@inproceedings{sanagavarapu-etal-2022-disentangling,
title = "Disentangling Indirect Answers to Yes-No Questions in Real Conversations",
author = "Sanagavarapu, Krishna and
Singaraju, Jathin and
Kakileti, Anusha and
Kaza, Anirudh and
Mathews, Aaron and
Li, Helen and
Brito, Nathan and
Blanco, Eduardo",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.345",
doi = "10.18653/v1/2022.naacl-main.345",
pages = "4677--4695",
abstract = "In this paper, we explore the task of determining indirect answers to yes-no questions in real conversations. We work with transcripts of phone conversations in the Switchboard Dialog Act (SwDA) corpus and create SwDA-IndirectAnswers (SwDA-IA), a subset of SwDA consisting of all conversations containing a yes-no question with an indirect answer. We annotate the underlying direct answers to the yes-no questions (yes, probably yes, middle, probably no, or no). We show that doing so requires taking into account conversation context: the indirect answer alone is insufficient to determine the ground truth. Experimental results also show that taking into account context is beneficial. More importantly, our results demonstrate that existing corpora with synthetic indirect answers to yes-no questions are not beneficial when working with real conversations. Our best models outperform the majority baseline by a substantial margin, but the task remains a challenge (F1: 0.46).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sanagavarapu-etal-2022-disentangling">
<titleInfo>
<title>Disentangling Indirect Answers to Yes-No Questions in Real Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Krishna</namePart>
<namePart type="family">Sanagavarapu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jathin</namePart>
<namePart type="family">Singaraju</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anusha</namePart>
<namePart type="family">Kakileti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anirudh</namePart>
<namePart type="family">Kaza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Mathews</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Brito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we explore the task of determining indirect answers to yes-no questions in real conversations. We work with transcripts of phone conversations in the Switchboard Dialog Act (SwDA) corpus and create SwDA-IndirectAnswers (SwDA-IA), a subset of SwDA consisting of all conversations containing a yes-no question with an indirect answer. We annotate the underlying direct answers to the yes-no questions (yes, probably yes, middle, probably no, or no). We show that doing so requires taking into account conversation context: the indirect answer alone is insufficient to determine the ground truth. Experimental results also show that taking into account context is beneficial. More importantly, our results demonstrate that existing corpora with synthetic indirect answers to yes-no questions are not beneficial when working with real conversations. Our best models outperform the majority baseline by a substantial margin, but the task remains a challenge (F1: 0.46).</abstract>
<identifier type="citekey">sanagavarapu-etal-2022-disentangling</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.345</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.345</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>4677</start>
<end>4695</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Disentangling Indirect Answers to Yes-No Questions in Real Conversations
%A Sanagavarapu, Krishna
%A Singaraju, Jathin
%A Kakileti, Anusha
%A Kaza, Anirudh
%A Mathews, Aaron
%A Li, Helen
%A Brito, Nathan
%A Blanco, Eduardo
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F sanagavarapu-etal-2022-disentangling
%X In this paper, we explore the task of determining indirect answers to yes-no questions in real conversations. We work with transcripts of phone conversations in the Switchboard Dialog Act (SwDA) corpus and create SwDA-IndirectAnswers (SwDA-IA), a subset of SwDA consisting of all conversations containing a yes-no question with an indirect answer. We annotate the underlying direct answers to the yes-no questions (yes, probably yes, middle, probably no, or no). We show that doing so requires taking into account conversation context: the indirect answer alone is insufficient to determine the ground truth. Experimental results also show that taking into account context is beneficial. More importantly, our results demonstrate that existing corpora with synthetic indirect answers to yes-no questions are not beneficial when working with real conversations. Our best models outperform the majority baseline by a substantial margin, but the task remains a challenge (F1: 0.46).
%R 10.18653/v1/2022.naacl-main.345
%U https://aclanthology.org/2022.naacl-main.345
%U https://doi.org/10.18653/v1/2022.naacl-main.345
%P 4677-4695
Markdown (Informal)
[Disentangling Indirect Answers to Yes-No Questions in Real Conversations](https://aclanthology.org/2022.naacl-main.345) (Sanagavarapu et al., NAACL 2022)
ACL
- Krishna Sanagavarapu, Jathin Singaraju, Anusha Kakileti, Anirudh Kaza, Aaron Mathews, Helen Li, Nathan Brito, and Eduardo Blanco. 2022. Disentangling Indirect Answers to Yes-No Questions in Real Conversations. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4677–4695, Seattle, United States. Association for Computational Linguistics.