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Abstract

In recent years, transformer-based coreference
resolution systems have achieved remarkable
improvements on the CoNLL dataset. How-
ever, how coreference resolvers can benefit
from discourse coherence is still an open ques-
tion. In this paper, we propose to incorpo-
rate centering transitions derived from center-
ing theory in the form of a graph into a neu-
ral coreference model. Our method improves
the performance over the SOTA baselines, es-
pecially on pronoun resolution in long docu-
ments, formal well-structured text, and clus-
ters with scattered mentions.1

1 Introduction

Coreference resolution is the task to find all ex-
pressions which refer to the same entity. The
coreferential mentions could occur anywhere in
the discourse. In recent years, many transformer-
based models (Joshi et al., 2019, 2020; Kirstain
et al., 2021) achieved improvements on the CoNLL
benchmark (Pradhan et al., 2012). In contrast to
using transformers such as BERT (Devlin et al.,
2019) which learn the text input sequentially in
limited chunks, how knowledge about the structure
of discourse can benefit coreference resolution is
less explored in the neural NLP era.

Coreference plays an essential role in discourse
coherence. A referring expression using a reduced
linguistic form (e.g., pronoun) indicates a referen-
tial relation to its antecedent in previous utterances.
The referring expression connects utterances and
contributes to discourse coherence implicitly. On
the other hand, coreference resolution can benefit
from a coherent discourse. It has long been ac-
knowledged that coherence structure can impose
constraints on referential accessibility from a lin-
guistic perspective (Asher and Lascarides, 2003).
Centering theory (Joshi and Weinstein, 1981; Grosz

1Our code and model are publicly available at: https:
//github.com/HaixiaChai/CT-Coref

1.  Bill wanted John to look over some important papers.

2.  He/Bill had to mail him the documents by Monday.

3.  Unfortunately, he/John never received the papers.

4.  As a result, the whole deal fell behind schedule.

continue

shift

shift

Figure 1: An example text shows how foci change sen-
tence by sentence. The words in bold are the focus
of each sentence. The arrows indicate centering tran-
sitions with two different transition types, continue
and shift.

et al., 1983, 1995; Walker et al., 1998) is a method
to formally describe discourse coherence by using
attentional state (i.e., the focus of attention of the
participants at each utterance of the discourse). Fig-
ure 1 shows how the coherence structure of an ex-
ample text is built by means of tracking the changes
in the local attentional state.2 By applying center-
ing theory, Gordon and Scearce (1995) investigate
how local coherence influences the interpretation
of ambiguous pronouns. From reading-time experi-
ments, they observe that utterances with pronouns
were read faster in the centering continue than
in the shift status, while utterances with noun
phrases containing rich lexical information were
read more quickly in the centering shift than
in the continue status. We conjecture that this
pattern could contribute to coreference resolution.

In this work, we explore the effect of changes
in attentional state in the discourse on entity coref-
erence resolution in a neural approach. Inspired
by Jeon and Strube (2020), we capture the most
salient mentions of each sentence as centers to com-
pute the local centering transition relations in ac-
cordance with centering theory. We then extend
the coherence structure globally in the form of a
graph. It makes the centering transitions available
between any two sentences. Lastly, we fuse the
novel discourse structure into a neural coreference
model (Kirstain et al., 2021). From the results, our

2The example is based on Gordon and Scearce (1995).
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proposed method improves the SOTA models up to
80.9 F1 score. Our extensive analysis shows that
our approach performs better on pronoun resolu-
tion in long documents, formal well-structured text
such as magazine and newswire genres, and docu-
ments with scattered mentions of clusters. Overall,
we observe that incorporating discourse structure
derived from centering theory can benefit corefer-
ence resolution.

