
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1964 - 1974

July 10-15, 2022 ©2022 Association for Computational Linguistics

Frustratingly Easy System Combination for Grammatical Error Correction

Muhammad Reza Qorib∗, Seung-Hoon Na† and Hwee Tou Ng∗
∗ Department of Computer Science, National University of Singapore

† Division of Computer Science and Engineering, Jeonbuk National University
{mrqorib, nght}@comp.nus.edu.sg, nash@jbnu.ac.kr

Abstract
In this paper, we formulate system combina-
tion for grammatical error correction (GEC) as
a simple machine learning task: binary clas-
sification. We demonstrate that with the right
problem formulation, a simple logistic regres-
sion algorithm can be highly effective for com-
bining GEC models. Our method successfully
increases the F0.5 score from the highest base
GEC system by 4.2 points on the CoNLL-2014
test set and 7.2 points on the BEA-2019 test
set. Furthermore, our method outperforms the
state of the art by 4.0 points on the BEA-2019
test set, 1.2 points on the CoNLL-2014 test set
with original annotation, and 3.4 points on the
CoNLL-2014 test set with alternative annota-
tion. We also show that our system combina-
tion generates better corrections with higher
F0.5 scores than the conventional ensemble.1

1 Introduction

Grammatical error correction (GEC) is the task of
detecting and correcting grammatical errors present
in a text (Ng et al., 2013). Grammatical error cor-
rection has achieved remarkable progress since the
late 2000s, and has flourished more along with the
development of sequence-to-sequence architecture.
Grammatical error correction shared tasks such as
CoNLL-2013 (Ng et al., 2013), CoNLL-2014 (Ng
et al., 2014), and BEA-2019 (Bryant et al., 2019)
also contribute to popularizing the task.

With the success of Transformer (Vaswani et al.,
2017) architecture in sequence-to-sequence tasks,
most recent state-of-the-art grammatical error cor-
rection systems use Transformer-based architecture.
Even though they all use a Transformer-based archi-
tecture, there are still some variations to the models,
especially in the task formulation and pre-training
data.

Generally, we can divide the recent state-of-
the-art systems into a sequence tagging approach

1Source code of this paper is publicly available at https:
//github.com/nusnlp/esc.

(Awasthi et al., 2019; Omelianchuk et al., 2020)
that usually uses a large pre-trained masked lan-
guage model, and a sequence-to-sequence ap-
proach (Rothe et al., 2021; Stahlberg and Kumar,
2021; Kaneko et al., 2020) that usually pre-trains a
Transformer architecture with synthetic data. The
differences in the synthetic data generation meth-
ods and seed corpora used also contribute to more
diverse GEC systems.

Figure 1: The F0.5 scores of the base GEC systems that
we use in our experiments on selected error types in the
BEA-2019 development set.

With these differences, each model has its own
strengths and weaknesses (Figure 1). Susanto et al.
(2014) has demonstrated that the differences in the
strengths of the GEC models can be utilized to gen-
erate better grammatical error corrections by com-
bining them through a system combination method.
In this paper, we present our simple yet effective
system combination method for grammatical error
correction that outperforms all prior state-of-the-
art systems on both CoNLL-2014 and BEA-2019
shared tasks.

The contributions of this paper are as follows:

• We propose a novel method for combining
grammatical error correction systems, by for-
mulating the task as binary classification that
predicts each edit independently. To the best
of our knowledge, this is the first time that

1964

https://github.com/nusnlp/esc
https://github.com/nusnlp/esc

system combination for grammatical error cor-
rection is formulated this way.

• Our proposed method only relies on the out-
puts of the base systems, making our method
compatible with any base GEC systems.

• We demonstrate that the combined GEC sys-
tem using our method outperforms all state-
of-the-art systems on both CoNLL-2014 and
BEA-2019 shared tasks.

• We demonstrate that our system combination
method outperforms other prior system com-
bination methods, and it is also a better alter-
native than the conventional ensemble.

2 Related Work

In this section, we discuss some prior work on GEC
system combination. One approach (MEMT) only
uses the output sentences without relying on any
edit type, while the other two approaches (IBM,
GEC-IP) only use the edit type and which hypothe-
ses (output sentences of component systems) pro-
pose an edit type while not using the output sen-
tences at all. In this section, we also discuss another
system combination method (DDC) that introduces
diversity to the base systems, which is complemen-
tary to our system combination method.

2.1 MEMT
MEMT is a system combination method that is orig-
inally designed to combine machine translation hy-
potheses from multiple base systems. Susanto et al.
(2014) have demonstrated that the method works
well for GEC system combination also. MEMT
combines the hypotheses by first aligning them and
generates all possible paths of the candidate tokens
from the hypotheses. MEMT has some constraints
in searching the possible candidate tokens, such as
no repetition, weak monotonicity, and complete-
ness. MEMT then learns to score the candidate
tokens based on the n-gram language model score,
n-gram similarity to the hypotheses, and the num-
ber of tokens in the candidate.

