the importance of well-designed inputs and
outputs. The lowest performing language is con-
sistent to be Japanese in all methods. Our method
improves slot F1 and exact match accuracy of the
lowest performing language.

Performance on Language Characteristics. We
further analyze the model performance on different
language characteristics. As shown in Fig. 2, our
method performs better than vanilla mT5 on 49
out of 50 languages, indicating it can improve the
cross-lingual transferability on massive target lan-
guages. Norwegian is the only language on which
our method performs slightly worse. We provide
detailed model performance on 9 language char-
acteristics in Appx. §A, where the languages are
split into 3 to 28 groups by each characteristic. Our
method improves the performance of all language
groups, except for Lolo-Burmese subdivision and
Burmese script which contain only Norwegian. We
observe that it is difficult to improve model perfor-
mance on the Japonic and Sino-Tibetan language
families when using English as source language.
Similarly, a prior work (Malkin et al., 2022) also
shows that English may not be an optimal pretrain-
ing language in cross-lingual transfer. We leave
finding the best general source language for fine-
tuning zero-shot models for future work.

Ablation Study. We also investigate the effective-

55



Model Intent Acc (%) Slot F1 (%) Exact Match Acc (%)
High Low Avg High Low Avg High Low Avg

mT5 79.9 ± 1.4 25.7 ± 1.6 62.9 ± 0.2 64.3 ± 0.7 13.9 ± 0.3 44.8 ± 0.1 53.2 ± 1.8 9.4 ± 1.0 34.7 ± 0.2
nl-NL ja-JP de-DE ja-JP sv-SE ja-JP

XLM-R 85.2 ± 1.3 44.8 ± 1.8 70.6 ± 0.2 68.4 ± 0.7 15.4 ± 0.3 50.3 ± 0.1 57.9 ± 1.8 9.8 ± 1.1 38.7 ± 0.2
sv-SE ja-JP sv-SE ja-JP sv-SE ja-JP

mT5* 80.6 ± 0.7 32.1 ± 0.9 64.8 ± 0.1 63.9 ± 0.3 14.7 ± 0.2 44.6 ± 0.1 54.1 ± 0.9 10.1 ± 0.6 35.7 ± 0.1
nl-NL ja-JP de-DE ja-JP sv-SE ja-JP

OURS
80.8 ± 0.7 24.6 ± 0.8 66.3 ± 0.1 71.6 ± 0.5 19.6 ± 0.2 55.3 ± 0.1 57.4 ± 0.9 10.2 ± 0.5 40.9 ± 0.1

nl-NL ja-JP th-TH ja-JP nl-NL ja-JP

Table 1: Zero-shot cross-lingual results on MASSIVE. We report intent accuracy, micro-averaged slot F1 score,
and exact match accuracy of highest language, lowest language and average of all target languages. Best average
scores are in bold. Intervals for 95% confidence are given assuming normal distributions. *: results reproduced by
us. Other baseline results are copied from the original paper.
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Figure 2: Exact match accuracy of all target languages. Our method performs better than vanilla mT5 on 49 out of
50 languages.

Method Intent Acc Slot F1 Exact Match

OURS 66.3 55.3 40.9

OURS w/ default label 67.0 52.5 39.7
OURS w/ slot first 64.6 57.5 37.1
OURS w/ input shuffle 67.5 52.6 40.1

Table 2: Ablation study. All intervals for 95% confi-
dence are within ± 0.1%.

ness of each proposed technique as shown in Tab. 2.
Input shuffle increases the diversity of inputs and
help the model to avoid overfitting English syntax.
Results show that it can improve the intent accu-
racy (+1.2%); however, it hinders predicting slots
accurately. Concise and hierarchical label mapping
improves the slot F1 significantly (+2.8%). Task or-
der also plays an important role. Generating slot la-
bels before the intent label for each utterance leads
to worse intent accuracy (-1.7%) but better slot F1
(+2.2%). We observe the subtask performance is
better when the model generates the subtask labels
first.

4 Related Work

Zero-shot cross-lingual joint intent classification
and slot filling is crucial for developing goal-

oriented dialogue systems for massive languages
with less manually annotation (Upadhyay et al.,
2018; Li et al., 2021; FitzGerald et al., 2022). Prior
works on this joint task can be summarized into
two lines. The first line follows a strict zero-shot
setting, where only the data in source languages are
used for training (Xu et al., 2020; Li et al., 2021;
FitzGerald et al., 2022). The second line uses ad-
ditional data consisting of words or utterances in
target languages for training, where the additional
data can be annotated data in target languages or
synthetic data by code-switching and automatic
translation (Upadhyay et al., 2018; Schuster et al.,
2019; Krishnan et al., 2021).

Our work follows the strict zero-shot setting.
Prior works either formulate the joint task as se-
quence tagging and applies pretrained cross-lingual
encoders (Pires et al., 2019; Conneau et al., 2020)
to solve it (Xu et al., 2020; Li et al., 2021; FitzGer-
ald et al., 2022), or formulate it as Seq2Seq gen-
eration and applies pretrained generative XLMs to
solve it (FitzGerald et al., 2022). Our work ana-
lyzes important variables in the output format of
the Seq2Seq method.
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5 Conclusion

In this paper, we examine three variables of output
format in Seq2Seq generation for zero-shot cross-
lingual joint intent classification and slot filling.
Experiments on the MASSIVE dataset consisting
of 51 languages show that all the variables have sig-
nificant influence on model performance. Specifi-
cally, the output format should use a concise and
hierarchical label mapping, and consider the label
dependency carefully.
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Limitation

In this paper, we analyze three aspects of the de-
sign of output format in Seq2Seq generation for
zero-shot transfer. There are other factors (e.g., de-
coding strategy) may also influence the model per-
formance and its transferablity. Besides, this paper
focuses on the output template of Seq2Seq genera-
tion in the cross-lingual transfer setting. We do not
consider and compare with other techniques such
as data augmentation methods for zero-shot cross-
lingual transfer (e.g., code-switching (Qin et al.,
2021) and robust training (Huang et al., 2021)).
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A Model performance on language
characteristics

We compare the performance of vanilla mT5 and
our method on different language characteristics,
including script (Fig. 3), subdivision (Fig. 4), fam-
ily (Fig. 5), order (Fig. 6), politeness (Fig. 7), im-
perative morphology (Fig. 8), imperative hortative
(Fig. 9), optative (Fig. 10) and prohibitive (Fig. 11).
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Figure 3: Exact match accuracy by language script.
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Figure 4: Exact match accuracy by language subdivi-
sion.
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Figure 5: Exact match accuracy by language family.
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Abstract

Voice assistants are becoming central to our
lives. The convenience of using voice assis-
tants to do simple tasks has created an indus-
try for voice-enabled devices like TVs, ther-
mostats, air conditioners, etc. It has also im-
proved the quality of life of elders by making
the world more accessible. Voice assistants en-
gage in task-oriented dialogues using machine-
learned language understanding models. How-
ever, training deep-learned models take a lot
of training data, which is time-consuming and
expensive. Furthermore, it is even more prob-
lematic if we want the voice assistant to un-
derstand hundreds of languages. In this paper,
we present a zero-shot deep learning algorithm
that uses only the English part of the Massive
dataset and achieves a high level of accuracy
across 51 languages. The algorithm uses delex-
icalized translation to generate a multilingual
parallel corpus with intent and slot labels for
data augmentation. The training data is fur-
ther weighted to improve the accuracy of the
worst-performing languages. We report on our
experiments with code-switching, word order,
multilingual ensemble methods and other tech-
niques and their impact on overall accuracy.

1 Introduction

Task-oriented languages have become standard in
voice-enabled devices and voice assistants. While
there has been extensive research on task-oriented
dialogue systems in limited domains, most of these
systems are built in a limited set of languages due
to a lack of labeled multilingual corpus. Ama-
zon’s MASSIVE dataset is a new resource for task-
oriented language understanding that has 996K ut-
terances annotated with intent and slot labels, along
with their translations into 51 languages. The MAS-
SIVE dataset is a unique resource for conducting
multilingual language understanding research, and
in particular building zero-shot learning algorithms
where using only one language data, the trained
system can perform language understanding tasks

in the rest of the unseen languages. The importance
of such training algorithms cannot be understated
– labeled data is expensive and time-consuming to
generate and hence any approach that reduces the
cost and time to train such a multilingual system is
desirable.

There are numerous hurdles in creating a zero-
shot multilingual language understanding system.
While machine translation systems can be used for
translating utterances and creating a parallel corpus
for training, aligning slot labels across languages
can be challenging. In addition, if we expect the
multilingual model representation to leverage in-
formation across languages, the input text represen-
tation needs to have the same tokenization process
across languages. Furthermore, low-density lan-
guages are hard to get open-source resources for.

In this paper, we first review the related work in
Section 2. Next, we address the issues listed above
by introducing a novel delexicalized annotated ut-
terance translation algorithm that is described in
Section 3. To align code representations across
languages, we randomly switched the language for
a small percentage of the words. Finally, we ex-
plored the possible impact of using all the utterance
translations instead of just one utterance in a spe-
cific language and were surprised by the accuracy
boost. These and other experiments and analyses
are described in Section 4.