2 Related Work

Discourse for Coreference. In early work, some
structural features of the discourse were used in
machine learning approaches, such as sentential
position and distance between two mentions in
sentences, phrases or mentions (Soon et al., 2001;
Sapena et al., 2013). In the deep learning period,
only a few researchers incorporated discourse infor-
mation into a coreference model to our knowledge.
Recently, Khosla et al. (2021) use rhetorical struc-
ture theory (RST) (Mann and Thompson, 1988) to
capture the hierarchical discourse structure of doc-
uments, from which they encode three distance fea-
tures for the candidate and query mentions on dif-
ferent levels (i.e., word-level, discourse-unit-level
and discourse subtree). Held et al. (2021) apply dis-
course coherence (Grosz, 1977, 1978; Grosz and
Sidner, 1986) to cross-document coreference reso-
lution. They retrieve candidate mentions by mod-
eling the attentional state within a latent embed-
ding space as a set of nearest neighbors for a query
mention. As a pruning method, these neighbor-
hoods constrain the search space for their following
pairwise classifier. Different from the approaches
above, we use centering theory to extract centering
transitions between sentences through attentional
state. We then use these relations to construct a
discourse structure that shows how centers change
as discourse proceeds dynamically.

Centering Theory. Since centering theory is a
linguistic theory, a great number of early works
(Walker et al., 1994; Di Eugenio, 1998; Turan,
1998; Strube and Hahn, 1999) were dedicated to
transform it to a computational one for various lan-
guages. Lately, Jeon and Strube (2020) is the first
work that applies centering theory in a neural model
for discourse coherence explicitly. They capture
the relationships sentence by sentence for assess-
ing text coherence. In the coreference resolution
task, coreferent mentions could occur anywhere
in the discourse rather than the adjacent sentence

Cb(si) Cb(si) No
≈ Cb(si−1) 6= Cb(si−1) Cb(si)

Cb(si) Continue
Shift None≈ Cp(si)

Cb(si) Retain6= Cp(si)

Table 1: Centering transition relations. For instance,
continue indicates that the center of utterance si is
similar to the one in its previous utterance si−1.

only. Thus, we propose a fully connected centering
transitions graph in our model. In addition, Jeon
and Strube compute the centers of each sentence
on a token-level, while we do it on the span-level.

3 Model

3.1 Baseline

We study the model proposed by Kirstain et al.
(2021) as our baseline. It is a start-to-end (s2e)
coreference resolution model that only considers
boundary points of a span to compute the men-
tion and antecedent scores without additional hand-
crafted features. Similar to the method of Lee et al.
(2018), they measure how likely a candidate men-
tion c is to be an antecedent of a query mention q
by a scoring function f(c, q). The function is the
addition of two mention scores fm(c), fm(q) and
an antecedent score fa(c, q). Our model is based
on this scoring function.3

3.2 Incorporating Centering Transitions

According to centering theory, we formulate cen-
tering transitions among utterances — sentences
specifically — in our approach. Figure 2 shows our
model architecture.

Centering Theory. Centering theory describes
the local coherence and its relationship to atten-
tional state within a discourse segment. From each
utterance, one can extract (1) a set of forward-
looking centers (Cf ) ranked according to their
prominence, (2) a single backward-looking center
(Cb) connected with one of the Cf of the imme-
diately preceding utterance, and (3) a preferred
center (Cp) which is the most salient center in Cf .
Following Jeon and Strube (2020), Table 1 presents
all relations of centering transition at the local level.
The relationships between discourse segments and

3For more details, we refer to the original Kirstain et al.
(2021) paper.
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Colorado woman wants to thank … at the beach.      Tony Kurran had lost the ring … police department.       He said … . 
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Figure 2: The figure shows our model architecture incorporating centering transitions for the sentence score. There
are three example sentences in blue, red and green colors. A string of squares refers to a mention comprising a
different number of tokens. The mention with a darker color indicates that it is a more salient center in a sentence.

utterances then provide the fundamental structural
centering relations for discourse.

