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Abstract

Social media rumours, a form of misinforma-
tion, can mislead the public and cause signif-
icant economic and social disruption. Moti-
vated by the observation that the user network
— which captures who engages with a story —
and the comment network — which captures
how they react to it — provide complementary
signals for rumour detection. In this paper, we
propose DUCK (rumour detection with user
and comment networks) for rumour detection
on social media. We study how to leverage
transformers and graph attention networks to
jointly model the contents and the structure
of social media conversations, as well as the
network of users who engage in these conver-
sations. Over four widely used benchmark
rumour datasets in English and Chinese, we
show that DUCK produces superior perfor-
mance for detecting rumours, creating a new
state-of-the-art. Source code for DUCK is
available at: https://github.com/l
tian678/DUCK-code.

1 Introduction

Social media platforms bring easy access to a
wealth of information. On the flip side, social
media has also accelerated the spread of misin-
formation (Starbird et al., 2014; Jin et al., 2017).
Rumours, a form of misinformation typically de-
fined as stories or statements with unverified truth
value (Allport and Postman, 1947), can mislead the
public and cause significant economic and social
disruption.

Since the seminal work on prediction of infor-
mation credibility on social media by Castillo et al.
(2011), automatic rumour detection on social me-
dia has attracted significant research, which aims
to detect rumour stories (in contrast to news arti-
cles by credible news sources) or determine their
veracity — true, false or unverified. Although the
task is related to fake news detection, the use of
social media for propagation means that various

social context features can be leveraged for detec-
tion. This is a contrast to FEVER-style fake news
detection (Thorne et al., 2018) which relies mainly
on a source of world knowledge (e.g. Wikipedia)
to fact-check stories.

Early studies of rumour detection focus on su-
pervised learning algorithms incorporating features
manually engineered from post contents, user pro-
files as well as information propagation patterns
(Castillo et al., 2011; Liu et al., 2015; Kwon et al.,
2013; Ma et al., 2015; Rath et al., 2017). Re-
cent neural approaches typically explore fusing
different feature representations for rumour detec-
tion. Sequence processing models such as BERT
are used to encode the contents of social media
conversations, e.g. source posts and the stream
of comments (Kochkina et al., 2017; Tian et al.,
2020), while graph models have been experimented
to model the structure of social media conversa-
tions (Bian et al., 2020; Ma et al., 2018; Lu and Li,
2020). Although prior approaches explored a com-
bination of content and user features for rumour
detection, how to leverage pretrained sequence and
graph networks to model them effectively remains
under-explored.

Research found that misinformation propagates
differently from genuine information on social me-
dia (Vosoughi et al., 2018). Reply comments of a
story contain user opinions and captures how users
react to the story, which provides a strong signal for
understanding the truthfulness of a story. On the
other hand, the network of users who reply to and
repost/retweet a story captures who engage with
it, which provides a complementary signal. Most
studies (Ma et al., 2018; Liu and Wu, 2018; Tian
et al., 2020; Bian et al., 2020) typically use only
one of these signals.

In this paper we propose DUCK (rumour
detection with user and comment networks), a
framework that jointly models the user and com-
ment propagation networks. Our study presents an
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extensive exploration on how we can best model
these networks, and compared to previous studies,
there are several key differences: (1) we model
comments as both (i) a stream to capture the tem-
poral nature of evolving comments; and (ii) a net-
work by following the conversational structure (see
Figure 1 for an illustration); (2) our comment net-
work uses a sequence model to encode a pair of
comments before feeding them to a graph network,
allowing our model to capture the nuanced charac-
teristics (e.g. agreement or rebuttal) exhibited by
a reply; and (3) when modelling the users who en-
gage with a story via graph networks, we initialise
the user nodes with encodings learned from their
profiles and characteristics of their “friends” based
on their social networks.

We conduct experiments on four widely used
benchmark rumour datasets in English and Chi-
nese, and show that DUCK produces superior per-
formance, creating a new state-of-the-art. Although
both users and comments provide complementary
signals for our task, the comments have a stronger
impact. Also, when modelling the network of users
who engage with a story, incorporating the social
relations of users proves to be very beneficial.