2 Related Work

Transformer-based large multilingual masked lan-
guage models, such as mBERT (Devlin et al.,
2018), XLM (Lam- ple and Conneau, 2019) XLM-
R (Conneau et al., 2019; Goyal et al., 2021), and
mT5(Xue et al., 2020), have prevailed in cross-
lingual language understanding. These models are
pre-trained on a large multilingual text corpus to
create a language representation that allows cross-
lingual transfer on down-streaming tasks, such as
cross-lingual document classification (Schwenk
and Li, 2018; Pappas and Popescu-Belis, 2017),
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role labeling (Björkelund et al., 2009), question
answering (Kwiatkowski et al., 2019; Chen et al.,
2017; Lewis et al., 2019) and named entity recog-
nition (Nothman et al., 2013; Al-Rfou et al., 2015).
In the field of natural language understanding, Liu
and Lane and Chen et al. trained for intent clas-
sification and slot-filling tasks jointly to learn the
inherent correlation between the two tasks via mul-
titask learning. Castellucci et al. further used a
joint Bert-based model to detect intents and extract
slots for the multi-lingual scenario including En-
glish and Italian languages. However, systematic
work on massive languages datasets (51 locales in-
cluding sufficient variance of language order types
including subject-initial, verb-initial and no pre-
ferred word order) has not been paid enough atten-
tion until now due to the lack of labeled datasets.

With the availability of the MASSIVE
dataset (FitzGerald et al., 2022) with annotation
for slot-filling and intent classification, and virtual
assistant evaluation metrics and scoring tools, we
will able to push the state of the art of multilingual
natural language processing for a task-oriented
dialogue system (Razumovskaia et al., 2022; Tur
et al., 2010). To tackle the difficulty/high cost of
collecting low-resource language data previous
work (Xu et al., 2020; Upadhyay et al., 2018;
Schuster et al., 2018) explored the use of machine
translation to get translated data (Wu et al., 2016)
and utilize zero-shot learning (Palatucci et al.,
2009) to transfer the understanding learned on
one language to another language. However, the
correspondence across all languages in terms
of intent and slot alignment is insufficiently
incorporated into the training and inference
phases of the cross-lingual NLU model. In this
paper, we explore how to represent connection
among massive languages in the model. Besides,
inspired by the common code-switch behavior
and multilingual speakers and previous work
on learning cross-lingual structure (Heredia and
Altarriba, 2001; Wu et al., 2019; Auer, 2013),
we further explore the use of code-switch and
delexicalization as anchor points to bridge the
transfer learning among languages.

3 Method

3.1 Data Augmentation

Generated Parallel Corpus To train a zero-shot
learning model, using English data is not sufficient,
as can be seen in the low baseline results in Ta-
ble 1. To address the problem, we propose to utilize

Method Intent Slot F1 Exact Match

Baseline 70.6 % 50.3 % 38.7 %
GPC 79.7 % 58.8 % 40.3 %
GPC+DE 81.1 % 58.84 % 40.3 %

Table 1: This table shows the comparison between using
generated parallel corpus (GPC), delexicalization (DE)
and not using delexicalization. Baseline results are for
our implementation of Zero-shot Intent and Slot Predic-
tion algorithm by FitzGerald et al. (2022). We see that
augmenting the training data with the generated parallel
corpus (GPC) gives us a significant boost to intent and
slot accuracy. When we add delexicalized utterances in
addition to GPC, (GPC + DE), we get a further boost to
intent accuracy, but not much to slot accuracy.

Method
Full-Dataset

Intent Slot F1 Exact Match
Baseline 85.10 % 73.60 % 63.70 %

BOS 85.72 % 75.01 % 65.12 %
BOS + LO 85.87 % 74.75 % 65.20 %

Table 2: Objective Functions Results. We evaluated
three objective functions with the full dataset (instead
of zero-shot learning). Baseline results are for our im-
plementation of Intent and Slot Prediction algorithm
by FitzGerald et al. (2022). BOS means the Bag of
Slot and LO means the language word order prediction.
These objective functions give slight improvement to
slot accuracy.

Google Translator to translate English data to the
other 50 languages and create an annotated parallel
corpus. While translating an utterance is simple,
translating annotated utterances is difficult since the
alignment of the slots like “time” and “date” is not
always straightforward. Our solution is to delexi-
calize the slots in the given utterance (described in
Section 3.2) and use the delexicalized utterance as
input to Google Translator. Next, we create a look-
up table to map the delexicalized slots and the slot
values. We then translate the original slot values
into the target language. Finally, we use the lookup
table to substitute the translated slots values into
the corresponding delexicalized tags in the trans-
lated utterance. This process results in a translated
annotated utterance in the target language. Each
annotated English utterance is thus translated into
each of the 50 target languages while preserving
the intent and slot annotations.

Augmentation for Low-Performing Languages
Low-performing languages decrease the total per-
formance dramatically. Augmenting data for low-
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Language Order
Order-Specific Models All Language Model

Intent Slot F1 Exact Match Intent Slot F1 Exact Match
ALL - - - 85.66 % 75.12 % 65.35 %
SVO 86.23 % 74.54 % 64.84 % 86.18 % 74.65 % 65.00 %
SOV 75.69 % 63.67 % 50.53 % 85.11 % 74.50 % 64.60 %
VSO 66.55 % 64.69 % 43.20 % 84.00 % 72.43 % 62.14 %

Uncategorized 77.88 % 69.72 % 54.25 % 86.03 % 74.41 % 64.74 %
None 82.31 % 70.73 % 58.76 % 86.37 % 74.49 % 65.47 %

Table 3: Languages Word Order Results. Order-Specific Models mean the models are trained on a specific language
word order class and evaluated in the same class. All Language Model is trained jointly with all languages and
evaluated on a specific language word order. Using all languages improves accuracy.

performing languages is one possible approach to
address this issue. We collect the lowest perform-
ing ten languages and reweight the data by 2x and
5x.

3.2 Code Switching
To align model representation across languages,
researchers (Lee et al., 2019) have used the notion
of “code-switching,” where they randomly switch
the language of a small percentage of the words in
the training corpus. We used a similar approach in
our model training process. We identified common
stop words across languages and used their English
translations for random code-switching. For non-
space separated languages ("zh-CN", "zh-TW", "ja-
JP"), we do code-switching with 8%, while the
rest languages are with 16% of the words. Code-
switching potentially creates anchor points (the
common sequences in different languages) across
multiple languages and assists transfer learning.

3.3 Delexicalized Training Data
Earlier, we used slot delexicalization to generate
the parallel multilingual corpus for training data
augmentation. In this section, we use delexicaliza-
tion for a different purpose. We use slot delexical-
ization to learn slot usage patterns. We delexical-
ized the slots randomly. The various slot values are
replaced by slot types. For example, the annotated
utterance "Wake me up at [time : five am] [date
: this Friday]" is delexicalized to "Wake me up
at TIME_SLOT DATE_SLOT". We delexicalize
utterances in each language to learn shared features
in the multilingual dataset. We delexicalize the
input utterance slots with a probability of ϵ = 0.1
while training.

3.4 Objective Functions
We represented the problem as a multi-task recog-
nition problem. The models were initialized with

a pre-trained XLM-Roberta (XLM-R) (Conneau
et al., 2020) language model and fine-tuned it on
the MASSIVE dataset (mas). We then trained four
different classification heads from scratch: intent
and slots prediction, bag of slot labels, and lan-
guage order prediction in parallel.

Intent and Slot Prediction Our model is aimed
to do intent classification and slot-filling tasks in
the zero-shot scenario. We used the training pro-
cess described in mas. We use the English subset
of the data and augment it with our (generated) an-
notated parallel corpus as described in Section ??.
For intent classification, the model predicts the
intent by using the pooled output from the XLM-
R encoder which is the sentence-level embedding
vector. Then, the model predicts slot logits (as a
sequence labeling task) using XLM-R encoder rep-
resentations of each token in the utterance. Then
the CrossEntropy loss function is used to compare
the intent and slot logits with ground truth labels to
get the intent and slot loss.

Bag of Slot Labels (BOS) Since each utterance
has 51 translated versions, we leverage the con-
straint that all 51 utterances have the same in-
tent and slot labels. We batched the English ut-
terance and the corresponding utterances in other
languages into one block. The meaning of the utter-
ances in the unit is the same. The only difference is
that they are written in different languages. We ex-
pect the predictions within a unit to be as similar as
possible. Thus, in this block of parallel multilingual
utterances, ideally, each of the utterances should
predict the same slot labels. (Although the slot la-
bels across languages may not be aligned at each
token, the set of B-SLOTNAME and I-SLOTNAME
slot tags (in the BIO format) in each utterance in-
side a batch is the same as others. We represent the
bag of slot labels as a Dslots dimensional binary
vector with each location indicating which slots la-
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bels are present in an utterance, where Dslots is the
number of slot labels.) We collect 51 predictions
as the output of intent classification and slot filling.
Then we apply the CrossEntropy loss between the
51 intent predictions with ground truth.

Since the number of words in an utterance across
the 51 languages and their word order might be dif-
ferent, computing loss per token does not work
since the tokens are not aligned across languages.
Thus, we get the mean of 51 languages’ slot pre-
dictions and calculate the frequency of each slot
type among these 51 utterances. Computing the
CrossEntropy loss between the mean slot label pre-
dictions and the frequency might align the slot label
predictions across the 51 predictions.

Language Word Order Prediction (LO) Word
order is important in language. There are com-
plicated rules for ordering words in different lan-
guages: two same utterances in different languages
might generate large differences in the word’s po-
sition in the sentence. Some languages start a
sentence with the subject (S) following the verb
(V) and the object (O). Others might start with the
verb and end with the object. Therefore, we create
another head to predict the language word order
given an input utterance, training on the MASSIVE
dataset. There are 5 kinds of word order in the
MASSIVE dataset, SVO, SOV, VSO, none type,
and uncategorized. We compute the CrossEntropy
loss function between the order prediction and the
ground truth. This loss function acts as one of the
multitask among our objective functions.