2.2 IBM
The IBM system combination method (Kantor
et al., 2019) works by separating the edits from
two hypotheses into three groups: edits that appear
exclusively in the first hypothesis, edits that appear
in both hypotheses, and edits that appear exclu-
sively in the second hypothesis. This grouping is

done for each edit type. Then, the model learns the
decision of which group to include for each edit
type. The IBM method can only combine two sys-
tems at a time. Hence, combining more than two
systems requires applying this method iteratively.

2.3 GEC-IP

GEC-IP (Lin and Ng, 2021) is similar to the IBM
method, but is simpler and directly optimizes the
parameters using non-linear integer programming,
instead of optimizing real-valued parameters and
rounding them later as used in the IBM method.
Another key difference between GEC-IP and IBM
is that GEC-IP can combine many base systems
at once, instead of combining only two systems at
a time. In GEC-IP, for each edit type, the system
chooses the edits from only one base system to be
applied as the final correction, and ignores the edits
from the other base systems.

2.4 DDC

Diversity-driven combination (DDC) (Han and Ng,
2021) is a method that aims to increase the diversity
among the base systems in a system combination
scenario, so as to improve the performance of the
combined system. Macherey and Och (2007) show
that the base systems should be diverse (almost
uncorrelated) and have similar quality to be useful
for system combination. DDC is not entirely a
black-box method as it requires a base system to
act as the backbone system to be fine-tuned. DDC
uses reinforcement learning to induce diversity to
the base systems, then uses an off-the-shelf system
combination method to combine the base systems.
As DDC is orthogonal to this research and is not a
black-box system combination method, this paper
does not compare to DDC.

3 Method

In this section, we describe how we formulate the
task and present our method, which gathers all
possible edits from the hypotheses (i.e., output sen-
tences of individual base systems) and for each edit,
predicts whether it should be kept or discarded to
generate the final output sentence of the combined
system. Our method is named ESC (Edit-based
System Combination).

3.1 Task Formulation

We formulate GEC system combination as a binary
classification task. We regard the base GEC models

1965

as black boxes and combine the models based on
their proposed edits. From the hypotheses gener-
ated by the base GEC models, we extract the edits
in the form of (start index, end index, correction
string) tuples. In addition, each edit also has an
edit type that is acquired from an automatic error
annotation tool, and the edit type is used as part
of the features of an edit. We follow the edit type
convention of Bryant et al. (2017). Each edit can
be one of three operations: insertion (prefixed with
‘M:’ for ‘missing’), deletion (prefixed with ‘U:’ for
‘unnecessary’), and substitution (prefixed with ‘R:’
for ‘replacement’). An example of extracted edits
and edit types is shown in Table 1.

We take the union of edits from all hypotheses
and gather them into a unified set E. Our method
evaluates each edit independently, without the in-
formation of surrounding edits or context words.
Similar to (Kantor et al., 2019) and (Lin and Ng,
2021), our method also entirely relies on the edit
type and does not use the textual information of
the edit. We use a generalized linear model to pre-
dict whether each edit from E should be kept or
discarded to create the output sentence of the com-
bined system, according to the features of the edit
to be defined in the next subsection.

3.2 Features
Suppose there are k hypotheses from k base (com-
ponent) systems to be combined. Each edit e in
E is represented by a feature vector x, which is
formed by concatenating the feature vectors xi,
i = 1 . . . k:

x = [x1;x2; . . . ;xk]

xi is the one-hot representation of the edit type
of e in hypothesis i (e.g., M:ADJ -> [1, 0, 0, ..],
M:ADV -> [0, 1, 0, . . .]) if the edit type exists in
hypothesis i, and a zero vector if it does not. This
way, the model learns to determine whether or not
to keep an edit purely based on the edit type and
which hypotheses propose this edit. The supplied
information to the model is the same as the IBM
method (Kantor et al., 2019) and GEC-IP method
(Lin and Ng, 2021), but the task formulation and
optimization method differ. For set of edit types T ,
xi ∈ R|T | and x ∈ Rk|T |. In our work, |T |= 54.

3.3 Model
We use logistic regression as the classification
model. Using logistic regression as the classi-
fier makes the model trainable with only a modest

amount of training data and makes the results in-
terpretable. Moreover, we found that it works very
well in combining different kinds of base GEC sys-
tems. For each edit, we obtain the probability of
the edit being a correct edit to be used to generate
the output sentence as follows:

p = σ(w × x+ b) (1)

where σ is the sigmoid function.

3.4 Post-processing

Since we combine the edits from multiple hypothe-
ses, we may have overlapping edits, either due to
multiple insertions at the same location or overlap-
ping substitutions.