Scoring Function. To combine the structure
of the centering transitions with the coreference
model, we add sentence score fs(c, q) to the scor-
ing function as shown below. The last item mea-
sures the relationship of the encoded sentences
where two examined mentions are located. Es-
pecially, if the query mention is a singleton, we set
the scoring function to 0.

f(c, q) = fm(c) + fm(q) + fa(c, q) + fs(c, q)

Centering Transitions. Having the mention
scores fm(·), we use top λn mentions for fur-
ther processing of centering transitions (where
n is the number of input tokens). Inspired by
Jeon and Strube (2020), the remaining mentions
with their positions in each sentence are encoded
and fed into a multi-head self-attention matrix
— softmax

(
QKT
√
dk

)
— to compute the attention

score (Vaswani et al., 2017). Q and K stand for
the observed mentions of the sentence. From the
ranked diagonal elements of the self-attention ma-
trix, we take the top m mentions as Cf , and the

first most salient mention as Cp. As for Cb of
the sentence si, we select the mention from Cf

of its previous adjacent sentence si−1, which has
the highest semantic similarity with the current
sentence si. Here, we simply use the averaged to-
ken representations as the sentence embedding esi .
Finally, we generate centering transition relations
(i.e., continue, retain and shift) between
each two adjacent sentences by computing cosine
similarity according to the rules in Table 1.

Sentence Score. Sometimes, a candidate men-
tion is more than one sentence away from the query
mention. Thus, we apply centering transitions not
only at a local level but also to all other sentences
in discourse globally. Treating sentences as nodes
and transition relations as edges, each sentence can
be encoded with its neighbouring nodes weighted
by the edges which are connected to it, including
self-connections. Then, we calculate the sentence
score for each pair of mentions by using the em-
beddings of the sentences es where the candidate
and query mentions belong to.

fs(c, q) = A · esc ·B · esq
2998



Model
MUC B3 CEAFe LEA CoNLL

P R F1 P R F1 P R F1 P R F1 F1

c2f 85.7 85.3 85.5 79.5 78.7 79.1 76.8 75.0 75.9 76.2 75.7 75.9 80.2
s2e 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 78.3 75.8 77.0 80.3

s2e + se 87.0 85.1 86.0 80.5 78.2 79.3 77.6 74.9 76.2 78.4 76.1 77.2 80.5
s2e + se_ct 87.2 85.3 86.3 80.7 78.6 79.6 78.2 75.2 76.7 78.7 76.5 77.6 80.9

Table 2: Performance on the test set of the English OntoNotes 5.0 dataset. c2f refers to Joshi et al. (2020).

In the above formula, A refers to an adjacency
matrix, which represents the centering transi-
tions between sentences by numerical values (i.e.,
continue: 3, retain: 2, shift: 1, and none:
0). They are induced from the above parts. Then,
we use a bilinear product over the resulting repre-
sentations with trainable parameter B to compute
the sentence score.4 We examine this setting in our
experiment s2e+se_ct. When A is an identity ma-
trix (i.e., the matrix with ones on the main diagonal
and zeros elsewhere), the aggregation over es does
not occur. We use this setting s2e+se as our simple
baseline system for comparative evaluation.

4 Experiments

Settings. We train and evaluate our models on
the English OntoNotes 5.0 dataset (Pradhan et al.,
2012). The results are reported using the CoNLL
F1 score — the average of MUC (Vilain et al.,
1995), B3 (Bagga and Baldwin, 1998), CEAFe
(Luo, 2005) — and LEA (Moosavi and Strube,
2016).

In our experiments, we examine two models,
s2e+se and s2e+se_ct, as explained in §3. We have
8 self-attention heads for the attention mechanisms,
select the top 5 mentions for Cf of each sentence,
and set the threshold of cosine similarity as 0.8 for
computing the centering transition relations. Fol-
lowing the baseline, We also use Longformer (Belt-
agy et al., 2020) as our pretrained model, which can
process a sequence up to 4096 tokens. We set the
other parameters the same as the baseline (Kirstain
et al., 2021).5 All our experiments are performed
on a single NVIDIA Tesla V100 32G GPU.

Results. Table 2 shows our results. The model
s2e+se_ct achieves the best result with 80.9 F1 on

4We only adopt adjacency matrix to aggregate esc rather
than to aggregate both esc and esq , as the former performs
better based on our experiments.

5https://github.com/yuvalkirstain/
s2e-coref

OntoNotes. Though both examined models out-
perform the baselines only by a small margin, it
suggests that incorporating centering transitions
is helpful to some extent for coreference resolu-
tion. To thoroughly utilize the discourse structure,
a graph or tree-based coreference model would
be a promising research direction. One option
would be latent trees which have been explored
by Björkelund and Kuhn (2014) and Martschat and
Strube (2015) for providing a more reliable basis
for coreference resolution before the neural NLP
era.

