@inproceedings{khusainova-etal-2022-automatic,
title = "Automatic Bilingual Phrase Dictionary Construction from {GIZA}++ Output",
author = "Khusainova, Albina and
Romanov, Vitaly and
Khan, Adil",
editor = "Bhatia, Archna and
Cook, Paul and
Taslimipoor, Shiva and
Garcia, Marcos and
Ramisch, Carlos",
booktitle = "Proceedings of the 18th Workshop on Multiword Expressions @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.mwe-1.12",
pages = "81--88",
abstract = "Modern encoder-decoder based neural machine translation (NMT) models are normally trained on parallel sentences. Hence, they give best results when translating full sentences rather than sentence parts. Thereby, the task of translating commonly used phrases, which often arises for language learners, is not addressed by NMT models. While for high-resourced language pairs human-built phrase dictionaries exist, less-resourced pairs do not have them. We suggest an approach for building such dictionary automatically based on the GIZA++ output and show that it works significantly better than translating phrases with a sentences-trained NMT system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khusainova-etal-2022-automatic">
<titleInfo>
<title>Automatic Bilingual Phrase Dictionary Construction from GIZA++ Output</title>
</titleInfo>
<name type="personal">
<namePart type="given">Albina</namePart>
<namePart type="family">Khusainova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vitaly</namePart>
<namePart type="family">Romanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adil</namePart>
<namePart type="family">Khan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Workshop on Multiword Expressions @LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Archna</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiva</namePart>
<namePart type="family">Taslimipoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Modern encoder-decoder based neural machine translation (NMT) models are normally trained on parallel sentences. Hence, they give best results when translating full sentences rather than sentence parts. Thereby, the task of translating commonly used phrases, which often arises for language learners, is not addressed by NMT models. While for high-resourced language pairs human-built phrase dictionaries exist, less-resourced pairs do not have them. We suggest an approach for building such dictionary automatically based on the GIZA++ output and show that it works significantly better than translating phrases with a sentences-trained NMT system.</abstract>
<identifier type="citekey">khusainova-etal-2022-automatic</identifier>
<location>
<url>https://aclanthology.org/2022.mwe-1.12</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>81</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Bilingual Phrase Dictionary Construction from GIZA++ Output
%A Khusainova, Albina
%A Romanov, Vitaly
%A Khan, Adil
%Y Bhatia, Archna
%Y Cook, Paul
%Y Taslimipoor, Shiva
%Y Garcia, Marcos
%Y Ramisch, Carlos
%S Proceedings of the 18th Workshop on Multiword Expressions @LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F khusainova-etal-2022-automatic
%X Modern encoder-decoder based neural machine translation (NMT) models are normally trained on parallel sentences. Hence, they give best results when translating full sentences rather than sentence parts. Thereby, the task of translating commonly used phrases, which often arises for language learners, is not addressed by NMT models. While for high-resourced language pairs human-built phrase dictionaries exist, less-resourced pairs do not have them. We suggest an approach for building such dictionary automatically based on the GIZA++ output and show that it works significantly better than translating phrases with a sentences-trained NMT system.
%U https://aclanthology.org/2022.mwe-1.12
%P 81-88
Markdown (Informal)
[Automatic Bilingual Phrase Dictionary Construction from GIZA++ Output](https://aclanthology.org/2022.mwe-1.12) (Khusainova et al., MWE 2022)
ACL