• Multiple insertions Multiple conflicting in-
sertion edits at the same location are not to be
applied together when proposed by different
base GEC systems. If there are multiple inser-
tion edits at the same position (e.g., (3, 3, on)
and (3, 3, in)), we consider this as a multiple
insertion conflict.

• Overlapping substitutions If an edit’s start
or end index is in between another edits’ start
and end indices (e.g., (2, 4, eaten) and (2,
3, ate)), we consider this as an overlapping
substitution conflict.

We use a greedy strategy to select the edits after
we obtain the probabilities from the model. First,
we only consider edits that have probabilities above
a certain threshold. Then, we sort the edits based
on their probabilities from the highest to the lowest
and check the edits one-by-one to only select the
edits that do not have any conflict with previously
selected edits.

4 Experiments

4.1 Implementation

We extract the edits from the base GEC models’
output using ERRANT (Bryant et al., 2017) and im-
plement our model using the Linear module of Py-
Torch (Paszke et al., 2019). We optimize the model
using stochastic gradient descent (SGD) with bi-
nary cross entropy, and use the threshold of 0.5 to
select the edits. Our model’s hyper-parameters are
given in Table 2.

1966

Source In this case , the families played important roles in daily lives .
Correction In this case , family members play important roles in our daily lives .
Edits (4, 5, ‘’), (5, 6, family members), (6, 7, play), (10, 10, our)
Edit types U:DET, R:NOUN, R:VERB:TENSE, M:DET

Table 1: Extracted edits from a sample pair of source and corrected sentences.

Hyper-parameter value
Dimension 54k
Optimizer Stochastic Gradient

Descent
Momentum 0
Dampening 0
Weight decay 0
Criterion Binary Cross En-

tropy
Criterion reduction Mean
Learning rate 0.1
Batch size 16
Shuffle train True

Table 2: Hyper-parameters for all experiments.

4.2 Dataset

Following Kantor et al. (2019) and Lin and Ng
(2021), we train the model on the base systems’ out-
puts on BEA-2019 shared task development data
(Bryant et al., 2019). All base systems that we
combine in our experiments are publicly available.
Except for T5-large, the outputs of the models can
be downloaded directly. For T5-large, their results
can be readily reproduced following the instruc-
tions in the T5 repository, fine-tuning2 it with the
dataset that is published by (Rothe et al., 2021).
The URLs of these base systems are listed in the
Appendix.

Our method only requires one hyper-parameter
that needs to be set in each experimental setting,
which is the number of epochs to train the model.
Its value is determined by first training our model
on 80% of the BEA-2019 development data. The
epoch number that results in the highest F0.5 score
on the remaining 20% of the BEA-2019 develop-
ment data is chosen. We then train on the complete
BEA-2019 development data for the same number
of epochs to obtain the final model.

2With hyper-parameters from https://github.com/
google-research-datasets/clang8/issues/3

4.3 Evaluation

We evaluate our model on CoNLL-2014 (Ng et al.,
2014) and BEA-2019 test data. We use the Max-
Match (M2) scorer (Dahlmeier and Ng, 2012) to ob-
tain the CoNLL-2014 results and ERRANT scorer
(Bryant et al., 2017) to obtain the BEA-2019 re-
sults. To reduce randomness in our experiments,
we report the average and standard deviation of
5 runs. For MEMT and ESC, we set a different
random seed in each run. For IBM, we randomize
the way of combining the base systems. Since the
IBM method combines two systems in each step,
the order of combining the base systems affects the
combination results. For GEC-IP, its optimization
is deterministic. There is only slight variation due
to conflict resolution if there are overlapping edits,
but it does not happen in our experiments. Thus,
our repeated experiments of GEC-IP have the ex-
act same output in both the BEA-2019 and the
CoNLL-2014 experiments. We measure the statis-
tical significance of our experiments with bootstrap
resampling on 100 samples.

5 Results

We combine up to six strong GEC base sys-
tems, namely T5-Large (Rothe et al., 2021),
GECToR XLNet (Omelianchuk et al., 2020),
GECToR Roberta (Omelianchuk et al., 2020),
Riken&Tohoku (Kiyono et al., 2019), UEDIN-MS
(Grundkiewicz et al., 2019), and Kakao&Brain
(Choe et al., 2019). For the CoNLL-2014 combina-
tion, we do not include the Kakao&Brain system as
a base system since its CoNLL-2014 score (61.15)
is significantly lower than the other systems (≥
64.00). For the BEA-2019 combination, our main
results combine all 6 aforementioned base GEC
systems.