2 Related Work

Early studies of rumour detection focus on super-
vised learning algorithms incorporating engineered
features from post contents, user profiles as well
as information propagation patterns (Castillo et al.,
2011; Liu et al., 2015; Kwon et al., 2013; Ma et al.,
2015; Rath et al., 2017). Turenne (2018) analysed
lexical content and information propagation based
on Allport’s theory of transmission (Allport and
Postman, 1947). It identified 53 features within
six categories to represent a rumour message, from
semantic meaning to information transmission.

Recent research focuses on neural models to
automatically extract features for rumour detec-
tion. Sequence processing models leverage the
textual contents from the source posts and user re-
ply comments for rumour detection. Signals such
as writing style, stance and opinions as well as
emotions are extracted from the text for rumour
detection. Shu et al. (2017) introduce linguistic
features to represent writing styles and other fea-
tures based on sensational headlines from Twitter
to detect misinformation. To detect rumours as
early as possible, Zhou et al. (2019) incorporate
reinforcement learning to dynamically decide how

many responses are needed to classify a rumour.
Tian et al. (2020) explore the relationship between
a source tweet and its comments by transferring
stance prediction model to classify rumours. Most
of these approaches model user comments as a
sequence of posts and ignore the conversational
structure among the comments.

Graph neural models leverage information prop-
agation patterns for rumour detection. Liu and Wu
(2018) experiment with using convolutional and
recurrent neural networks to process user features
in the retweet propagation path of stories, and Ma
et al. (2018) present a tree-structure recursive neu-
ral network to model information propagation for
rumour detection. Bian et al. (2020) propose a
bi-directional graph network to model the upward
and downward information propagation structure
among user comments to distinguish false from
true rumours.

There are also studies combining signals from
contents, users and propagation networks for ru-
mour and fake news detection. An ensemble deep
learning architecture is presented in Lu and Li
(2020), which incorporates source post content and
retweet network. Nguyen et al. (2020) propose
to learn representations for misinformation detec-
tion based on the heterogeneous graph of news,
news sources, users and their stances in comments.
Leveraging dual attention mechanism on source
text and user propagation structure, Ni et al. (2021)
leverage dual attention mechanism on source text
and user propagation structure via graph attention
networks for fake news detection task. All these
studies largely model the superficial characteristics
of comments and users, e.g. comments are repre-
sented using static features such as bag-of-words
(Bian et al., 2020; Nguyen et al., 2020) and users
with simple features extracted from their profiles
(Liu and Wu, 2018; Lu and Li, 2020; Ni et al.,
2021). Deeper interactions, such as the relation be-
tween a post and its reply and the social relations of
users (e.g. followers) , remain under-explored. Ta-
ble 1 summarises the differences between previous
studies and our work.

Beyond rumour detection, recent studies explore
combining modern pretrained language models and
graph models for modelling texts and their inter-
actions. Using the FEVER dataset, Zhong et al.
(2020) use pretrained models to perform semantic
role labelling to understand the relation between
clauses in evidence passages and then encode the
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Figure 1: Overall architecture of DUCK. The structure of user tree differs from that of comment tree, as the former
captures both comments ( ) and reposts/retweets ( ), while the latter considers only comments.

S C CN UF UN

RvNN (Ma et al., 2018) X X X
RNN+CNN (Liu and Wu, 2018) p rt
Multitask (Li et al., 2019) X X X p
stance-BERT (Tian et al., 2020) X X
Bi-GCN (Bian et al., 2020) X X X
GCAN (Lu and Li, 2020) X p rt

DUCK (our work) X X X p+s rt+rp

Table 1: Information used in various studies. S: source
post, C: comments, CN: comment network, UF: user
features, UN: user network, p: user profile, s: social
relations, rt: repost/retweet, and rp: reply.

network with graph models to detect fake news.
Liu et al. (2020) use BERT to encode a pair of
claim and evidence passage and then propose a
kernel graph network to model the fully connected
network of evidence passages. Although these two
studies combine sequence and graph models, their
task has a different data structure and hence their
methods cannot be trivially adapted to the rumour
detection task.