4 Experiments and Results

4.1 Impact of Generated Parallel Corpus
The original baseline zero-shot algorithm de-
scribed in mas uses only the English subset of the
MASSIVE dataset and fine-tunes the multilingual
XLMR model. We first explore the impact of aug-
menting the English subset of MASSIVE dataset
with our generated (annotated) parallel corpus. In
Table 1 we can see that our data augmentation in-
creases the intent accuracy by 9.1% absolute and
improves the average slot F1 score by 8.5%.

4.2 Augmenting Delexicalized Utterances
Next, in addition to augmenting the data with the
generated parallel corpus, we added the delexical-
ized utterances. Table 1 shows that after applying
the delexicalization technique, the intent accuracy
increased by an absolute 2%. However, delexi-
calization barely improves the slot F1 score. The

delexicalized data represents utterance templates,
which the model learns, and perhaps helps with the
intent accuracy. It is unclear why the slot accuracy
was not impacted, perhaps a higher probability of
delexicalization will help.

4.3 Objective Functions Comparison

In this experiment, we evaluate three objective func-
tions by training on the full dataset from the MAS-
SIVE (not zero-shot) training setup and testing on
the corresponding test set, as shown in Table 2. The
baseline results of the Intent and Slot prediction ob-
jective function are our implementation of (FitzGer-
ald et al., 2022).

After including the Bag of Slot (BOS) objective
function, the Slot F1 score increased by 2%. The
main reason is that our model is capable of lever-
aging the shared information among 51 languages.
However, adding the language word order predic-
tion (LO) did not improve the performance. We
found that the accuracy of language word order
prediction is close to 100% and the loss is close
to 0. The implication is that the XLMR model
has learned to classify the language word order
very well. However, the constraint of predicting
language word order barely influenced the overall
result.

4.4 Language Word Order Prediction Results

In this experiment, instead of training all languages
jointly, we trained five different models correspond-
ing to the language word order. In FitzGerald
et al. (2022) the authors classified the language
word order into five classes, SVO, SOV, VSO, Un-
categorized, and None. According to results pre-
sented in Table 3, training a single SVO class model
gets a similar performance as training on all lan-
guages jointly, while other classes get worse re-
sults. The main reason is that languages in the
SVO class, like English, Spanish, etc., dominated
the dataset. XLMR pretrained model is capable of
understanding languages in the SVO class well. As
for other language word orders, there might be a
low-resource data problem while training the pre-
trained model that gives rise to a huge accuracy
difference with respect to SVO class languages. In
addition, training with all languages gives us better
performance than training with only one language.
The reason might be that training jointly makes the
model leverage common characteristics amongst
different language word orders.
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Method
Full-Dataset

Training Method Test Dataset Intent Slot F1 Exact Match
Amazon XLM-Base full-training MMNLU test 85.10 % 73.60 % 63.70 %
Amazon XLM-Base zero-shot MMNLU test 70.6 % 50.30 % 38.70 %

XLM-Base
+BOS+DE zero-shot MMNLU-22 test 81.55 % 59.26 % 40.49 %

XLM-Base+GPC
+BOS+DE+Ensemble zero-shot MMNLU-22 test 88.13 % 59.42 % 42.08 %

Table 4: Ensemble Result on MMNLU-22 Test Split. We evaluated our final model (the model with BOS and
DE in training, Ensemble in post-processing) with MMNLU-22 test split, which is the test split of MMNLU-22
competition zero-shot track. The model was trained with the GPC dataset. The result of Amazon XLM-Base’s
model using full data training and the result of Amazon XLM-Base using zero-shot training on en-US are referred
from the original MMNLU paper FitzGerald et al. (2022). BOS means the Bag of Slot, DE means delexicalized,
and GPC means generated parallel corpus. The ensemble strategy gives significant improvement to intent accuracy
on MMNLU-22 test set, making it even higher than Amazon’s full-training dataset baseline results on MMNLU test
set.

4.5 Post Processing with Ensemble Method

To leverage the characteristic of the parallel dataset,
we experimented with an ensemble technique.
Since for each utterance we have 50 translations
with the same intent, we make each language vote
for an intent and select the intent with the most
votes as the final intent for all 51 languages. As
a result (shown in Table 4), our model, including
three objective functions and the voting technique,
achieves 88.13%, 59.42%, and 42.08% for intent
accuracy, slot F1 score, and exact match accuracy,
respectively in MMNLU-22 test split1. In fact,
intent accuracy achieves a significant boost with
6.61% in comparison to the result without ensem-
ble strategy. We also see that the resulting intent
accuracy is higher even than Amazon’s baseline
full-training data set. The slot F1 score, though sig-
nificantly higher than Amazon’s zero-shot baseline,
is still much lower than the full-training data set
results. This is probably due to using translations
of English slot values to target languages. In our
experiment, we used the translations from English
to the target languages. However, to apply the vot-
ing technique in practice, we need to translate the
utterance in the input language to all other target
languages to elicit our model’s multi-perspective on
other languages and get a robust prediction through
the ensemble. This work is currently in progress.

1The website of the competition with leaderboard:
https://eval.ai/web/challenges/challenge-page/
1697/leaderboard/4061

5 Discussion and Future Work

How good is the delexicalized slot translation? One
approach to quantify this would be to generate an
annotated translation from English to language i
using Google translator and then translate it back
to English and then compute a BLEU score.

Our zero-shot ensemble method using generated
parallel corpus gives us better intent accuracy than
the baseline full-set result in (FitzGerald et al.,
2022). However, the slot accuracy is still much
lower. One of the reasons could be that the slot
values don’t translate well to other languages. For
example, a Christian name is not something that
will be common in Chinese data. Using language-
specific values probably will yield better results.

The ensemble method in a real-world setting re-
quires us to translate utterance t in language i, to
all other 50 languages. This requires to generate n2

translation, which is expensive on Google Trans-
late. For our experiment, we instead used the trans-
lations from English. One issue with this approach
could be that English-to-target language transla-
tion might be of better quality than the translation
of input language to a target language. Doing the
full experiment will be conclusive. Another draw-
back of the ensemble approach is the need for n
real-time translations and n parallel real-time runs.
However, one way to reduce this complexity is to
find a small subset of languages that we can use for
voting purposes.

6 Conclusion

We presented a zero-shot, multilingual, joint intent-
detection and slot-filling algorithm based on XLM-

66

https://eval.ai/web/challenges/challenge-page/1697/leaderboard/4061
https://eval.ai/web/challenges/challenge-page/1697/leaderboard/4061


R Transformer and Amazon’s MASSIVE dataset.
We showed that our delexicalized translation ap-
proach to generating a parallel corpus for data aug-
mentation is a viable approach for training zero-
shot algorithms. We showed that training using
data from all language order types gives superior
accuracy than using only a single language order
type data in most cases – n MASSIVE data, the
SVO category performed equally well when us-
ing just the SVO subset. Furthermore, our exper-
iments showed that using an ensemble approach
with translations of the input utterance can lead to
a significant gain in accuracy.
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Abstract
We expect to interact with home assistants ir-
respective of our language. However, scaling
the Natural Language Understanding pipeline
to multiple languages while keeping the same
level of accuracy remains a challenge. In this
work, we leverage the inherent multilingual as-
pect of translation models for the task of multi-
lingual intent classification and slot filling. Our
experiments reveal that they work equally well
with general-purpose multilingual text-to-text
models. Furthermore, their accuracy can be fur-
ther improved by artificially increasing the size
of the training set. Unfortunately, increasing
the training set also increases the overlap with
the test set, leading to overestimating their true
capabilities. As a result, we propose two new
evaluation methods capable of accounting for
an overlap between the training and test set.

1 Introduction

Home assistants are omnipresent in everyday life.
We expect to have an assistant at our disposal at any
time using our phone, watch, or car — irrespective
of our language.

Scaling home assistants to multiple languages
brings additional challenges to NLU and ASR com-
ponents. There are two options: a single model per
language or a shared model for all languages. A
single model per language works well for resource-
rich languages such as English. However, lower
resource languages benefit from the cross-lingual
knowledge transfer of a single model dealing with
all languages (Conneau et al., 2020). This trade-off
applies to any multilingual system (Zhang et al.,
2022; De Bruyn et al., 2021).

While multilingual intent classification and slot
filling datasets exist, their language coverage is
limited, except for MASSIVE (FitzGerald et al.,
2022), a new dataset focused on multilingual intent
detection and slot filling. The authors translated
and localized an English-only dataset in 50 topo-
logically diverse languages. MASSIVE provides

Figure 1: Illustration of our method. We repurpose a
translation model for the task of multilingual intent clas-
sification and slot filling. We translate from utterances
into annotated utterances.

a good base to scale existing intent detection and
slot filling methods to multiple languages.

The traditional way to tackle multilingual intents
detection and slot filling is to use multilingual mod-
els such as XLM-R (Conneau et al., 2020), or mT5
(Xue et al., 2021). These models are similar to their
monolingual counterparts (Liu et al., 2019; Raffel
et al., 2020) except for the multilingual data used
to train them.1 This approach has been shown to
work in multiple studies (FitzGerald et al., 2022;
Li et al., 2021). However, MASSIVE has an ad-
ditional overlooked aspect: utterances are direct
translations of one another.

