@inproceedings{malkin-etal-2022-balanced,
title = "A Balanced Data Approach for Evaluating Cross-Lingual Transfer: Mapping the Linguistic Blood Bank",
author = "Malkin, Dan and
Limisiewicz, Tomasz and
Stanovsky, Gabriel",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.361",
doi = "10.18653/v1/2022.naacl-main.361",
pages = "4903--4915",
abstract = "We show that the choice of pretraining languages affects downstream cross-lingual transfer for BERT-based models. We inspect zero-shot performance in balanced data conditions to mitigate data size confounds, classifying pretraining languages that improve downstream performance as donors, and languages that are improved in zero-shot performance as recipients. We develop a method of quadratic time complexity in the number of languages to estimate these relations, instead of an exponential exhaustive computation of all possible combinations. We find that our method is effective on a diverse set of languages spanning different linguistic features and two downstream tasks. Our findings can inform developers of large-scale multilingual language models in choosing better pretraining configurations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="malkin-etal-2022-balanced">
<titleInfo>
<title>A Balanced Data Approach for Evaluating Cross-Lingual Transfer: Mapping the Linguistic Blood Bank</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Malkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomasz</namePart>
<namePart type="family">Limisiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We show that the choice of pretraining languages affects downstream cross-lingual transfer for BERT-based models. We inspect zero-shot performance in balanced data conditions to mitigate data size confounds, classifying pretraining languages that improve downstream performance as donors, and languages that are improved in zero-shot performance as recipients. We develop a method of quadratic time complexity in the number of languages to estimate these relations, instead of an exponential exhaustive computation of all possible combinations. We find that our method is effective on a diverse set of languages spanning different linguistic features and two downstream tasks. Our findings can inform developers of large-scale multilingual language models in choosing better pretraining configurations.</abstract>
<identifier type="citekey">malkin-etal-2022-balanced</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.361</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.361</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>4903</start>
<end>4915</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Balanced Data Approach for Evaluating Cross-Lingual Transfer: Mapping the Linguistic Blood Bank
%A Malkin, Dan
%A Limisiewicz, Tomasz
%A Stanovsky, Gabriel
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F malkin-etal-2022-balanced
%X We show that the choice of pretraining languages affects downstream cross-lingual transfer for BERT-based models. We inspect zero-shot performance in balanced data conditions to mitigate data size confounds, classifying pretraining languages that improve downstream performance as donors, and languages that are improved in zero-shot performance as recipients. We develop a method of quadratic time complexity in the number of languages to estimate these relations, instead of an exponential exhaustive computation of all possible combinations. We find that our method is effective on a diverse set of languages spanning different linguistic features and two downstream tasks. Our findings can inform developers of large-scale multilingual language models in choosing better pretraining configurations.
%R 10.18653/v1/2022.naacl-main.361
%U https://aclanthology.org/2022.naacl-main.361
%U https://doi.org/10.18653/v1/2022.naacl-main.361
%P 4903-4915
Markdown (Informal)
[A Balanced Data Approach for Evaluating Cross-Lingual Transfer: Mapping the Linguistic Blood Bank](https://aclanthology.org/2022.naacl-main.361) (Malkin et al., NAACL 2022)
ACL