3 Problem Statement

Let X = {x0, x1, x2, ..., xn} be a set of sto-
ries, where a story xi consists of a source
post and its reply comments, defined as xi =
{(c0, u0, p0, t0), ..., (cm, um, pm, tm)}, where c
refers to the textual content of the post (empty
string if it is a repost/retweet), u is the user ID

who submits the post, p is the parent post ID that
the current post replies to (null if it is a source
post, e.g. p0 = null), and t the timestamp of the
post. Each story xi is associated with a ground-
truth label yi ∈ Y , where Y represents the label
set (binary or 4 classes depending on the rumour
dataset). Our goal is to learn a classifier from the
labelled rumour dataset, that is f : X → Y .

4 Methodology

The overall architecture of our rumour detection
approach is presented in Figure 1. It consists of
four modules: (1) comment tree: models the com-
ment network by following the reply-to structure
using a combination of BERT (Devlin et al., 2019)
and graph attentional networks (Veličković et al.,
2018); (2) comment chain: models the comments
as a stream using transformer-based sequence mod-
els; (3) user tree: incorporates social relations to
model the user network using graph attentional net-
works; (4) rumour classifier: combines the output
from comment tree, comment chain and user tree
to classify the source post. Note that the network
structure of the user tree differs from that of the
comment tree as the former captures both com-
ments and reposts/retweets but the latter considers
only comments (Figure 1).
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4.1 Comment Tree
Here we aim to model the conversational structure
of the comments that a source post generates. Previ-
ous studies typically model this via graph networks,
but most use simple features (e.g. bag-of-words) to
represent the text (Bian et al., 2020), which fail to
capture the nuanced relationships (e.g. agreement)
between a parent post and its child/reply post.

To capture the relations of crowd opinions in
the comment tree, we propose to use a pretrained
language model (BERT; (Devlin et al., 2019))
and graph attention network (GAT; (Vieweg et al.,
2010)) to model comment tree; see Figure 2 for
an illustration. We first process the set of parent-
child posts with BERT (Devlin et al., 2019) before
feeding them to a graph network to model the full
conversational structure. The self-attention mech-
anism between the words in the parent and child
posts would produce a more fine-grained analysis
of their relationship, which representations such as
bag-of-words cannot model. Using the comment
tree in Figure 2 as an example, this means we would
first process the following pairs of posts using
BERT: {(0, 0), (0, 1), (0, 2), (2, 6), (2, 7), (6, 9)},
where (0, 0) is a pseudo pair created for the source
post.1 Formally:

hp+q = BERT(emb([CLS], cp, [SEP ], cq)) (1)

where c represents the text, emb() the embedding
function and h the contextual representation of the
[CLS] token produced by BERT.

To model the conversational network struc-
ture, we use graph attentional networks (GAT;
(Veličković et al., 2018)). Different from graph
convolutional networks (Kipf and Welling, 2017),
GAT iteratively learns node encodings via multi-
head attention with neighbouring nodes, and has
the advantage to infer encodings for new nodes af-
ter it is trained. To compute h(l+1)

i , the encoding
for node i at iteration l + 1:

e
(l)
ij = LR

(
a(l)

T
(
W (l)h

(l)
i ⊕W (l)h

(l)
j

))

h
(l+1)
i = σ


 ∑

j∈N (i)

softmax
(
e
(l)
ij

)
z
(l)
j




(2)
where LR denotes the LeakyReLU activation func-
tion, ⊕ the concatenation operation, N (i) the

1Preliminary experiments found that the pseudo pair is
important because it allows us to maintain the original network
structure.
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Figure 2: The architecture of BERT+GAT.

neighbours of node i, e(l)ij the unnormalised atten-
tion score between node i and j, and a and W are
learnable parameters. Note that h(0)i represents the
encodings produced by BERT (Equation 1).

To aggregate the node encodings to get a graph
representation (zct), we explore four methods:

root: Uses the root encoding to represent the
graph as the source post is ultimately what we are
classifying:

zct = hL0 (3)

where L is the number of GAT iterations.
¬root: Mean-pooling over all nodes except the

root:

zct =
1

m

m∑

i=1

hLi (4)

where m is the number of replies/comments.
N: Mean-pooling of the root node and its imme-

diate neighbours:

zct =
1

|N (0)|
∑

i∈N (0)

hLi (5)

all: Mean-pooling of all nodes:

zct =
1

m+ 1

m∑

i=0

hLi (6)

4.2 Comment Chain

Here we model the posts as a stream in the order
they are posted. As such, we have a chain or list
structure (rather than a tree structure); see “com-
ment chain” in Figure 1.