In this work, we approach the task of intent clas-
sification and slot filling as a translation task: we
translate the original utterance into the annotated
utterance. For example, we translate the utterance
what is the temperature in new york? into
the annotated utterance weather_query|what is
the [weather_descriptor : temperature] in
[place_name : new york].2

The typical use of translation models for intent
detection and slot filling is to augment the size
of an existing dataset (Zheng et al., 2021; Nicosia
et al., 2021). However, we believe the inherent mul-
tilingual capabilities of these models make them
excellent candidates for multilingual intent detec-

1They also have larger vocabularies and may have special
training tricks for cross-lingual training.

2We prepend the slot annotated utterance with the intent.
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tion and slot filling.
To this end, we leverage the recently re-

leased translation model No Language Left Behind
(NLLB) (NLLB Team et al., 2022) capable of trans-
lating between 202 pairs of languages simultane-
ously using a shared encoder-decoder. We antici-
pate that the wide range of languages covered by
the model will help us deal with lower resources
languages present in the MASSIVE dataset.

Better modeling is only half the story. Using
more data also helps improve performance. For
example, although the MASSIVE dataset displays
a large training set of more than 500K training
examples, the seed data is only around 10K training
examples. Therefore, we used GPT-3 (Brown et al.,
2020) to generate additional training data using a
dual-model approach. We also leveraged a dataset
close to the seed dataset of MASSIVE. As a result,
after translating our new training examples to the
50 remaining languages, our training set contains
more than 2M training examples — 4x the size of
the original training set.

Our experiments reveal that translation models
such as NLLB are a good fit for intent classification
and slot filling. However, their performance sharply
drops in languages that do not use spaces because
of tokenization issues.

Unfortunately, the additional training data signif-
icantly overlaps with the MASSIVE test set. As a
result, we propose two methods capable of dealing
with overlaps: weighted exact match and logistic
regression.

We conclude this introduction by summarizing
our contributions:

• We showed that a translation model such as
NLLB can complete the task of intent classifi-
cation and slot filling

• We demonstrated a method to improve the
training data with GPT-3

• We proposed two new evaluation methods tak-
ing the training/test set overlap into account

We release our model3, utterance translation
model4, and generated data5 on the HuggingFace
hub.

3maximedb/nllb_massive
4maximedb/massive_en_translation
5maximedb/massive_generated

2 Related Work

The problem of multilingual intent detection and
slot filling is not new. (Razumovskaia et al., 2022)
provides an excellent introduction to the subject.
We divide our related work section into three parts.
We start by reviewing the general problem of task-
oriented semantic parsing (i.e., intent detection and
slot filling). Next, we review the models commonly
used, and lastly, we review the available multilin-
gual datasets.

2.1 Task Oriented Semantic Parsing

Natural Language Understanding (NLU) systems
aim to classify an utterance into a predefined set
of intents and label the sequence with a predefined
ontology of slots (McTear, 2020). Since the release
of the ATIS dataset (Price, 1990), this problem has
been studied in numerous previous work (Mesnil
et al., 2013; Liu and Lane, 2016; Zhu and Yu, 2017).
However, it has recently been shown that the flat
structure of sequence labeling falls short when a
user issues sub-queries, or compositional queries,
e.g., set up a reminder to message mike
tonight6 Gupta et al. (2018) solves that problem
by using hierarchical representations instead.

2.2 Translation Models

Previous work tackling multilingual intent detec-
tion and slot filling uses multilingual versions
of well-known Transformers such XLM-Roberta
(Conneau et al., 2020), mT5 (Xue et al., 2021), or
mBART (Liu et al., 2020). We diverge from exist-
ing research and use machine translation models
instead. (Fan et al., 2021) released M2M100, a
model capable of translating between pairs of 100
languages using a single shared encoder-decoder
model. Instead of mainly going from and to En-
glish, the authors use a dataset that covers thou-
sands of language pairs. M2M100 was later im-
proved by the release of No Language Left Behind
(NLLB) (NLLB Team et al., 2022), which follows
the same architecture as M2M100 but covers 202
languages.

2.3 Cross-Lingual Task Oriented Semantic
Parsing

Although the initial dataset for intent classification
and slot filling targeted English, the number of non-
English datasets is growing rapidly. Non-English

6Two intents compose that query: create a reminder and
send a message to mike.
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datasets fall into two broad categories: non-English
monolingual datasets (Meurs et al., 2008; Castel-
lucci et al., 2019; Bellomaria et al., 2019; Zhang
et al., 2017; Gong et al., 2019; He et al., 2013;
Dao et al., 2021) and multilingual datasets. As we
aim to study models capable of handling multiple
languages simultaneously, we focus on the latter
kind of datasets. We will now cover the existing
multilingual datasets in greater detail. Upadhyay
et al. (2018) translated an existing English dataset
(Price, 1990) into Turkish and Hindi, while Su-
santo and Lu (2017) translated the same dataset
in Vietnamese and Chinese. Schuster et al. (2019)
released a multilingual dataset for task-oriented
dialogues in English, Spanish, and Thai across
three domains. (Li et al., 2021) provides MTOP a
new aligned task-oriented dataset in six languages.
MASSIVE (FitzGerald et al., 2022) is the largest
available dataset, covering 51 languages.

3 Data

There exist multiple alternative datasets to study
multilingual intent detection and slot filling. How-
ever, in this work, we use the largest one available:
the MASSIVE dataset.

3.1 MASSIVE
MASSIVE (FitzGerald et al., 2022) is a dataset
assembled by translating and localizing an existing
English-only dataset in 50 topologically different
languages.

English Seed MASSIVE is a translation of the
English-centric SLURP dataset (Bastianelli et al.,
2020). SLURP is a dataset of non-compositional
queries directed at a home assistant. It covers 18
domains, 60 intents, and 55 slots.

Languages The authors of MASSIVE hired pro-
fessional translators to translate the SLURP dataset
into 50 topologically diverse languages from 29
genera. Furthermore, to complicate the task, the
translators sometimes localized the queries instead
of simply translating them.

3.2 English Data Augmentation
As the seed data of MASSIVE is limited in scale
(10K training examples), we used two methods to
increase the training set artificially.

3.2.1 Generated Data
Generator We first fine-tune a GPT-3 (Brown
et al., 2020) curie (13B) model on the task of gener-

ating an English utterance conditional on the given
intent. For example, we train the model to gener-
ate wake me up at nine am given the prompt
alarm_set.

Parser Next, we fine-tune a second GPT-3 curie
model on intent detection and slot filling tasks.
Given an utterance, the model must generate
the concatenation of the intent and the anno-
tated utterance. For example, given the prompt
what is the temperature in new york?
must generate weather_query|what is the
[weather_descriptor : temperature] in
[place_name : new york].

Dataset We generate 30,000 utterances, equally
distributed amongst the 60 intents. After removing
duplicates and examples where the two models do
not agree on the intent, we arrive at a final dataset
of 22,276 annotated English utterances.

Intent & Slots Distribution Although we gen-
erated an equal amount of utterances per intent,
removing duplicates skewed the distribution. How-
ever, comparing the entropy of both distributions
with MASSIVE reveals that our generated dataset
is more equally spread amongst the intents but less
equally distributed relative to the slots.7 See Annex
A for a detailed analysis and comparison with the
MASSIVE dataset.

3.2.2 Synthetic Data
The SLURP dataset provides a synthetic dataset.8 It
is not part of the official training set, but as it shares
the same ontology as MASSIVE, it provides an
excellent extension to our training set. We compare
the intent and slot distribution with MASSIVE in
Annex A.

3.3 Non-English Data Augmentation
We explained in Section 3.2 our method to artifi-
cially increase the size of the (English) training set.
This section reviews our method to scale this silver
training set to the 50 remaining languages in the
MASSIVE dataset.

Using commercial translation systems was not
an option as this requires aligning the slots in the
translated utterances — a complicated task. Instead,
we fine-tune a translation model, NLLB (3B), on
the task of translating annotated utterances directly.

7Our generated dataset has an intent distribution entropy
of 4.02 and a slot distribution entropy of 3.10 compared to
3.75 and 3.21 for MASSIVE.

8https://github.com/pswietojanski/slurp/tree/master/dataset/slurp

71



Using this method, we translate annotated utter-
ances and reconstruct the utterances by removing
the slot annotations from the text. Our translation
model is available on the HuggingFace Hub.9

4 Model

This work uses a machine translation model for
intent detection and slot filling. No Language Left
Behind (NLLB) (NLLB Team et al., 2022) is a
model specifically targeted at translating between
202 languages using a single encoder-decoder
model based on the M2M100 architecture (Fan
et al., 2021). It can translate text in 40,602 differ-
ent directions.

Data NLLB uses FLORES-200 as training data,
an extension of FLORES-100 (Goyal et al., 2022).
The authors of FLORES-200 used LASER3 (Hef-
fernan et al., 2022) to mine parallel data from the
web, resulting in 1.1 billion sentence pairs.

Tokenization NLLB uses a sentencepiece tok-
enizer (Kudo and Richardson, 2018) with a vocab-
ulary size of 256,000. To ensure low-resource lan-
guages are well-represented in the vocabulary, the
authors downsample high-resource and upsample
low-resource languages.

Architecture NLLB’s architecture is based on
the Transformer encoder-decoder (Vaswani et al.,
2017). NLLB is trained on several translation di-
rections at once, utilizing the same shared model
capacity. This architecture can lead to beneficial
cross-lingual transfer between related languages
at the risk of increasing interference between un-
related languages. The authors also present a
Sparsely Gated Mixture of Experts (MoE) (Alma-
hairi et al., 2016; Bengio et al., 2013). However,
we did not experiment with this variant.

