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Abstract

Autoregressive transformer (ART)-based
grapheme-to-phoneme (G2P) models have
been proposed for bi/multilingual text-to-
speech systems. Although they have achieved
great success, they suffer from high inference
latency in real-time industrial applications,
especially processing long sentence. In this
paper, we propose a fast and high-performance
bilingual G2P model. For fast and exact
decoding, we used a non-autoregressive
structured transformer-based architecture and
data augmentation for predicting output length.
Our model achieved better performance than
that of the previous autoregressive model and
about 2700% faster inference speed.

1 Introduction

Speech synthesis has been applied in various real-
world services, such as AI speaker, car navigation
guidance and news article-reading services in each
language. Grapheme-to-phoneme (G2P) module
convert text to phonemes in text-to-speech (TTS)
system. G2P conversion has been studied in vari-
ous ways, including rules, dictionaries, statistical-
based methods (Deri and Knight, 2016) and neural
network-based methods (Yolchuyeva et al., 2021;
Sun et al., 2019a; Kim et al., 2021; Choi et al.,
2021). Currently, monolingual G2P research is the
most conducted, although recently bilingual or mul-
tilingual G2P research is also being actively per-
formed (Clematide and Makarov, 2021; Yu et al.,
2020; Bansal et al., 2020; Gautam et al., 2021).
Most of the proposed models with high perfor-
mance are based on autoregressive transformers
(A.Vaswani et al., 2017) in both monolingual and
multilingual G2P. However, these models suffer
from high inference latency, which is sometimes
unacceptable for real-time TTS applications that
generate long speech synthesis sounds, such as
news sentences. A previous study (Kim et al., 2021)
used a simple model structure with a few features

and batch inference for fast inference speed; how-
ever, there were limitations in specific language
characteristics.
In this paper, we propose a high-performance bilin-
gual G2P model that has an fast inference speed
that enables real-time service. For an efficient ex-
pression for each language, byte-level representa-
tion input and a language index are used as the
main inputs, and for fast decoding, the transformer
model is based on a non-autoregressive structured
decoder. Because the length of the estimated out-
put used in the non-autoregressive structured de-
coder has a great impact on the G2P accuracy, a
sub-network and a data augmentation technique
are used to better infer the output length. In addi-
tion, we experimented with the difference between
training the whole input unit (sentence) and the
tokenized unit.
We conducted experiments for different language
systems, such as European which have a small num-
ber of graphemes and East Asian ones which have
a large number of graphemes. We chose two lan-
guages for bilingual G2P model; English and Ko-
rean. Experimental results showed that, despite
significantly losing speed, our non-autoregressive
transformer-conditional random field (NART-CRF)
based G2P model achieved better performance than
those of previous ART models. When it is applied
to an actual service system, in addition to the speed
and high accuracy applicable to real-world TTS ap-
plications, it is possible to generate the phonemes
of several languages with one model.

2 Related work

2.1 Multilingual G2P

Recent works propose various methods for multi-
lingual natural language processing (NLP) tasks
such as machine translation (Aharoni et al., 2019;
Zhang et al., 2020) and language model (Pires et al.,
2019). A few multilingual G2P studies are also in
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progress. The benchmarks for multilingual g2p
is provides and utilized various G2P models : A
neural transducer system using an imitation learn-
ing paradigm (Ashby et al., 2021), studies building
an ensemble of several different sequence models
(Vesik et al., 2020; Gautam et al., 2021; Clematide
and Makarov, 2021). Meanwhile, there is a neural
multilingual G2P model with byte-level input rep-
resentation (Yu et al., 2020). On this wise, most
of the autoregressive sequence models are used
to learn phonemes of various languages. But, the
autoregressive factorization makes the inference
process hard to be parallelized as the results are
generated token by token sequentially. Therefore,
these models have limitations in applying them to
real-world processing services, especially dealing
with long sentence, because the inference time in-
creases linearly with the length of the generated
phoneme output.