We explore three ways to model the comment
chain, using: (1) one-tier transformer; (2) long-
former (Beltagy et al., 2020); and (3) two-tier trans-
former.

One-tier transformer: Given a source post (c0)
and the comments ({c1, ..., cm}), we simply con-
catenate them into a long string and feed it to BERT
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and use the contextual representation of the [CLS]
token as the final representation:

zcc = BERT(emb([CLS], c0, [SEP ], c1, ..., cm′))

wherem′ (< m) is the number of comments we can
incorporate without exceeding BERT’s maximum
sequence length (384 in our experiments).

Longformer: To circumvent the sequence
length limit, we experiment with using a long-
former, which can process up to 4,096 subwords,
allowing us to use most if not all the comments.
Longformer has a similar architecture as the one-
tier transformer, but uses a sparser attention pat-
tern to process longer sequences more efficiently.
We use a pretrained longformer2, and follow the
same approach as before for modelling the com-
ment chain:

zcc = LF(emb([CLS], c0, [SEP ], c1, ..., cm′′))

where m′′ ≈ m.
Two-tier transformer: An alternative approach

to tackling the sequence length limit is to model the
comment chain using two tiers of transformers: one
for processing the posts independently, and another
for processing the sequence of posts using repre-
sentations from the first transformer. Formally:

hi = BERT(emb1([CLS], ci))

zcc = transformer(emb2([CLS]), h0, h1, ..., hm)

where BERT and transformer denote the first- and
second-tier transformers respectively. The second-
tier transformer has a similar architecture to BERT,
but has only 2 layers and its parameters are ini-
tialised randomly.

4.3 User Tree
Moving away from the post content, here we model
the network of users that interact with a source
post (“user tree” in Figure 1). Previous studies
found that the user characteristics are different for
those that engage with rumours vs. those who don’t
(Vosoughi et al., 2018; Shu et al., 2018), motivating
us to model the user network. Note that unlike pre-
vious studies, our user network captures all users
who reply to or repost the source post (previous
studies use only the reposts, see Table 1).

We explore three methods to model the user net-
work. All methods use a GAT (Veličković et al.,

2https://huggingface.co/transformers/
model_doc/longformer.html

2018) to model the network (following Equation
2), and we aggregate the node encodings by mean-
pooling over all nodes to produce the graph repre-
sentation:

zut =
1

m+ 1

m∑

i=0

hLi

where L is number of GAT iterations.
The main difference between the three methods

is in how they initialise the user nodes (h(0)i ):
GATrnd: This is the base method where we ini-

tialise the user nodes with random vectors.

h0i = random[v1, v2, ..., vd]

GATprf: Following Liu and Wu (2018), this
method initialises the user nodes based on features
derived from their user profiles: username, user
screen name, user description, user account age,
number of followers and following users, number
of posts and favourite posts, whether the profile
is protected, whether the account is GPS-enabled,
and the time difference with the source post.3 Thus,
the static user node h0i is given by with vi ∈ Rk

from user profiles

h0i = [v1, v2, ..., vk]

GATprf+rel: This method initialises the user
nodes with representations learned by a variational
graph autoencoder (GAE; Kipf and Welling (2016))
based on the user features (defined above) and their
social relations (based on “follow” relations).4

Intuitively, GAE is an unsupervised graph learn-
ing algorithm that takes in an adjacency matrix as
input, and learns node representations that can re-
construct the adjacency matrix in the output. Note
that the network structure of the GAT and GAE is
intrinsically different — the former captures the
users that engage with a source post while the lat-
ter the network of users who follow one another.
The idea for using GAE-learned encodings to ini-
tialise user nodes is that they are more informative,
since they capture information about a user and
their peers.

3The last feature is technically not user profile information,
but it is a form of user characteristic as it captures how quickly
they engage with a post.