We compare the scores of our model (ESC) with
other system combination methods that have been
shown to work well on the grammatical error cor-
rection task, such as MEMT (Heafield and Lavie,
2010), IBM (Kantor et al., 2019), and GEC-IP (Lin
and Ng, 2021). With almost no hyper-parameter
tuning, our model works very well and outperforms

1967

https://github.com/google-research-datasets/clang8/issues/3
https://github.com/google-research-datasets/clang8/issues/3

BEA-2019 Dev CoNLL-2014 CoNLL-2014
Model P R F0.5 P R F0.5 F0.5 (x̄± σ)
1. T5-Large 60.38 44.04 56.21 69.66 51.50 65.07
2. GECToR XLNet 66.00 34.14 55.62 77.49 40.15 65.34
3. GECToR Roberta 62.37 35.52 54.18 73.91 41.66 64.00
4. Riken&Tohoku 62.89 34.39 53.95 73.26 44.17 64.74
5. UEDIN-MS 59.07 37.57 53.00 75.15 41.21 64.52
MEMT 65.43 42.69 59.13 76.44 48.06 68.37 68.14± 0.2
IBM 70.70 41.15 61.82 69.83 44.95 62.87 62.51± 0.45
GEC-IP 68.87 39.91 60.04 74.97 42.93 65.23 65.23± 0
ESC (ours) 72.86 40.37 62.76 81.48 43.78 69.51 69.47± 0.14

Table 3: CoNLL-2014 combination results. The first group of rows shows the base GEC systems and the second
group of rows shows the combination results of the above base systems using different GEC system combination
methods. The rightmost column shows the mean and standard deviation of the CoNLL-2014 test set F0.5 scores from
5 experiments. The rest come from a single experiment that has the highest F0.5 score on the BEA-2019 dev set.

CoNLL-2014
F0.5

Model original alt
(Rothe et al., 2021) - 68.87
(Stahlberg and Kumar, 2021) 68.3 -
(Omelianchuk et al., 2020) 66.5 -
(Kaneko et al., 2020) 65.23 -
ESC (ours) 69.51 72.28

Table 4: Comparison of our CoNLL-2014 test scores
with state-of-the-art systems.

all the other system combination methods.
Our ESC method increases the F0.5 score by

4.17 points from the highest base GEC system on
CoNLL-2014 (Table 3) and 7.24 points on BEA-
2019 (Table 6). The high performance on both
CoNLL-2014 and BEA-2019 shows that our model
does not overfit to the dataset even though the
model is trained with BEA-2019 development set.
We confirm that the F0.5 scores on both CoNLL-
2014 and BEA-2019 are significantly higher than
the F0.5 score of each of the other combination
methods (p < 0.001).

In addition, our BEA-2019 F0.5 score outper-
forms the state of the art by 4.0 points (Table 5),
and our CoNLL-2014 F0.5 score outperforms the
state of the art by 1.21 points on the original anno-
tation and 3.41 points on the alternative annotation
(Table 4). For the CoNLL-2014 score comparison,
we report both the F0.5 scores on the original an-
notation and the alternative annotation (alt) that
includes moderated participants’ alternative anno-
tations. This is because one of the current top

BEA-2019
Model P R F0.5
(Rothe et al., 2021) - - 75.9
(Stahlberg and Kumar, 2021) 77.7 65.4 74.9
(Omelianchuk et al., 2020) 79.4 57.2 73.7
ESC (ours) 86.6 60.9 79.9

Table 5: Comparison of our BEA-2019 test scores with
state-of-the-art systems.

systems for CoNLL-2014 reported its score on the
alternative annotation3. From the experiments on
CoNLL-2014 (Table 3) and BEA-2019 (Table 6),
we can see that the strength of ESC lies in its high
precision compared to other system combination
methods.

6 Analysis

In this section, we analyze the capability of our
ESC method in comparison with other GEC sys-
tem combination methods. Our method, which is
a simple logistic regression, chooses whether to
include an edit based on its appearance and the edit
type in each component system. With edit type
set T and k hypotheses, the model is a function
of k|T |+1 weight parameters: w ∈ Rk|T | and the
bias parameter b. If we assume the edit type for the
same edit span and correction between the hypothe-
ses to always be the same, we can decompose the
model into |T | independent functions that accept
k inputs, one function for each edit type t ∈ T , as

3https://github.com/
google-research-datasets/clang8/issues/
3#issuecomment-991151706

1968

https://github.com/google-research-datasets/clang8/issues/3#issuecomment-991151706
https://github.com/google-research-datasets/clang8/issues/3#issuecomment-991151706
https://github.com/google-research-datasets/clang8/issues/3#issuecomment-991151706