Analyses. First, we check the performance of
our model for pronoun resolution on: (1) GAP
dataset (Webster et al., 2018); and (2) OntoNotes
test dataset in which we only keep the resolved clus-
ters containing pronouns in both gold and system
outputs. Table 3 shows the marginal differences
between the baseline and our model on the GAP
benchmark. GAP is a gender-balanced corpus of

Masc Fem Bias Overall
s2e 91.9 88.2 0.96 90.1
s2e + se_ct (ours) 91.8 87.8 0.96 89.9

Table 3: F1 scores of the examined coreference re-
solvers running on the test set of the GAP dataset.

ambiguous pronouns sampled from Wikipedia, in
which most of examples are short texts. We com-
pute the distributions of lengths of examples by
sentence on both GAP and OntoNotes. As shown
in the Table 4, the large majority of examples in
GAP are 2-4 sentences texts, while the test set
of OntoNotes has many documents longer than
5 sentences. The experiment on OntoNotes in
Table 5 shows that our model outperforms the base-
line across all evaluation metrics. Overall, the two
observed results suggest that our model involving
centering transition relations between sentences
can improve pronoun resolution especially on long
documents.
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Number of Sentences
1 2 3 4 5-9 10-20 21-40 41-60 61+

GAP 70 515 878 433 104 - - - -
OntoNotes - 8 10 13 70 94 90 46 35

Table 4: Distributions of document length of the two
datasets. The bold-faced numbers present the peak text
length of each dataset.

MUC B3 CEAFe LEA CoNLL F1
s2e 87.8 80.8 79.5 79.3 82.7
s2e + se_ct (ours) 88.4 81.6 80.1 80.1 83.4

Table 5: F1 scores of the examined models for pronoun
resolution on the test set of OntoNotes.

Second, we investigate how models perform on
different genres. The CoNLL-2012 data contains
broadcast conversation (bc), broadcast news (bn),
magazine genre (mz), newswire genre (nw), pivot
text (pt), telephone conversation (tc), and web data
(wb) genres. In Table 6, we find that our method
gets the most improvements on mz and nw genres,
in which text is always formal well-structured. In
contrast, tc and wb are the most challenging genres
for our approach, where disfluent and ungrammati-
cal segments and sentences may occur. Therefore,
we summarize that discourse structure information
is more beneficial for narrative text than less-formal
text like conversation and web data. Resolving
coreference in noisy user-generated text such as
text on social media platforms is even harder (Chai
et al., 2020).

bc bn mz nw pt tc wb
s2e 78.2 83.2 84.1 74.0 88.2 81.8 77.9
s2e + se_ct (ours) 78.7 83.1 85.0 74.9 89.0 80.7 77.2

Improvement 0.5 -0.1 0.9 0.9 0.8 -1.1 -0.7

Table 6: Performance of the examined models on the
test set for genres. The bottom line shows the improve-
ment over the baseline by our method.

Finally, we observe the effect of maximum sen-
tence distance dci between any two mentions of
each cluster on models. We take the average of all
dc in the same document as the sentence distance of
it. Figure 3 depicts that our method performs better
when mentions have a distance of more than six sen-
tences. So, utilizing centering transitions globally
is helpful for resolving clusters where mentions
are more scattered. Our method captures how cen-
ters change between not only adjacent sentences
but also non-adjacent sentences in the discourse.
This is specially designed for coreference resolu-
tion based on centering theory. Meanwhile, we

observe that it is difficult for both systems to re-
solve coreference on documents with long sentence
distances (i.e., 12+ sentences).
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Model
s2e
s2e+se_ct(ours)

Figure 3: Performance on sentence distance with re-
gression lines.

5 Conclusion

We present a neural coreference model incorporat-
ing discourse structure information based on cen-
tering theory. The model captures the centering
transition relationships between sentences. Each
sentence is encoded with all neighbour sentences
in a weighted graph. Our approach outperforms the
baseline with 80.9 F1 score. Especially, it helps re-
solving pronoun in long documents, text in formal
genres and clusters with scattered mentions.
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