2.2 Fast decoding

For various tasks, the transformer (A.Vaswani et al.,
2017) model achieve good performance. However,
the autoregressive method suffer from high infer-
ence latency. Therefore, there are several studies
to solve this problem. Since decoding takes a high
inference latency, the deep-encoder and shallow-
decoder architecture is proposed and it improve
the inference speed (Kasai et al., 2021). For par-
allelism, the non-autoregressive sequence models
are proposed and applied it to the machine trans-
lation and speech synthesis (Gu et al., 2018; Sun
et al., 2019b). The non-autoregressive sequence
models improve the inference speed; however, they
cannot get results as good as their autoregressive
counterparts that generate each token in the tar-
get sentence independently. To decode token co-
occurrence be guaranteed, a structured inference
module is incorporated in the non-autoregressive
decoder to directly model the multi-modal distri-
bution of phoneme sequences (Sun et al., 2019b).
In this study, we follow the structure (Sun et al.,
2019b) to apply G2P task and achieve great perfor-
mance.

3 The proposed model

This section describes the proposed model for fast
bilingual G2P conversion. The overall structure of
the model is shown in Figure 1.

3.1 Byte-level representation input and
sentence/token-level input

Following the method of Yu et al. (2020), the pro-
posed model uses an input with a byte-level repre-
sentation for the efficient representation of multiple
languages. Each character is expressed at the byte
level based on the UTF-8 encoding. This expres-
sion can reduce the size of the input vocabulary, and
the byte-level vocabulary cardinality is constrained
to be equal to or smaller than 256. In this study,
two experiments were performed: processing of
the entire sentence as the input, and tokenizing of
the sentence and processing of each token as one
batch.
Processing of the entire sentence as the input
: The input sentence encoded at the byte level
and the language index of the input are used as the
inputs to the model. Using the entire sentence as
the input is good for inferring the correct pronunci-
ation sequence according to the meaning because
it learns by considering the context of the entire
sentence together. On the other hand, if the dataset
is divided by language, as in this experiment, it
is necessary to separate and process the language-
mixed sentences for each language when inferring
the pronunciation sequence.
Processing of the input token unit : First, a given
input sentence is divided into tokens using an ap-
propriate tokenizer for the language. In the case
of Korean and English, a tokenizer that separates
the space-delimited orthographic words (tokens)
was used in this study. Here, in the case of Korean,
there is a point to be particularly careful about. The
pronunciation of the first syllable or the last sylla-
ble of a token may change depending on whether
the tokens are read after a break or not. There-
fore additional features were needed to connect the
separated tokens naturally in the final G2P results.
Following the method of Kim et al. (2021), we used
the phonological phrasing information between to-
kens. Moreover, for the first and last syllables of to-
ken to be naturally connected with each front/next
token, information on the ending or beginning of
the part to be connected is required. For example,
for the input as shown in the Figure 2, each token’s
input elements in the input sentence are as follows:
A language index, a input token xt to be converted
to a byte-level representation (part a), two phono-
logical phrasing information on both sides of the
token (part b), a last jaso (orthographic phoneme
segments) in front token xt−1 (part c) and a first
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Figure 1: The overview of proposed model

Figure 2: The example of composition for each token in
a sentence

jaso in next token xt+1 (part d). They are concate-
nated with each token, and the entire token in the
sentence is composed of one batch, so that it learns
and infers at once. In this way, if it is configured
in token units, it is not necessary to separate the
language-mixed sentences for each language and
compose the input, and it is possible to infer faster
with relatively short input and output lengths. On
the other hand, tokenizers for each language are
required, and there is a limit for including context
information rather than the entire sentence unit.