BEA-2019 Dev BEA-2019 Test BEA-2019 Test
Model P R F0.5 P R F0.5 F0.5 (x̄± σ)
1. T5-Large 60.38 44.04 56.21 74.30 66.75 72.66
2. GECToR XLNet 66.00 34.14 55.62 79.20 53.90 72.40
3. GECToR Roberta 62.37 35.52 54.18 77.20 55.10 71.50
4. Riken&Tohoku 62.89 34.39 53.95 74.7 56.7 70.2
5. UEDIN-MS 59.07 37.57 53.00 72.28 60.12 69.47
6. Kakao&Brain 62.73 33.23 53.27 75.19 51.91 69.00
MEMT 68.41 41.88 60.72 82.20 63.00 77.48 76.66± 0.82
IBM 72.45 39.62 62.15 83.38 58.43 76.82 76.24± 0.38
GEC-IP 70.10 38.96 60.44 80.78 57.51 74.73 74.73± 0
ESC (ours) 73.63 40.12 63.09 86.65 60.91 79.90 79.86± 0.07

Table 6: BEA-2019 combination results. The first group of rows shows the base GEC systems and the second
group of rows shows the combination results. The rightmost column shows the mean and standard deviation of the
BEA-2019 test set F0.5 scores from 5 experiments. The rest come from a single experiment that has the highest F0.5
score on BEA-2019 dev set.

follows:
ft(x1, x2, . . . , xk)

=

{
1 ifx1we

1 + x2w
e
2 + . . .+ xkw

e
k + b > 0

0 otherwise
(2)

where xj denotes whether the edit appears in hy-
pothesis j. The edit is selected only if ft results
in 1. In this analysis, we also assume that there
are no conflicting edits and we use the probability
threshold of 0.5. We use this function formulation
throughout our analysis.

6.1 Comparison with MEMT
Compared to ESC, IBM, and GEC-IP, MEMT has
a significantly different approach to combine the
hypotheses. MEMT does not utilize edit types at
all. Instead of learning the weight for each edit type
from each component system, MEMT learns the
weight of n-gram matching to the output of each
component system. Moreover, MEMT also scores
the candidate sentence with an n-gram language
model, so candidate selection is affected by the
domain of the language model’s training data and
the language model’s limited context.

In Table 7, MEMT chooses to keep the edit of
changing the word “practise” to the word “do”.
Since there is only one hypothesis proposing this
edit, the n-gram match of this edit will have a lower
score than not keeping the edit. Thus, MEMT
keeps this edit due to the higher language model
score. It is likely that the phrase “they can do it”
appears more often in the language model training
data than “they can practise it”.

Source However , the adults they can practise
it as well and they will get the same .

S1 However , the adults they can do it as
well and they will get the same .

S2 However , the adults they can practise
it as well and they will get the same .

S3 However , the adults they can practise
it as well and they will get the same .

MEMT However , the adults they can do it as
well and they will get the same .

ESC However , the adults they can practise
it as well and they will get the same .

Reference However , the adults they can practise
it as well and they will get the same .

Table 7: An example of MEMT’s weakness.

6.2 Comparison with IBM

Proposition 1. In the combination of 4 or more
base systems, ESC has more expressive power than
any of IBM’s combination settings.

The IBM method separates the edits from 2 hy-
potheses (e.g., S1 and S2) into three groups: edits
that appear exclusively in S1 (S1 ∩ ¬S2), edits
that appear in S1 and S2 (S1 ∩ S2), and edits that
appear exclusively in S2 (¬S1 ∩ S2). In the com-
bination of more than 2 hypotheses, we apply the
IBM method iteratively in some order.

In each iteration, for each edit type t ∈ T , we
can formalize the IBM method as the following
logic function:

1969

n IBM’s upper-
bound

ESC’s lower-
bound

2 8 7
3 64 52
4 512 941
5 4096 47286
6 32768 7514067
7 262144 4.189035e+9
8 2097152 8.7807698e+12
9 1.1677722e+7 7.2065266e+16

Table 8: IBM’s upper bound of expressive power and
ESC’s lower bound of expressive power, both in terms
of possible logic function expressions. n denotes the
number of base systems.

gt(xi, xj) = (s1 ∩ (xi ∩ ¬xj)) ∪ (s2 ∩ (xi ∩ xj))

∪ (s3 ∩ (¬xi ∩ xj))

(3)

where xi denotes whether the edit appears in hy-
pothesis i, and s1, s2, and s3 denote parameters to
select/ignore the edit group.

Note that gt(xi, xj) is a commutative function,
i.e., gt(xi, xj) = gt(xj , xi). We can just swap the
values of s1 and s3 from the above equation. Thus,
the number of expressions that g can express is not
more than all possible combinations of s1, s2, and
s3 values, which is 23 = 8.

In combining k systems, the maximum number
of iterations is k − 1 steps. Thus, the number of
logic functions the IBM method can express with k
base systems, no matter in which order the compo-
nent models are combined (combination setting)4,
is at most 8k−1. On the other hand, ESC can ex-
press all linearly separable Boolean functions with
k variables. Since we do not consider edits that
do not exist in any of the hypotheses, the num-
ber of unique functions that ESC can express is at
least half of the possible linearly separable Boolean
functions. We show the rationale behind this in the
Appendix.