Distillation The authors distilled a 54 billion pa-
rameter model using MoE into smaller dense mod-
els of 1.3 billion and 615 million parameters using
online distillation (Hinton et al., 2015). The student
model is trained on the training data but with an
additional objective: to minimize the cross-entropy
to the word-level distribution of the teacher model.
We use the distilled 615M parameter model as the
base model for intent classification and slot filling.

9For anonymity reasons, we will release the URL upon
acceptance of this paper.

5 Experiments

This section describes our experiments in applying
NLLB to the task of intent classification and slot
filling. NLLB is a translation model. While we
could repurpose NLLB to the task of intent classi-
fication and slot filling directly, we choose to first
pre-train it on a translation task.

5.1 Pre-training

As NLLB is, at its core, a translation model, we
start by teaching it to translate between the aligned
pairs of the MASSIVE dataset. Instead of trans-
lating between the utterances of two languages,
we translate between the utterance and the anno-
tated utterance. For example, the model must trans-
late "tell me the time in moscow," to the French
annotated utterance datetime_query|donne moi
l’heure à [place_name: moscou]. We take
special care in avoiding localized utterances, as this
would confuse the model. For example, we avoid
predicting datetime_query|donne moi l’heure
à moscou bordeaux.

5.2 Fine-tuning

In a second step, we fine-tune the model on the
task of translating between the utterance and the
annotated utterance in the same language. For ex-
ample, we translate the utterance what is the
temperature in new york? into the anno-
tated utterance weather_query|what is the
[weather_descriptor : temperature] in
[place_name : new york].

5.3 Technical Details

We use the NLLB-200 (600M) model for
all experiments.10 We wrap each encoder
input according to the following formula:
<s>...</><language_code>. We prepend each
decoder input with the target language code. We
train for 50,000 steps during pre-training and
fine-tuning with a learning rate of 1e−4 and 1e−5,
respectively. We use Pytorch (Paszke et al., 2019),
the HuggingFace Trainer (Wolf et al., 2020) and
DeepSpeed (Rajbhandari et al., 2020).

6 Results

This section presents a high-level analysis of our
results. Table 1 compares our results against the
baselines provided by the authors of MASSIVE.

10facebook/nllb-200-distilled-600M
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Model Training Set Intent Acc (%) Slot F1 (%) Exact Match (%)
High Low Avg High Low Avg High Low Avg

XLM-R M 88.3 77.2 85.1 83.5 63.3 73.6 70.1 55.8 63.7
mT5 Enc. M 89.0 79.1 86.1 85.7 64.5 75.4 72.3 57.8 65.9
mT5 M 87.9 79.0 85.3 86.8 67.6 76.8 73.4 58.3 66.6
NLLB M+G 89.3 79.2 87.3 85.9 66.3 77.0 74.1 57.8 68.3
NLLB M+G+S 94.5 84.5 93.4 82.9 69.6 82.9 89.2 65.0 78.5

Table 1: Modelling results on the MASSIVE test set. NLLB trained on the MASSIVE training set (M), our generated
dataset (G) and the synthetic training set from SLURP (S) achieve the highest scores. However, as we show in a
later section, this outperformance is due to a large overlap with the MASSIVE test set.

Our experiments reveal that NLLB performs sim-
ilarly to mT5 on intent detection and slot filling
tasks. Furthermore, our two data augmentation
strategies improve the results on the MASSIVE
test set. First, training with our generated training
set improves the locale average exact match from
66.6 to 68.3. Second, training with the generated
and synthetic data boosts the exact match as it im-
proves from 68.3 to 78.5. As we show in the next
section, this performance boost is mainly due to a
large overlap between the training and test set.

7 Training & Test Set Overlap

This section analyses the similarity between the
training sets and the MASSIVE. Next, we look for
evaluation methods capable of correcting for the
overlap between the training and test set.

Exact Duplicates An analysis of the data reveals
problematic overlaps between the training sets and
the MASSIVE test set. However, this overlap is un-
equal across the training sets and languages. Table
2 shows the percentage of examples in the MAS-
SIVE test set, which are also present in our three
training sets. The English subset of the MASSIVE
test set overlaps highly with the synthetic train-
ing set described in Section 3.2.2. Localization
and translation somewhat reduce the exact match
overlap when looking at all languages, although
it remains high. The MASSIVE and generated
training sets also have a non-zero overlap with the
MASSIVE test set.

Close Duplicates Some examples may not be ex-
act duplicates but close duplicates. For example,
call the dentist and olly please call the
dentist now. We use character n-grams to mea-
sure the similarity between two utterances as simi-
larity metric between two utterances. We search for
the most similar training example for each example

Training Set en-US (%) All Locales (%)
MASSIVE 0.7 5.9
Generated 5.6 6.4
Synthetic 49.0 12.8

Table 2: Exact duplicate analysis. Percentage of exam-
ples in the MASSIVE test set, which are also present
in the training set of MASSIVE, our generated training
set, and the synthetic training set. Translation reduces
the overlap of the synthetic dataset compared to the
English-only figures. However, it is the opposite for the
MASSIVE test set, where the overlap is higher for all
locales compared to English only.

in the test and record their n-gram similarity.11 Fig-
ure 2 shows the distribution of maximum similarity
between the test set and our three training sets for
the English subset and across all locales. It is clear
from Figure 2 that the English synthetic dataset
overlaps significantly with the English MASSIVE
test set. However, as for the exact duplicates, the
translation and localization process reduces this
overlap but does not eliminate it.

A naive solution would be to remove training ex-
amples that overlap with the test set. However, how
does one decide what is a close duplicate? Further-
more, as the training set grows, some overlap with
the test is inevitable. We argue that the problem is
not the training data but the evaluation metric. We
need an evaluation metric capable of controlling
for the overlap between the test and training sets.

7.1 Logistic Regression

Instead of looking at the simple exact match accu-
racy, we want to express the exact match accuracy
as a function of the test/train similarity. One po-
tential solution is to use logistic regression with
similarity as the independent variable and exact
match as the dependent variable.

11We do this search on a per-language basis.
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Figure 2: Box plot of the maximum similarity between
examples in the MASSIVE test set with the training
set of MASSIVE (M), Generated (G) and Synthetic (S),
for the English part and the entire dataset (all locales).
The English synthetic (S) training set overlaps highly
with the MASSIVE test set. Translation and localization
reduces this overlap in the all-locales dataset.

Training S. β0 β1 R2

M+G -0.96±0.03 3.31±0.06 0.07
M+G+S -0.69±0.03 3.14±0.06 0.08

Table 3: We report the logistic regression results for two
NLLB models fine-tuned on the training set of MAS-
SIVE (M), generated (G), and synthetic (S). We report
the point estimate and the 95% confidence interval for
each parameter. After correcting for any overlap be-
tween the training and test set, the second is statistically
better than the first.

p(x) =
1

1 + e−(β0+β1x)
(1)

Where p(x) represents the probability of an ex-
act match, β0 represents the intercept and β1 the
slope. Using this method, we can compare both
models at the same level of similarity.

Results Table 3 presents a summary of the logis-
tic regression results. We report the point estimate
and confidence interval for both β0, β1 and the
pseudo R2 given by statsmodels (Seabold and
Perktold, 2010). Using Equation 1, we can esti-
mate the performance of both models at multiple
levels of similarity, as shown in Figure 3.

According to Table 3 and Figure 3, the model
trained on the three training datasets is better than
the one trained only on two — taking the overlap
into account. However, these numbers also indicate
that both models struggle with utterances dissim-
ilar to the training set. Moreover, they achieve an
exact match accuracy lower than random chance
on dissimilar utterances — casting doubt on their
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Figure 3: Exact match probability at three levels of
similarity: 0, 0.5, and 1.0. We used Equation 1 with the
estimated parameters from Table 3. Model two is better
than model one on dissimilar utterances. However, the
difference diminishes when the similarity increases.

Training Set Weighted Average (%)
M+G 59.2
M+G+S 67.2

Table 4: We report the weighted average results for two
NLLB models fine-tuned on the training set of MAS-
SIVE (M), generated (G), and synthetic (S). The second
model is better than the first even after correcting for its
high overlap with the training set.

abilities to generalize to unseen utterances.

7.2 Weighted Average

Another possibility is to give less importance to
test examples similar to the training set.

n∑

i=1

wi ∗ exact_matchi∑n
i=1wi

(2)

where wi = 1− simi.

Results Table 4 displays the results according
to the weighted average metric. According to this
metric, the second model outperforms the first one.
This metric is easy to understand. However, it
does not tell us anything about the performance of
dissimilar queries.

7.3 Summary

According to our overlap-aware evaluation metrics,
the model trained on the synthetic datasets is the
most performant, even after correcting for its high
overlap with the test.
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Language Intercept Num. Token Split R-Squared
ja-JP 0.85* -0.16* 0.013
zh-CN 0.58* -0.15* 0.006
zh-TW 0.11 -0.03 0.000

Table 5: Logistic regression of exact match accuracy explained by the number of split token. The number of split
token negatively influence the capability of the token to correctly parse the slots for ja-JA and zh-CN. The coefficient
are not significantly different than zero for zh-TW. Starred numbers (*) are statistically different than zero with a
p-value of 0.05

Figure 4: Our method does not scale well to non-space
delimited languages. For example, in the utterance
above, the time slot ends in the middle of a token. To
correctly parse the utterance, the model must replace
token 20202 (時に) by tokens 249229 (時) and 5954
(に).

