@inproceedings{sang-etal-2022-tvshowguess,
title = "{TVS}how{G}uess: Character Comprehension in Stories as Speaker Guessing",
author = "Sang, Yisi and
Mou, Xiangyang and
Yu, Mo and
Yao, Shunyu and
Li, Jing and
Stanton, Jeffrey",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.317",
doi = "10.18653/v1/2022.naacl-main.317",
pages = "4267--4287",
abstract = "We propose a new task for assessing machines{'} skills of understanding fictional characters in narrative stories. The task, TVShowGuess, builds on the scripts of TV series and takes the form of guessing the anonymous main characters based on the backgrounds of the scenes and the dialogues. Our human study supports that this form of task covers comprehension of multiple types of character persona, including understanding characters{'} personalities, facts and memories of personal experience, which are well aligned with the psychological and literary theories about the theory of mind (ToM) of human beings on understanding fictional characters during reading. We further propose new model architectures to support the contextualized encoding of long scene texts. Experiments show that our proposed approaches significantly outperform baselines, yet still largely lag behind the (nearly perfect) human performance. Our work serves as a first step toward the goal of narrative character comprehension.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sang-etal-2022-tvshowguess">
<titleInfo>
<title>TVShowGuess: Character Comprehension in Stories as Speaker Guessing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yisi</namePart>
<namePart type="family">Sang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangyang</namePart>
<namePart type="family">Mou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mo</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shunyu</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Stanton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new task for assessing machines’ skills of understanding fictional characters in narrative stories. The task, TVShowGuess, builds on the scripts of TV series and takes the form of guessing the anonymous main characters based on the backgrounds of the scenes and the dialogues. Our human study supports that this form of task covers comprehension of multiple types of character persona, including understanding characters’ personalities, facts and memories of personal experience, which are well aligned with the psychological and literary theories about the theory of mind (ToM) of human beings on understanding fictional characters during reading. We further propose new model architectures to support the contextualized encoding of long scene texts. Experiments show that our proposed approaches significantly outperform baselines, yet still largely lag behind the (nearly perfect) human performance. Our work serves as a first step toward the goal of narrative character comprehension.</abstract>
<identifier type="citekey">sang-etal-2022-tvshowguess</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.317</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.317</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>4267</start>
<end>4287</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TVShowGuess: Character Comprehension in Stories as Speaker Guessing
%A Sang, Yisi
%A Mou, Xiangyang
%A Yu, Mo
%A Yao, Shunyu
%A Li, Jing
%A Stanton, Jeffrey
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F sang-etal-2022-tvshowguess
%X We propose a new task for assessing machines’ skills of understanding fictional characters in narrative stories. The task, TVShowGuess, builds on the scripts of TV series and takes the form of guessing the anonymous main characters based on the backgrounds of the scenes and the dialogues. Our human study supports that this form of task covers comprehension of multiple types of character persona, including understanding characters’ personalities, facts and memories of personal experience, which are well aligned with the psychological and literary theories about the theory of mind (ToM) of human beings on understanding fictional characters during reading. We further propose new model architectures to support the contextualized encoding of long scene texts. Experiments show that our proposed approaches significantly outperform baselines, yet still largely lag behind the (nearly perfect) human performance. Our work serves as a first step toward the goal of narrative character comprehension.
%R 10.18653/v1/2022.naacl-main.317
%U https://aclanthology.org/2022.naacl-main.317
%U https://doi.org/10.18653/v1/2022.naacl-main.317
%P 4267-4287
Markdown (Informal)
[TVShowGuess: Character Comprehension in Stories as Speaker Guessing](https://aclanthology.org/2022.naacl-main.317) (Sang et al., NAACL 2022)
ACL
- Yisi Sang, Xiangyang Mou, Mo Yu, Shunyu Yao, Jing Li, and Jeffrey Stanton. 2022. TVShowGuess: Character Comprehension in Stories as Speaker Guessing. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4267–4287, Seattle, United States. Association for Computational Linguistics.