Currently, the number of linearly separable
Boolean functions is known only up to 9 variables
(Gruzling, 2007). However, in comparison with
IBM’s expressivity (Table 8), we know that ESC
has more expressive power until at least the combi-
nation of 19 base systems, since 818 < 7.2× 1016.

4Different iteration trees may result in different sets of
learned functions, and the user needs to choose one.

BEA-2019
No. of base systems P R F0.5
T5-Large + G. XLNet 80.20 61.11 75.48

+ GECToR Roberta 84.69 59.02 77.91
+ Riken&Tohoku 86.15 59.41 79.04
+ UEDIN-MS 86.16 61.06 79.62
+ Kakao&Brain 86.65 60.91 79.90

Table 9: The performance of GEC system combination
with different number of base systems on the BEA-2019
test set.

6.3 Comparison with GEC-IP
Proposition 2. ESC is a generalized form of GEC-
IP.

GEC-IP works by selecting one hypothesis for
each edit type. We can model GEC-IP’s final
decision with ESC Equation 2 by setting one of
the weights to one, and the others to zero, i.e.,
ws̄ = 1, wj ̸=s̄ = 0 ∀j ∈ {1, . . . , k}, where s̄ de-
notes the optimal hypothesis from GEC-IP training,
for each edit type. Thus, this shows that GEC-IP is
a special case of ESC.

7 Discussions

7.1 Effect of the Number of Base Systems
In this section, we discuss the effect of using dif-
ferent number of GEC base systems in our combi-
nation. We conduct an experiment of GEC system
combination with increasing number of base sys-
tems from 2 to 6 (Table 9). In this experiment, we
always pick the best-performing base systems first,
i.e., we combine T5-Large with GECToR XLNet
in the 2-system combination, then add GECToR
Roberta in the 3-system combination, and so on.

We find that even with combining only three
systems, our method already outperforms the state
of the art (75.9). We also find that adding more
base systems, even though an additional system is
weaker than the already combined base systems, is
still beneficial to improve the F0.5 score. We find
that adding more base systems allows the model to
have more information in picking the correct edits,
hence improving the precision.

7.2 Ensemble Alternative
We run system combination experiments with base
systems that are very similar to each other to evalu-
ate whether our system combination can be an alter-
native to the conventional ensemble. We run this ex-
periment on two sets of models, a set of sequence-

1970

BEA-2019
Model P R F0.5
(1) Transformer-big 1 68.25 58.73 66.11
(2) Transformer-big 2 68.49 59.51 66.48
(3) Transformer-big 3 68.45 60.02 66.58
(4) Transformer-big 4 68.38 60.02 66.53
1+2+3+4 Ensemble 69.88 59.71 67.57
1+2+3+4 ESC 75.86 52.63 69.70

Table 10: Comparison of ESC with conventional en-
semble on sequence-to-sequence models.

BEA-2019
Model P R F0.5
(1) GECToR XLNet 79.20 53.90 72.40
(2) GECToR Roberta 77.20 55.10 71.50
(3) GECToR BERT 71.50 55.70 67.60
1+2 Ensemble 79.40 57.20 73.70
1+2 ESC 83.94 50.44 74.10
1+2+3 Ensemble 78.90 58.20 73.60
1+2+3 ESC 84.67 51.50 75.01

Table 11: Comparison of ESC with conventional en-
semble on sequence tagging models.

to-sequence models and a set of sequence-tagging
models. By conventional ensemble, we mean the
method of averaging the output probabilities from
multiple models during the prediction step, i.e.,
when predicting the tag for each token in sequence
tagging models and when predicting the next to-
ken during beam search in sequence-to-sequence
models.

The sequence-to-sequence experiment combines
4 transformer-big models we train ourselves. The
four models only differ in the random seeds, pre-
training data, and batch sizes during fine-tuning. 2
of them are pre-trained with 50M sentences of syn-
thetic data, and the other 2 are pre-trained with
100M sentences of synthetic data before being
fine-tuned with BEA-2019 training data. For the
sequence tagging experiment, we use GECToR’s
(Omelianchuk et al., 2020) models5, which differ in
the pre-trained masked language model, and then
fine-tune with GEC parallel data.

We find that even though the base systems are
relatively similar, our system combination can still
improve the F0.5 score by at least 1.7 points. Fur-
thermore, our model yields higher F0.5 scores than
the conventional ensemble (Tables 10 and 11). This

5https://github.com/grammarly/gector/
tree/fea1532608

suggests that using ESC instead of the conventional
ensemble is better when combining multiple mod-
els.