8 Error Analysis

8.1 Tokenization

Our formatting of input and output consists of sur-
rounding slots with brackets along with the slot
name (e.g., [place_name : new york]. This
method implies that slots’ boundaries align with to-
kenization. Otherwise, the model cannot correctly
place the opening or closing bracket — unless it
uses a different token than the ones in the source
utterance. See Figure for an example.

We identified three languages for which this
problem occurs: ja-JP in 66% of the test set, zh-CN
in 66% of the test set, and zh-TW in 69% of the
test set. These are three languages that do not use
spaces between words.

Similar to Section 7.1, we ran a logistic regres-
sion to explain the exact match performance by the
number of split tokens. Table 5 shows the results.
We identified a statistically significant relationship
between the number of split tokens and the exact
match performance for ja-JP and zh-CN. The per-
formance of zh-TW is low regardless of the number
of split tokens.

8.2 Generalization

Section 7.1 demonstrated that models struggle to
generalize to utterances dissimilar to the training
set. In this section, we decompose this conclu-
sion by languages. Figure 5 decomposes Figure
3 by languages. It shows the probability of an ex-
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Figure 5: Exact match probability at three levels of
similarity: 0, 0.5, and 1.0. We used Equation 1 with the
estimated parameters from Table 3. Model two is better
than model one on dissimilar utterances. However, the
difference diminishes when the similarity increases.

act match on the test set by increasing levels of
similarity to the training set. Figure 5 shows a
wide distribution of probabilities for low similar-
ity utterances (6% standard deviation), while the
distribution for highly similar utterances is more
concentrated (3% standard deviation). Some lan-
guages do better than others. For example, km-KH
achieves an exact match probability of 44% at a
similarity of 0.0 while vi-VN only achieves a an
exatch match probability of 15%. We list the full
details of Figure 5 in Appendix B.

9 Future Work

In this work, we estimated the similarity between
two utterances using character n-grams. However,
while this captures lexically similar utterances, it
fails to capture utterances semantically similar but
lexically different. For example, these two utter-
ances are highly similar, although they only share
a single common token: what time is it? and
tell me the time. Future work can tackle this
by using multilingual sentence encoders such as
LASER3 (Heffernan et al., 2022), Multilingual
Universal Sentence Encoder (Yang et al., 2020),
or multilingual models on Sentence Transformers
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(Reimers and Gurevych, 2020).
This work did not explicitly address cross-

lingual training and instead relied on the cross-
lingual pre-training of the translation model. Future
work could combine a translation model with cross-
lingual training methods such as xTune (Zheng
et al., 2021), or X-Mixup (Yang et al., 2022).

Section 8.1 showed the limitation of subword
tokenization methods. Future work could explore
methods which do not uses subword tokenization
such as byT5 (Xue et al., 2022).

10 Conclusion

In this work, we showed that a translation model
such as NLLB can perform the task of intent clas-
sification and slot filling. Because of tokenization
issues, it is, however, suboptimal with non-spaced
languages.

Moreover, we showed that artificially increas-
ing the training sets’ size leads to improved per-
formance. Unfortunately, we also show that this
added data can overlap with the existing test set,
distorting the true evaluation of these models. The
normal way to overcome this problem is to remove
the overlap from the training set. However, decid-
ing on what constitutes an overlap remains an open
question. Therefore, we argued that the data over-
lap is not the problem — the evaluation metric is.
As a result, we proposed two evaluation metrics
that control the training/test overlap. Both metrics
reveal that the model trained on overlapped data
improves the results on non-overlapped data. How-
ever, our analysis also reveals that these models
struggle to beat random chance when evaluated on
utterances dissimilar to the training set.
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A Distribution of Intents & Slots

We list in Table 6 the distribution of intents across
the three datasets. Table 7 shows the distribution
of slots across the three datasets.

B Logistic Regression by Languages

We list the results of the logistic regression by lan-
guage in Table 8.
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Intent MASSIVE Generated Synthetic
calendar_set 7,0% 2,6% 3,6%
play_music 5,5% 2,2% 3,3%
weather_query 5,0% 2,0% 3,0%
calendar_query 4,9% 2,2% 2,4%
general_quirky 4,8% 1,7% 5,2%
qa_factoid 4,7% 2,0% 8,3%
news_query 4,4% 2,1% 2,5%
email_query 3,6% 2,2% 12,0%
email_sendemail 3,1% 2,4% 11,1%
datetime_query 3,0% 1,5% 1,4%
calendar_remove 2,7% 2,1% 1,1%
play_radio 2,5% 2,1% 1,5%
social_post 2,5% 2,4% 8,7%
qa_definition 2,3% 2,2% 3,7%
transport_query 2,0% 2,3% 1,1%
cooking_recipe 1,8% 2,2% 1,2%
lists_query 1,7% 1,5% 1,0%
play_podcasts 1,7% 1,5% 1,0%
recommendation_events 1,7% 2,0% 0,9%
alarm_set 1,6% 1,8% 0,6%
lists_createoradd 1,5% 1,7% 0,6%
recommendation_locations 1,5% 2,3% 0,9%
lists_remove 1,4% 1,7% 0,9%
music_query 1,3% 1,3% 0,6%
iot_hue_lightoff 1,3% 1,3% 0,6%
qa_stock 1,3% 2,5% 2,7%
play_audiobook 1,3% 2,0% 0,3%
qa_currency 1,2% 2,2% 3,3%
takeaway_order 1,2% 2,1% 0,4%
alarm_query 1,1% 1,3% 0,2%
email_querycontact 1,1% 2,0% 3,3%
transport_ticket 1,1% 1,8% 0,6%
iot_hue_lightchange 1,1% 2,1% 0,7%
iot_coffee 1,1% 1,2% 0,5%
takeaway_query 1,1% 1,8% 0,5%
transport_traffic 1,0% 1,8% 0,4%
music_likeness 1,0% 1,5% 0,5%
play_game 1,0% 1,7% 0,7%
audio_volume_up 1,0% 1,2% 0,1%
audio_volume_mute 1,0% 1,5% 0,3%
social_query 0,9% 2,0% 2,8%
transport_taxi 0,9% 1,9% 0,5%
iot_cleaning 0,8% 1,4% 0,4%
alarm_remove 0,7% 1,8% 0,2%
qa_maths 0,7% 1,7% 0,8%
iot_hue_lightup 0,7% 1,3% 0,4%
iot_hue_lightdim 0,7% 1,4% 0,4%
general_joke 0,6% 1,3% 0,3%
recommendation_movies 0,6% 2,0% 0,4%
email_addcontact 0,5% 1,3% 1,4%
iot_wemo_off 0,5% 0,8% 0,2%
datetime_convert 0,5% 1,6% 0,2%
audio_volume_down 0,5% 1,1% 0,1%
music_settings 0,4% 0,9% 0,2%
iot_wemo_on 0,4% 1,0% 0,2%
general_greet 0,2% 0,2%
iot_hue_lighton 0,2% 1,0% 0,1%
audio_volume_other 0,2% 0,6% 0,0%
music_dislikeness 0,1% 0,9% 0,1%
cooking_query 0,0% 0,0% 0,0%

Table 6: Distribution of intents across the three datasets. Generated represents the utterances generated by GPT-3,
while synthetic represents the synthetic training set of SLURP.

80



Intent MASSIVE Generated Synthetic
date 16,0% 10,8% 10,7%
place_name 9,6% 10,6% 8,0%
event_name 8,8% 4,3% 5,5%
person 7,6% 5,4% 17,2%
time 7,0% 5,8% 4,1%
media_type 4,2% 5,4% 9,5%
business_name 3,4% 5,7% 7,6%
weather_descriptor 2,8% 1,1% 1,5%
transport_type 2,8% 5,0% 1,2%
food_type 2,6% 4,2% 1,4%
relation 2,2% 2,3% 4,8%
timeofday 2,1% 2,0% 1,3%
artist_name 2,0% 0,8% 1,2%
device_type 2,0% 3,4% 1,1%
definition_word 2,0% 2,0% 3,5%
currency_name 1,9% 3,8% 5,7%
house_place 1,7% 3,8% 0,8%
list_name 1,7% 1,8% 0,9%
business_type 1,7% 2,8% 0,8%
news_topic 1,6% 0,7% 1,1%
music_genre 1,6% 0,9% 1,0%
player_setting 1,4% 2,1% 0,5%
radio_name 1,2% 1,1% 0,9%
song_name 1,1% 0,3% 0,7%
order_type 0,9% 1,6% 0,3%
color_type 0,9% 1,7% 0,4%
game_name 0,8% 1,3% 0,6%
general_frequency 0,7% 0,3% 0,4%
personal_info 0,7% 1,2% 2,0%
audiobook_name 0,6% 0,9% 0,2%
podcast_descriptor 0,6% 0,6% 0,3%
meal_type 0,6% 0,4% 0,4%
playlist_name 0,5% 0,1% 0,3%
podcast_name 0,5% 0,4% 0,3%
time_zone 0,5% 1,1% 0,2%
app_name 0,4% 0,3% 0,1%
change_amount 0,4% 0,9% 0,1%
music_descriptor 0,4% 0,2% 0,2%
joke_type 0,3% 0,8% 0,2%
email_folder 0,3% 0,2% 0,9%
email_address 0,3% 0,4% 1,4%
transport_agency 0,3% 0,5% 0,2%
coffee_type 0,2% 0,2% 0,1%
ingredient 0,2% 0,1% 0,1%
cooking_type 0,1% 0,1% 0,1%
movie_name 0,1% 0,1% 0,1%
movie_type 0,1% 0,2% 0,0%
transport_name 0,1% 0,1% 0,1%
drink_type 0,1% 0,1% 0,0%
alarm_type 0,1% 0,1% 0,0%
transport_descriptor 0,1% 0,0% 0,0%
audiobook_author 0,1% 0,2% 0,0%
sport_type 0,0% 0,0% 0,0%
music_album 0,0% 0,0%
game_type 0,0% 0,0% 0,0%