3.2 Transformer-based structured decoding
model for G2P conversion

The model design follows the NART architecture
with CRFs. For more information on the model,
see A.Vaswani et al. (2017); Gu et al. (2018); Sun
et al. (2019b).
NART-based model : Like in the ART model,

the encoder of our model takes the embeddings

of the input tokens and their additional features as
the input and generates a contextual representation.
Following the decoder in NART-CRF, the decoder
independently decodes each pronunciation token
given a sequence length T ′ and a decoder input z. It
also uses the padding symbol "<pad>" followed by
the end-of-sentence symbol "<eos>" as the decoder
input. The transformer model utilizes multi-head
self-attention and multi-head encoder-decoder at-
tention. In contrast to the ART model, multi-head
positional attention in the decoder is also used to
model local word orders within a sentence or a to-
ken. In our model, each decoder layer refers to the
output of each encoder layer with the same depth.
It follows the model architecture of Yu et al. (2020)
and performs better than the existing architecture
in our experiment. The position-wise feedforward
network consists of a two-layer linear transforma-
tion with a ReLU activation function and is applied
after using multi-head attention in both the encoder
and the decoder.

Structured inference module: Like in Sun et al.
(2019b), a linear-chain CRF is incorporated into
the decoder part to model richer structural depen-
dencies. The CRF module can be jointly trained
end to end with neural networks using a negative
log-likelihood loss LCRF . In the context of G2P
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Figure 3: The sub-network for predicting and using
output length

conversion, we use a “phoneme” for the decoder
output and decode its highest scoring sequence.

3.3 Predicting output length for decoder

In the NART-CRF structure, an input of a specific
length is used as the input z of the decoder. The
length of this input has a great influence on infer-
ring the final output of the model. Through several
experiments, we realized that it is not easy to pre-
dict the exact output length using only the encoder
output. Even if it is long or short by a small number
such as 1 or 2, the pronunciation sequence can be
generated incorrectly, which greatly affects the per-
formance. So, while adding a layer or sub-network
to predict the output length T ′, we applied a data
augmentation technique that can supplement the
decoding process despite incorrect prediction val-
ues.
Sub-network for predicting the output length
In the G2P task, the prediction of the input and
output lengths of the decoder has a greater effect
on the overall accuracy than that in the machine
translation task (Sun et al., 2019b). We added a
sub-network to infer the phoneme sequence length
exactly, as shown in Figure 3. The sub-network fol-
lows the model proposed in Yang et al. (2020); how-
ever, it differs in the prediction of an output length
that is continuous in nature using linear regression
rather than softmax at the end of the model.

Data augmentation As mentioned above, the
length of the sentence is very important in the
phoneme sequence of the G2P model. Therefore,
even if the sentence length is incorrectly predicted,
it should still be used to generate a phoneme se-
quence with the correct length. Thus, we trained
model to guess correctly actual output length by
padding by the length that exceeds the actual length
even in a sequence that is a little longer than the
actual output length. To this end, data augmenta-
tion was performed by pairing an output with an
output length of 1 or 2 longer in addition to the
existing dataset and filled with a padding tag with
an existing input.
Joint training with regression loss: Our train-
ing loss L is the sum of the CRF negative log-
likelihood loss LCRF and the mean square error
(MSE) of the sub-network as loss Llength. :

L = LCRF +Llength = − logP (y|x)+(T −T ′)2

(1)

4 Experiments

4.1 Experimental settings

We collected scripts of domains used in real-world
services and constructed a Korean and English G2P
dataset by labeling it from speech. A voice actor
read a Korean or English script naturally, and tag-
gers dictated the phonological phrasing information
and pronunciations exactly as they heard them. We
used 20,000 sentences in each language for training
and 200 samples in each language for testing. Each
sentence consisted of an average of 12.45 tokens
(words in English and Eojoel in Korean) and the
average length of output for each token is 5 and
the maximum is 29. The phonological phrasing
information used in this model is mainly composed
of the intonation phrase (IP), accent phrase (AP),
clitic, and end of sentence (sb). IP refers to reading
with a pause, and AP refers to a delimitation. The
size of input vocabulary of bilingual was 110 and
the number of phonemes was 42 in Korean and 39
in English. We used the default network architec-
ture of the original base transformer (A.Vaswani
et al., 2017), which consists of a four-layer encoder
and a four-layer decoder.