8 Conclusion and Future Work

In this work, we present a novel GEC system com-
bination method using logistic regression by formu-
lating the task as binary classification. Our method
increases the F0.5 score by 4.17 points from the
highest base GEC system on CoNLL-2014 and
7.24 points on BEA-2019. This shows that our
method does not overfit to the dataset even though
it is trained on the BEA-2019 development data.
In addition, our combined system outperforms the
best published GEC system by 4.0 points on the
BEA-2019 test set, 1.21 points on the CoNLL-2014
test set with original annotation, and 3.41 points on
the CoNLL-2014 test set with alternative annota-
tion.

We also compare our system combination
method to the other GEC system combination meth-
ods, including MEMT (Heafield and Lavie, 2010),
IBM (Kantor et al., 2019), and GEC-IP (Lin and
Ng, 2021), and show that our method has better
expressive power compared to IBM and GEC-IP.
We also show that our method produces a higher
F0.5 score than the conventional ensemble.

This work highlights the importance of edit type
information in system combination for grammatical
error correction. In recent GEC research, most sys-
tems just employ end-to-end learning without mak-
ing use of any syntactic knowledge. We show that
syntactic information, such as edit type, can also
be useful to improve neural grammatical error cor-
rection models. Even though we only evaluate this
method on English GEC, we believe our method
can also be applied to other languages when a sim-
ilar error type annotation toolkit is available.

Acknowledgements

We thank Ammar Fathin Sabili and Hannan Cao
for helpful comments on this paper. This research
is supported by the National Research Founda-
tion, Singapore under its AI Singapore Programme
(AISG Award No: AISG-RP-2019-014). The com-
putational work for this article was partially per-
formed on resources of the National Supercomput-
ing Centre, Singapore (https://www.nscc.sg).

1971

https://github.com/grammarly/gector/tree/fea1532608
https://github.com/grammarly/gector/tree/fea1532608

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
In Proceedings of EMNLP, pages 4260–4270.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of BEA, pages 52–75.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of ACL, pages 793–805.

Yo Joong Choe, Jiyeon Ham, Kyubyong Park, and Yeoil
Yoon. 2019. A neural grammatical error correction
system built on better pre-training and sequential
transfer learning. In Proceedings of BEA, pages 213–
227.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of NAACL 2012, pages 568–572.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of BEA, pages
252–263.

Nicolle Gruzling. 2007. Linear separability of the ver-
tices of an n-dimensional hypercube. Ph.D. thesis,
University of Northern British Columbia.

Wenjuan Han and Hwee Tou Ng. 2021. Diversity-driven
combination for grammatical error correction. In
Proceedings of ICTAI.

Kenneth Heafield and Alon Lavie. 2010. CMU multi-
engine machine translation for WMT 2010. In Pro-
ceedings of WMT, pages 301–306.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In Proceed-
ings ACL, pages 4248–4254.

Yoav Kantor, Yoav Katz, Leshem Choshen, Edo
Cohen-Karlik, Naftali Liberman, Assaf Toledo, Amir
Menczel, and Noam Slonim. 2019. Learning to com-
bine grammatical error corrections. In Proceedings
of BEA, pages 139–148.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study
of incorporating pseudo data into grammatical error
correction. In Proceedings of EMNLP, pages 1236–
1242.

Ruixi Lin and Hwee Tou Ng. 2021. System combination
for grammatical error correction based on integer
programming. In Proceedings of RANLP, pages 829–
834.

Wolfgang Macherey and Franz J. Och. 2007. An empir-
ical study on computing consensus translations from
multiple machine translation systems. In Proceed-
ings of EMNLP, pages 986–995.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
CoNLL, pages 1–14.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction. In
Proceedings of CoNLL, pages 1–12.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of BEA, pages 163–170.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32, pages 8024–8035.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of ACL, pages 702–707.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic
data generation for grammatical error correction with
tagged corruption models. In Proceedings of BEA,
pages 37–47.

Raymond Hendy Susanto, Peter Phandi, and Hwee Tou
Ng. 2014. System combination for grammatical error
correction. In Proceedings of EMNLP, pages 951–
962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

A Base System URLs

The URLs of these base systems are given in Table
12.

B Computing Budget

We run our experiments on a single NVIDIA A100
GPU. The training time takes an average of 0.6
minutes for all experiments. Even though we use
GPU in our experiments, our method takes less
than 2 minutes to train on a CPU.

