Unsupervised Paraphrasability Prediction for Compound Nominalizations

John Sie Yuen Lee, Ho Hung Lim, Carol Carol Webster


Abstract
Commonly found in academic and formal texts, a nominalization uses a deverbal noun to describe an event associated with its corresponding verb. Nominalizations can be difficult to interpret because of ambiguous semantic relations between the deverbal noun and its arguments. Automatic generation of clausal paraphrases for nominalizations can help disambiguate their meaning. However, previous work has not identified cases where it is awkward or impossible to paraphrase a compound nominalization. This paper investigates unsupervised prediction of paraphrasability, which determines whether the prenominal modifier of a nominalization can be re-written as a noun or adverb in a clausal paraphrase. We adopt the approach of overgenerating candidate paraphrases followed by candidate ranking with a neural language model. In experiments on an English dataset, we show that features from an Abstract Meaning Representation graph lead to statistically significant improvement in both paraphrasability prediction and paraphrase generation.
Anthology ID:
2022.naacl-main.237
Volume:
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Month:
July
Year:
2022
Address:
Seattle, United States
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
3254–3263
Language:
URL:
https://aclanthology.org/2022.naacl-main.237
DOI:
10.18653/v1/2022.naacl-main.237
Bibkey:
Cite (ACL):
John Sie Yuen Lee, Ho Hung Lim, and Carol Carol Webster. 2022. Unsupervised Paraphrasability Prediction for Compound Nominalizations. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3254–3263, Seattle, United States. Association for Computational Linguistics.
Cite (Informal):
Unsupervised Paraphrasability Prediction for Compound Nominalizations (Lee et al., NAACL 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.naacl-main.237.pdf