4.2 Inference

In the training process, to generate an accurate
phoneme sequence, we performed data augmenta-
tion so that the pad was filled even when a length
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exceeding the actual length was predicted. In fact,
the model predicted a length that was a few smaller
or longer than the actual output length. So, we bias
the predicted length so that the decoder’s input is
made longer than the actual output length in most
cases. It is intended that the pad will eventually
be filled in to generate a phoneme sequence of the
correct length.
We evaluate the average per-sentence decoding
latency with a single NVIDIA Tesla V100 GPU
for the ART-G2P and our models to measure the
speedup.

4.3 Evaluation
The evaluation metrics used in the experiment were
the phoneme error rate (PER), accuracy (Acc) and
accuracy of length (L-Acc). PER, as used in the
evaluation of the G2P model performance (Yu et al.,
2020) , is the Levenshtein distance between the
predicted phoneme sequences and the reference
phoneme sequences, divided by the number of
phonemes in the reference pronunciation. Acc is
the percentage of sentences in which the predicted
phoneme sequence exactly matches the reference
pronunciation. L-Acc is the percentage of length
in which the predicted phoneme sequence exactly
matches the reference pronunciation sequence’s
length.

4.4 Results : ART vs NART
Table 1 shows the performance of the ART (Yu
et al., 2020) and the proposed G2P model with a
sentence- or token-level input. While ART-G2P
shows high accuracy, the inference time is very
long. When time was measured for each area, the
average encoding and decoding time was 40/66ms,
but since ART continuously decodes as much as the
output length, the time increases linearly as much
as the output length. On the other hand, the pro-
posed NART-CRF based model trained at sentence-
level showed about 22 times faster speed than ART-
G2P; but, it was less accurate than ART-G2P. The
model trained in token unit showed higher accuracy
with about 27 times faster inference speed, confirm-
ing that it is a fast and accurate model structure.
It is analyzed that the proposed model has outper-
forms ART in the Korean dataset, because it refers
to the phonological phrasing information. In the
case of the proposed model, the token-level showed
higher performance in both languages because the
shorter input length is more advantageous in pre-
dicting the output length. When looking at the dis-

Figure 4: Results with predicted output length (biased
or not)

tribution of the difference between the actual length
and the predicted length, in the case of sentence
units, there was a large deviation, which caused a
lot of errors.

4.5 Ablation study about augmentation

The Table 2 is an ablation study showing whether
the method described in Section 3.3 is effective.
The compared models are three models trained at
sentence-level : Model 1 incorporating regression
layer for predicting output length in NART-CRF,
Model 2 trained with data augmentation in the same
structure as Model1, Model 3 incorporating sub-
network for predicting output length and trained
with data augmentation. Figure 4 shows how much
the predicted sentence length differs from the actual
sentence length. Looking at the sentence length pre-
diction result of Model 1, it is inferred a lot with ap-
proximations around the actual sentence length, so
the sentence length accuracy is only 54.5%. Model
2 has a slightly higher value for accurately pre-
dicting the length than Model 1. Through this,
it can be seen that data augmentation is effective
in accurately predicting the length of a sentence
by filling the "<pad>" tag even in sentences that
are longer than the actual length. However, since
data augmentation was performed only in cases of
be longer, there are still cases in which it is not
applied for shorter than actual length. Therefore
we used the predicted sentence length with a bias
of 2, and actually showed a big increase in per-
formance. In the case of Model 3, the accuracy
of length was very low at 27% because the sen-
tence length was often predicted shorter than the
actual length, but when the sentence length was
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Model Language Acc (%) PER (%) Inference time (ms/sent)
ART-G2P Merged 83.25 0.62 3830

English 92.50 0.43
Korean 74.00 0.82

Sentence-level NART-CRF G2P Merged 81.00 0.64 177.15 (×22)
English 84.50 0.72
Korean 77.50 0.56

Token-level NART-CRF G2P Merged 87.75 0.43 140 (×27)
English 93.00 0.38
Korean 82.50 0.49

Table 1: The table shows results of the ART-G2P and proposed NART-CRF G2P models with sentence and token
level training. We evaluate accuracy, PER of model and inference time in each language.