Table 7: Distribution of slots across the three datasets. Generated represents the utterances generated by GPT-3,
while synthetic represents the synthetic training set of SLURP.
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language β0 β1 R2 f(x = 0) f(x = 0.5) f(x = 1)
all -0.69 3.14 0.08 0.33 0.71 0.92
af-ZA -0.98 4.01 0.11 0.27 0.74 0.95
am-ET -0.46 3.09 0.06 0.39 0.75 0.93
ar-SA -0.58 3.01 0.07 0.36 0.72 0.92
az-AZ -0.55 3.24 0.08 0.37 0.75 0.94
bn-BD -1.27 3.71 0.10 0.22 0.64 0.92
cy-GB -0.66 3.37 0.08 0.34 0.74 0.94
da-DK -0.95 4.13 0.12 0.28 0.75 0.96
de-DE -0.65 3.58 0.09 0.34 0.76 0.95
el-GR -0.92 3.64 0.09 0.28 0.71 0.94
en-US -1.45 4.93 0.21 0.19 0.73 0.97
es-ES -0.60 2.99 0.07 0.36 0.71 0.92
fa-IR -0.96 2.70 0.06 0.28 0.60 0.85
fi-FI -0.86 3.80 0.10 0.30 0.74 0.95
fr-FR -0.37 2.65 0.05 0.41 0.72 0.91
he-IL -0.72 3.44 0.08 0.33 0.73 0.94
hi-IN -0.76 3.10 0.08 0.32 0.69 0.91
hu-HU -0.55 3.25 0.08 0.37 0.75 0.94
hy-AM -1.05 3.35 0.08 0.26 0.65 0.91
id-ID -0.67 3.33 0.08 0.34 0.73 0.93
is-IS -0.56 3.19 0.07 0.36 0.74 0.93
it-IT -0.46 2.82 0.06 0.39 0.72 0.91
ja-JP -0.48 2.77 0.06 0.38 0.71 0.91
jv-ID -0.34 2.95 0.06 0.42 0.76 0.93
ka-GE -0.46 2.59 0.06 0.39 0.70 0.89
km-KH -0.23 1.62 0.03 0.44 0.64 0.80
kn-IN -0.94 2.55 0.05 0.28 0.58 0.83
ko-KR -0.49 3.42 0.08 0.38 0.77 0.95
lv-LV -0.81 3.62 0.09 0.31 0.73 0.94
ml-IN -1.39 3.64 0.10 0.20 0.61 0.90
mn-MN -0.79 3.32 0.07 0.31 0.70 0.93
ms-MY -0.77 3.55 0.08 0.32 0.73 0.94
my-MM -0.97 4.12 0.08 0.27 0.75 0.96
nb-NO -0.72 3.65 0.09 0.33 0.75 0.95
nl-NL -0.80 3.71 0.10 0.31 0.74 0.95
pl-PL -0.52 2.65 0.06 0.37 0.69 0.89
pt-PT -0.56 3.05 0.07 0.36 0.72 0.92
ro-RO -0.36 3.00 0.06 0.41 0.76 0.93
ru-RU -0.47 3.12 0.07 0.38 0.75 0.93
sl-SL -0.63 3.25 0.08 0.35 0.73 0.93
sq-AL -0.54 3.04 0.07 0.37 0.73 0.92
sv-SE -0.51 3.53 0.09 0.37 0.78 0.95
sw-KE -0.89 3.26 0.08 0.29 0.68 0.91
ta-IN -0.70 3.20 0.07 0.33 0.71 0.92
te-IN -0.65 2.18 0.04 0.34 0.61 0.82
th-TH -0.66 2.61 0.06 0.34 0.66 0.88
tl-PH -1.12 3.72 0.09 0.25 0.68 0.93
tr-TR -0.71 3.53 0.09 0.33 0.74 0.94
ur-PK -0.80 3.30 0.08 0.31 0.70 0.92
vi-VN -1.72 3.78 0.10 0.15 0.54 0.89
zh-CN -0.42 2.35 0.06 0.40 0.68 0.87
zh-TW -0.56 1.97 0.05 0.36 0.61 0.80

Table 8: Logistic regression results by language
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Abstract

Despite recent progress in Natural Language
Understanding (NLU), the creation of multi-
lingual NLU systems remains a challenge. It
is common to have NLU systems limited to
a subset of languages due to lack of available
data. They also often vary widely in perfor-
mance. We launch a three-phase approach to
address the limitations in NLU and help propel
NLU technology to new heights. We release
a 52 language dataset called the Multilingual
Amazon SLU resource package (SLURP) for
Slot-filling, Intent classification, and Virtual as-
sistant Evaluation, or MASSIVE, in an effort to
address parallel data availability for voice assis-
tants. We organize the Massively Multilingual
NLU 2022 Challenge to provide a competitive
environment and push the state-of-the art in the
transferability of models into other languages.
Finally, we host the first Massively Multilin-
gual NLU workshop which brings these com-
ponents together. The MMNLU workshop
seeks to advance the science behind multilin-
gual NLU by providing a platform for the pre-
sentation of new research in the field and con-
necting teams working on this research direc-
tion. This paper summarizes the dataset, work-
shop and the competition and the findings of
each phase.

1 Introduction

According to a 2020 study by Juniper Research
(Juniper, 2020) it is expected that by 2024 there
will be over 8 billion virtual assistants worldwide,
the majority of which will be on smartphones. Ad-
ditionally, over 100 million smart speakers have
been sold, and virtual assistants continue to be in-
tegrated into new products. These devices have in
common that humans interact with them via nat-
ural language interfaces. This development has
significantly boosted research to advance natural
language understanding. However, most natural
language understanding work focuses on only a
few of the more than 4,000 written languages in

the world. The limitation is driven by the lack of
labeled data, the expense associated with human-
based quality assurance, model maintenance, up-
date costs, and more. To overcome these hurdles,
further research in the field of multilingual natural
language understanding is needed to enable nat-
ural language understanding for currently not- or
under-served languages. With NLLB Team et al.
(2022) and related work, we have seen progress
in recent years on the expansion of machine trans-
lation into the domain of under-served languages
both by advancing science as well as creation of
corpora in machine translation. However, in areas
as NLU modeling for virtual assistants, many of
these limitations still remain. The vision of this
workshop is to address the limitations in NLU and
help propel NLU technology into the 50-language,
100-language, and even the 1,000-language regime,
both for production systems and for research en-
deavors, succinctly captured by our slogan, Let’s
scale natural language understanding technology
to every language on Earth!. We do this via a three-
pronged approach. First, we created and released
the Multilingual Amazon SLU resource package
(SLURP) for Slot-filling, Intent classification, and
Virtual assistant Evaluation, or MASSIVE dataset
(FitzGerald et al., 2022), containing 1 million re-
alistic, parallel, labeled virtual assistant text utter-
ances spanning 51 languages. Second, we hosted
the Massively Multilingual NLU (MMNLU) 2022
Challenge, a competition designed to advance mas-
sively multilingual NLU modeling. Finally, we
organized the first MMNLU workshop to bring to-
gether researchers working in the field of NLU. By
providing much needed labelled data, motivating
multilingual NLU exploration and bringing NLU
researchers together to share findings and spark fur-
ther collaboration, we hope to push the state-of-the
art in multilingual natural language understanding
technology.
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2 Workshop overview

The first MMNLU 2022 workshop is co-located
with EMNLP 2022 in Abu Dhabi. In our call
for papers we asked for submissions relevant to
the advancement of the field of multilingual NLP.
We were particularly interested in submissions re-
lated to the shared tasks part of this workshops
competition on the recently published MASSIVE
(FitzGerald et al., 2022) dataset (see 4.1) or other
multilingual data-sets. We sought work exploring
multilingual representations, augmentation and pre-
processing techniques, and more efficient models.

3 Paper Submissions

In total we received 12 submissions for the venue,
of which 8 were accepted for presentation at the
workshop. The papers being part of the proceed-
ings for this workshop showed a wide variety of ap-
proaches to deal with the problem of massive mul-
tilingual systems. The investigations ranged from
the evaluation and investigation of tokenization
across languages, towards large language model or
translation model based data augmentation as well
as direct use of translation systems as a natural lan-
guage understanding solution. Also, investigations
how to minimize degradation on other languages
when trained only on a small set of languages, as
well as how to use consistency regularization as a
way to boost performance were part of the submis-
sions to this workshop. Another topic investigated
by more than one submission was the investiga-
tion of code mixing and other cross lingual effects
on natural language understanding performance.
Furthermore we also received a paper describing
an investigation of how to design templates when
Seq2Seq generation is used as a solution for zero-
shot cross-lingual tagging. Overall we are very
grateful for the diverse set of research directions
proposed in the submissions to this workshop.