1972

https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
http://arxiv.org/abs/2110.15149
http://arxiv.org/abs/2110.15149
https://aclanthology.org/W10-1744
https://aclanthology.org/W10-1744
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/W19-4414
https://doi.org/10.18653/v1/W19-4414
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://aclanthology.org/D07-1105
https://aclanthology.org/D07-1105
https://aclanthology.org/D07-1105
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://doi.org/10.3115/v1/D14-1102
https://doi.org/10.3115/v1/D14-1102
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Model name URLs
1. T5-Large T5: https://github.com/google-research/

text-to-text-transfer-transformer
Fine-tuning dataset (cLang-8):
https://github.com/google-research-datasets/clang8

2. GECToR XLNet https://github.com/grammarly/gector/tree/fea1532608
3. GECToR Roberta https://github.com/grammarly/gector/tree/fea1532608
4. Riken&Tohoku https://github.com/butsugiri/gec-pseudodata
5. UEDIN-MS https://github.com/grammatical/pretraining-bea2019/
6. Kakao&Brain https://github.com/kakaobrain/helo_word/

Table 12: Base system sources.

BEA-2019 Dev CoNLL-2014 Test
P R F0.5 P R F0.5
1 72.16 40.96 62.62 80.75 44.56 69.47
2 71.62 41.38 62.49 80.36 44.76 69.33
3 73.25 39.46 62.54 81.83 43.11 69.37
4 72.58 40.37 62.59 81.52 44.11 69.69
5 72.86 40.37 62.76 81.48 43.78 69.51

Table 13: CoNLL-2014 combination results with 5 runs.
The results are from experiments with random seeds 0,
17, 171, 999, and 8888 respectively.

BEA-2019 Dev BEA-2019 Test
P R F0.5 P R F0.5
1 74.04 38.88 62.70 87.36 59.32 79.82
2 73.36 40.26 63.00 86.41 60.98 79.76
3 74.02 39.28 62.89 87.37 59.69 79.95
4 73.63 40.12 63.09 86.65 60.91 79.90
5 73.69 40.02 63.08 86.68 60.78 79.87

Table 14: BEA-2019 combination results with 5 runs.
The results are from experiments with random seeds 0,
17, 171, 999, and 8888 respectively.

C Complete Experimental Results

The complete 5-run experiments can be seen in
Table 13 for our CoNLL-2014 results and Table 14
for our BEA-2019 results. The experiment with
the highest BEA-2019 dev set F0.5 score for the
CoNLL-2014 experiments is from the one with
random seed 8888, and the experiment with the
highest BEA-2019 dev set F0.5 score for the BEA-
2019 experiments is from the one with random seed
999.

D Expressive Power of ESC

D.1 Definition

Suppose fθ(x1, . . . , xn) is a combination function
which takes x1, . . . , xn as input and returns a bi-
nary value using the parameter value θ ∈ Ω where
Ω is the parameter space. Let EP(f) be the expres-
sive power of f , which is defined as the number of
unique functions of f , obtained from all possible
parameter values, formally given as follows:

EP(f) = |{fθ|θ ∈ Ω} |

D.2 Calculating the Number of Possible
Functions6

With n Boolean variables, there are 2n possible
combinations of the variable values. For example,
for n = 2, there are 22 possible values:

• a = 0, b = 0

• a = 0, b = 1

• a = 1, b = 0

• a = 1, b = 1

From these 4 possible values, we can generate 24

functions, based on the combination of the returned
values for each input combination. The possible
functions are shown in Table 15. If we set the
output of a = 1, b = 1 to a fixed value such as
in Table 16, the number of semantically different
functions is reduced by half, as F0 becomes the
same function as F1, F2 becomes the same function
as F3, and so on. This reduces the expressive power
of the function to half from 16 to 8.

6This explanation is inspired from
https://math.stackexchange.com/a/698086

1973

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research-datasets/clang8
https://github.com/grammarly/gector/tree/fea1532608
https://github.com/grammarly/gector/tree/fea1532608
https://github.com/butsugiri/gec-pseudodata
https://github.com/grammatical/pretraining-bea2019/
https://github.com/kakaobrain/helo_word/

a b F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 15: Possible input & output mappings of logic functions with two Boolean variables.

a b F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 16: Possible logic functions with two Boolean variables, with the output of a = 1, b = 1 fixed to 0.

n all Linearly separa-
ble

ESC’s lower-
bound

2 22
2

14 7
3 22

3
104 52

4 22
4

1882 941
5 22

5
94572 47286

6 22
6

15028134 7514067
7 22

7
8.3780708e+9 4.189035e+9

8 22
8

1.7561539e+13 8.7807698e+12
9 22

9
1.4413053e+17 7.2065266e+16

Table 17: The number of possible Boolean functions.
n denotes the number of parameters, which is the same
as the number of hypotheses.

ESC is a generalized linear function, so it can
only express linearly separable functions. Further-
more, we do not consider any edits that do not
appear in any of the hypotheses, making the output
of the function with the input of (x1 = 0, x2 =
0, . . . , xk = 0) always resulting in 0. Thus, the
number of semantically different logic functions
that can be expressed is at least half of linearly sep-
arable Boolean functions. With the list of number
of linearly separable Boolean functions from (Gru-
zling, 2007), we can get the lower bound of ESC’s
expressive power in Table 17.

1974