Model Acc (%) PER (%) L-Acc (%)
Model 1 ; NART-CRF 48.75 2.91 54.5
Model 2 ; NART-CRF + augm 63.75 1.48 69.0
Model 2 + biased 81.50 0.80 89.5
Model 3 ; NART-CRF w/subNN + augm 24.50 4.22 27.0
Model 3 + biased 81.00 0.64 87.8

Table 2: The Ablation study about data augmentation and bias

biased during inference, the length prediction accu-
racy increased significantly. In fact, looking at the
generated result, when the actual sentence length
is 14 and the biased inference sentence length is
17, the pronunciation sequence is generated as
y = {y0, y1, ..., y13, pad, pad, pad}. If "<pad>"
tags are deleted in post-processing, the inference
result and the correct answer were matched. The
proposed method of biasing the sentence length
predicted in inference and data augmentation make
predict the correct length through an additional de-
coding process even at the predicted length as an
approximation of the actual sentence length. The
proposed method of biasing the sentence length
predicted in inference and data augmentation make
predict the correct length through an additional de-
coding process even at the predicted length as an
approximation of the actual sentence length.

4.6 In real-time TTS application

We applied it to the industrial TTS system. In
our system, bilingual TTS attempts to generate a
pronunciation sequence based on a specific lan-
guage for an input with mixed languages. To this
end, numbers and symbols are normalized based
on a specific language, and each language goes
through processing such as estimation of phono-
logical phrasing information for each language. In

bilingual G2P, the phoneme sequence is generated
with the grapheme processed for each language for
the input with mixed languages and then connect
the results.
We utilized the Open Neural Network Exchange
(ONNX) 1 to apply to a TTS system running in
a CPU environment2. ONNX is an open-source
machine-independent format and widely used for
exchanging neural network models. First, our
model implemented in tensorflow was exported to
ONNX format, and inference was performed using
Onnxruntime 3. Onnxruntime is a cross-platform
inference and training machine-learning acceler-
ator. It performs hardware acceleration through
graph optimization, graph partition and then dis-
tributed runner.
We applied our model to a real-time processing sys-
tem and inferred at an average speed of 40ms/sent
for 1000 sentences. In addition, we measured the
Real Time Factor (RTF) when only the monolin-
gual G2P module used in the existing system was
changed to our model. As our Unit-selection Text-
to-Speech (UTS) system, it is judged that real-time
processing is possible only when the volume of
processing is less than 0.1RT. When 500 sentences

1https://github.com/onnx/onnx
2Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz (40 cores)
3https://onnxruntime.ai
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were processed for each language, 0.026 to 0.037
RTx for Korean and 0.033 to 0.057 RTx for English
were measured, confirming that real-time process-
ing was possible.

5 Conclusion

In this study, a structure of a NART-CRF was pro-
posed for fast bilingual G2P with real-time pro-
cessing. For bilingual, input of byte representation
was used, and additional sub-network and data aug-
mentation techniques were used for accurate out-
put length inference. The proposed model showed
higher accuracy than the existing ART-G2P and
at the same time showed about 27 times faster in-
ference speed. In addition, when applied to an
industrial TTS system, the speed was improved to
a level capable of real-time processing.
In future work, we will study a model with con-
textual information or representation of language
model to solve some error cases caused by lack
of context. Furthermore, we will experiments
with fast "multilingual" G2P by expanding the lan-
guage types to Chinese, Japanese, and European
languages. As a result of testing two different lan-
guage system (i.e. European and East Asian), It is
expected that expansion of languages, which others
in same language group, will be possible. Addi-
tionally, considering the accents and tones used in
languages such as English and Chinese, and train-
ing on an unbalanced dataset remain issues to be
resolved.
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