@inproceedings{laskar-etal-2022-blink,
title = "{BLINK} with {E}lasticsearch for Efficient Entity Linking in Business Conversations",
author = "Laskar, Md Tahmid Rahman and
Chen, Cheng and
Martsinovich, Aliaksandr and
Johnston, Jonathan and
Fu, Xue-Yong and
Tn, Shashi Bhushan and
Corston-Oliver, Simon",
editor = "Loukina, Anastassia and
Gangadharaiah, Rashmi and
Min, Bonan",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track",
month = jul,
year = "2022",
address = "Hybrid: Seattle, Washington + Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-industry.38",
doi = "10.18653/v1/2022.naacl-industry.38",
pages = "344--352",
abstract = "An Entity Linking system aligns the textual mentions of entities in a text to their corresponding entries in a knowledge base. However, deploying a neural entity linking system for efficient real-time inference in production environments is a challenging task. In this work, we present a neural entity linking system that connects the product and organization type entities in business conversations to their corresponding Wikipedia and Wikidata entries. The proposed system leverages Elasticsearch to ensure inference efficiency when deployed in a resource limited cloud machine, and obtains significant improvements in terms of inference speed and memory consumption while retaining high accuracy.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="laskar-etal-2022-blink">
<titleInfo>
<title>BLINK with Elasticsearch for Efficient Entity Linking in Business Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Tahmid</namePart>
<namePart type="given">Rahman</namePart>
<namePart type="family">Laskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aliaksandr</namePart>
<namePart type="family">Martsinovich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Johnston</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xue-Yong</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shashi</namePart>
<namePart type="given">Bhushan</namePart>
<namePart type="family">Tn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Corston-Oliver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastassia</namePart>
<namePart type="family">Loukina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bonan</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hybrid: Seattle, Washington + Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>An Entity Linking system aligns the textual mentions of entities in a text to their corresponding entries in a knowledge base. However, deploying a neural entity linking system for efficient real-time inference in production environments is a challenging task. In this work, we present a neural entity linking system that connects the product and organization type entities in business conversations to their corresponding Wikipedia and Wikidata entries. The proposed system leverages Elasticsearch to ensure inference efficiency when deployed in a resource limited cloud machine, and obtains significant improvements in terms of inference speed and memory consumption while retaining high accuracy.</abstract>
<identifier type="citekey">laskar-etal-2022-blink</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-industry.38</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-industry.38</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>344</start>
<end>352</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BLINK with Elasticsearch for Efficient Entity Linking in Business Conversations
%A Laskar, Md Tahmid Rahman
%A Chen, Cheng
%A Martsinovich, Aliaksandr
%A Johnston, Jonathan
%A Fu, Xue-Yong
%A Tn, Shashi Bhushan
%A Corston-Oliver, Simon
%Y Loukina, Anastassia
%Y Gangadharaiah, Rashmi
%Y Min, Bonan
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track
%D 2022
%8 July
%I Association for Computational Linguistics
%C Hybrid: Seattle, Washington + Online
%F laskar-etal-2022-blink
%X An Entity Linking system aligns the textual mentions of entities in a text to their corresponding entries in a knowledge base. However, deploying a neural entity linking system for efficient real-time inference in production environments is a challenging task. In this work, we present a neural entity linking system that connects the product and organization type entities in business conversations to their corresponding Wikipedia and Wikidata entries. The proposed system leverages Elasticsearch to ensure inference efficiency when deployed in a resource limited cloud machine, and obtains significant improvements in terms of inference speed and memory consumption while retaining high accuracy.
%R 10.18653/v1/2022.naacl-industry.38
%U https://aclanthology.org/2022.naacl-industry.38
%U https://doi.org/10.18653/v1/2022.naacl-industry.38
%P 344-352
Markdown (Informal)
[BLINK with Elasticsearch for Efficient Entity Linking in Business Conversations](https://aclanthology.org/2022.naacl-industry.38) (Laskar et al., NAACL 2022)
ACL
- Md Tahmid Rahman Laskar, Cheng Chen, Aliaksandr Martsinovich, Jonathan Johnston, Xue-Yong Fu, Shashi Bhushan Tn, and Simon Corston-Oliver. 2022. BLINK with Elasticsearch for Efficient Entity Linking in Business Conversations. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, pages 344–352, Hybrid: Seattle, Washington + Online. Association for Computational Linguistics.