4 The Massive Multilingual NLU 2022
Challenge

4.1 MASSIVE dataset

The MASSIVE dataset was localized across 50 lan-
guages from the original English data released in
the SLURP NLU dataset (Bastianelli et al., 2020).
Unique ids were preserved to yield a parallel cor-
pus, allowing for various natural language under-
standing tasks beyond intent and slot recognition,
such as machine translation. The dataset comprises

60 intents and 55 slot types across 18 domains. The
released dataset was partitioned into 587k training
utterances, 104k development utterances, and 152k
test utterances, also preserving the split used by
the original SLURP dataset. For the MMNLU-22
competition, an additional 153k utterances were
held-out for the leaderboard. The held-out utter-
ances were created by professionals manually para-
phrasing a random sample of SLURP utterances in
English, which were subsequently localized along
with the original dataset. This resulted in more
challenging utterances for NLU, with 49% more
slots per utterance on average.

4.2 The Competition

The MMNLU 2022 Challenge is designed to ad-
vance the state of the art of massively multilingual
NLU, in which a single model can understand and
parse text inputs from many different languages.
The competition is based on the recently published
MASSIVE (FitzGerald et al., 2022) dataset (see
Section 4.1).

The competition consisted of two tasks; namely
(1) the Full Dataset Task (4.2.1) and (2) the Zero
Shot task (4.2.2). The competition was geared
towards two awards: the top-scoring award for
the system with the best performance, which was
awarded separately for each task, and the orga-
nizer’s choice award, which was awarded after con-
sidering overall submissions. The competition ran
from July 24, 2022 until September 3, 2022.

4.2.1 Full Dataset Task

For the Full Dataset Task, a single model, trained
on all languages of MASSIVE and according to
the given split and hold out data constraints, was
evaluated on all languages of the MASSIVE hidden
evaluation set consisting of 3,000 utterances per
locale. All encoder-only models were required to
have fewer than 350M parameters and all sequence-
to-sequence models fewer than 700M parameters,
including word embeddings. We permitted any data
to be used for training, but they must have been
publicly available. If not publicly available, or a
third party service such as machine translation was
utilized, we requested these data be made public.
Only the training split was permitted for training,
development and test partitions were not. No use
of the text in the evaluation set for training was
permitted.
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4.2.2 Zero Shot Task
For the Zero Shot Task, a single model, trained on
only the English training partition of MASSIVE
and according to all other given constraints in the
Full Dataset Task, was evaluated on every language
except English in the MASSIVE hidden evaluation
set.

4.3 Top-scoring award

The top-scoring award was intended to encourage
teams to create models within the constraints out-
lined for the competition (see Sections 4.2.1 and
4.2.2) while demonstrating the best performance
for a given task. The performance of submissions
to the top-scoring award were evaluated based on
Exact Match Accuracy (EMA) of the intent and slot
labels in the predicted utterances provided by the
competitor, when matched against the labels in the
ground-truth (i.e., the MASSIVE hidden evaluation
set).

The two teams that achieved first place on the
leaderboard for the two tasks were announced as
winners (see Sections 4.6.1 and 4.6.2 for winning
teams and descriptions of their approaches).

4.4 Organizer’s choice award

In addition to simple utility, we also wanted to en-
courage creative approaches to solving the problem
of intent classification and named entity recogni-
tion. The organizers’ choice award was based pri-
marily on the assessment of the promise of a given
approach, and not purely on its leaderboard perfor-
mance. The assessment was made by a panel of
reviewers that consisted of the Program Commit-
tee and Organizer’s of MMNLU. See Section 4.6.3
for the winning team and a description of their
approach.

4.5 Leaderboard

Our leaderboard1 was setup on eval.ai (Yadav et al.,
2019) a centralized platform that hosts Artificial
Intelligence (AI) challenges across the globe with
the intention of supporting better benchmarking
in AI. eval.ai allows for two types of challenge to
be hosted on their servers, namely (1) prediction
upload challenges, and (2) code upload challenges.

The MMNLU competition took the form of a pre-
diction upload challenge where competitors were
required to train their own models, score them on a

1https://eval.ai/web/challenges/challenge-
page/1697/leaderboard

hidden evaluation set and then upload the predic-
tions onto the eval.ai challenge. Once uploaded the
predictions were run through an evaluation script.
The evaluation script was designed to calculate ex-
act match accuracy (EMA), intent accuracy, slot
F1, the EMA of the highest performing language
and the EMA of the lowest performing language,
against the ground truth of the hidden evaluation
set.

4.6 Submissions

We received seven submissions to the Full Dataset
task and eight submissions to the ZeroShot task.
A total of 11 research teams participated across
the two tasks. A top-scoring award was given to
the two teams that led the leaderboard for each
task, and the organizer’s choice award was given
based on the assessment of the promise of a given
approach. We briefly describe the winning submis-
sions in the following sections.

4.6.1 Team HIT-SCIR
Team HIT-SCIR won the top-scoring award for
the Full Dataset Task (see Sections 4.3 and 4.2.1).
They used a consistency regularization approach
with a hybrid data augmentation strategy that in-
cluded machine translation and subword sampling2.
Consistency regularization, applied via symmetric
Kullback-Leibler divergence, was used to encour-
age the predicted distributions for an example and
its semantically equivalent augmentation to agree
with each other.

For the intent detection task, the original exam-
ple and the predicted distributions of the augmenta-
tion data from both strategies are directly aligned.
For the slot filling task, the original example can
only be aligned with the predicted distribution from
the subword sampling augmentation strategy. Slot
consistency is ignored when using augmented data
from machine translation.

For the Full Dataset task, they used the mT5-
base text-to-text model presented by FitzGerald
et al. (2022), which contains 580M parameters,
including 190M embedding parameters. They used
examples with the same id in different languages as
machine translation augmentation (see FitzGerald
et al. 2022 for details on the MASSIVE dataset id).

For the Zero Shot task, they used the XLM-align-
base model, which contains 270M parameters, in-

2Subword sampling is to apply the on-the-fly subword
sampling algorithm in the unigram language model to generate
multiple tokenized subword sequences
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cluding 190M embedding parameters, and a simple
two-layer classification head for both intent detec-
tion and slot-filling tasks. They used commercial
translation APIs to obtain slot-aligned translations
and intent-aligned translations.

The consistency regularization-based method
does not introduce any additional parameters into
the model.

For a detailed description of their submission,
refer Team HIT-SCIR’s work (Zheng et al., 2022).

4.6.2 Team FabT5

Team FabT5 won the top-scoring award for the
Zero Shot Task (see Sections 4.3 and 4.2.2). They
used ByT5 base (Xue et al., 2022), a text-to-text
model that takes an input query and outputs a full
interpretation composed of the intent, relevant slot
labels, and their corresponding slot values. ByT5
base has the same number of parameters as mT5
base (582M), but distributed differently. While
mT5 base has 66% of its parameters allocated for
the embeddings, ByT5 base has only 0.1% of its
parameters allocated for the same purpose. They
trained the ByT5 model to predict an MTOP-style
interpretation from a given query. These predic-
tions were then converted back into the intent and
annotated utterance field formats in the MASSIVE
dataset (FitzGerald et al., 2022).

In addition, they found that prepending both
query and target interpretation with the language
string of the query was slightly helpful.

For the zero-shot submission the team trained the
model using the English MASSIVE training split.
To obtain data in the target languages, they trans-
lated the English queries using the Google Trans-
late API and projected the slot annotations from the
original English queries to the corresponding trans-
lations. To project the annotations, they used the
Translate-and-Fill approach, where an mT5 filler
model trained on the English queries was used to
project the labels to the translations in a zero-shot
fashion. The English train partition was the only
one used for zero-shot training. The English val-
idation set was used to select the best checkpoint
for inference. No hyperparameter tuning was per-
formed. A fixed learning rate of 0.0001 and a batch
size of 128 was used for training.

For a detailed description of their submission,
refer Team FabT5’s work (Nicosia and Piccinno,
2022).

4.6.3 Team bolleke
Team bolleke won the organizer’s choice award
(Section 4.4). They repurposed a translation model
for the task of intent detection and slot filling. The
existing dataset was first expanded by generating
new training examples via the use of two fine-tuned
GPT-3 models. One variant of GPT-3 (13B) was
used to generate utterances conditioned on the in-
tent, and a second variant was used to do the intent
and slot filling task. Using the two models added
confidence via intent agreement. The team gen-
erated 20K (English) examples using this method.
Next, a translation model was trained on the MAS-
SIVE training partition to translate English anno-
tated utterances into the 50 available languages, re-
sulting in an augmented dataset of an additional 1M
examples. For both pre-training and fine-tuning,
the team used an NLLB-200’s (No Language Left
Behind) distilled 600M parameter variant (NLLB
Team et al., 2022). The objective of the pre-training
step was a cross-lingual translation task, with in-
tent detection and slot filling (for example, they
trained the model to translate "wat is het weer in
new york" to "weather_query|quel est le temps à
[place_name : new york]"). The fine-tuning was
done on the augmented dataset for another 50K
steps with the objective of predicting the annotated
utterance in the same language (for example, they
train the model to output "weather_query|what is
the weather in [place_name : new york]" given the
input "what is the weather in new york").

Training was done on DeepSpeed with a batch
size of 56 and a max length of 64. The input is
always the raw utterance and the output the con-
catenation of the intent and the annotated utterance.
Learning rates of 0.0001 and 0.00005 were used for
the pre-training and fine-tuning respectively. Given
the size of the dataset and computing resources
involved they did not engage in hyper-parameter
tuning.

For a detailed description of their submission,
refer Team bolleke’s work (Bruyn et al., 2022).

5 Conclusions

This paper presents an overview of the first
MMNLU workshop collocated with EMNLP 2022.
The paper submissions and competition entries
showed encouraging progress in the field of multi-
lingual NLU. We hope that the findings presented
as well as the collaborations initiated at this work-
shop, drives more progress in the field.
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