4For the unseen or isolated users, we initialise them based
on their user features (used in GATprf), and project them via
a learned matrix into the same space as the GAE-initialised
user nodes.
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Given the social graph Gs constructed based on
the training data, we can derive an adjacency ma-
trix A ∈ Rn×n, where n is the number of users.
Let X = [x1, x2, ..., xn] , xi ∈ Rk be the input
node features. Our goal is to learn a transforma-
tion matrix Z ∈ Rn×d, which converts users to a
latent space with the dimensionality of d. We use
a two-layer GCN as the encoder. It takes an adja-
cency matrix A and a feature matrix X as inputs
and generates the latent variable Z as output. The
decoder is defined by an inner product between
latent variable Z. The output of our decoder is a
reconstructed adjacency matrix Â. Formally:

Z = enc(X,A)

= GCN(f (GCN (A,X; θ1)) ; θ2)

Â = dec(Z,Z>) = σ
(
ZZ>

)

The output h(0)i ∈ Rd is given by

h
(0)
i =

{
ReLU(W · [v1, ..., vk]), if useri /∈ Gs

Zi, if useri ∈ Gs

whereWi is the weight of the fully-connected layer
and vi ∈ Rk from user profiles.

4.4 Rumour Classifier

In each module (comment tree, comment chain
and user tree), we explore a number of approaches
to model its structure (e.g. there are several ways
to aggregate the node encodings to produce zct
for the comment tree and 3 different methods to
produce zcc for the comment chain). Given an opti-
mal approach for each module (Section 5), DUCK
combines the output from all modules to classify
a source post and is trained using standard cross-
entropy loss. Formally:

z = zct ⊕ zcc ⊕ zut
ŷ = softmax(Wcz + bc)

L = −
n∑

i=1

yilog(ŷi)

where n denotes the number of training instances.

5 Experiments and Results

In this section, we first introduce the datasets for
our experiments and then present the performance
of DUCK by comparing against a number state-of-
the-art models.

Twitter15 Twitter16 WEIBO CoAID

#stories 1,490 818 4,664 143,009
#users 276,663 173,487 2,746,818 114,484

Comment graph

#nodes 331,612 204,820 3,805,656 248,742
Avg. # of nodes/s 223 251 816 7
Max. # of nodes/s 1,768 2,765 1,768 228
Min. # of nodes/s 55 81 10 1
Avg. time delay/s 1,337 848 2460.7 15.4

User social network

#nodes 39,869 19,211 2,746,818 1,601
#connections 3,086,741 1,232,100 – 25,605

Table 2: Statistics of rumour datasets. “s” denotes a
story (source post and its comments).

5.1 Datasets

We evaluate our method on four widely used ru-
mour datasets: Twitter15 (Ma et al., 2017); Twit-
ter16 (Ma et al., 2017); CoAID (Cui and Lee,
2020); and WEIBO (Ma et al., 2016). Twitter15
and Twitter16 are Twitter datasets with four rumour
classes: true rumour, false rumour, non-rumour and
unverified rumour. CoAID (Cui and Lee, 2020) col-
lects of a set of COVID-19 news articles shared on
Twitter, and they are annotated with two classes
(true or fake). WEIBO (Ma et al., 2016) contains
a collection of stories from Sina Weibo, a Chinese
social media platform, and is annotated with two
classes (rumour and non-rumour). Table 2 presents
some statistics of these datasets. For Twitter-based
datasets (Twitter15/16 and CoAID), we crawl the
tweets and additional user information (e.g. user
profile metadata and followers) via the official Twit-
ter API.5 For WEIBO, the platform does not pro-
vide a means to crawl social relations and so the
user tree uses GATprf.

In terms of data partitioning, for Twitter15 and
Twitter16 we follow previous studies (Ma et al.,
2015, 2016) and report the average performance
based on 5-fold cross-validation. For CoAID and
WEIBO, we reserve 20% data as test and split
the rest in a ratio of 4:1 for training and devel-
opment partitions and report the average test per-
formance over 5 runs (initialised with different ran-
dom seeds). We use the development set of each
dataset for tuning hyper-parameters.6

Additional implementation details for all models

5https://developer.twitter.com/en/doc
s/twitter-api/v1

6For Twitter15/16 during tuning we use only one of the
folds and reserve 1/4 of the training data as development set
and train the model using the rest (3/4) of the training data.
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are given in the Appendix.

5.2 Results
We first present results for each of the modules
(comment tree, comment chain and user tree) sep-
arately to understand the best approach for mod-
elling them, and then present the final results where
we compare our full model DUCK to a number of
benchmark systems. For the first set of results
where we evaluate each module independently, we
feed their representations (i.e. zct, zcc and zut) to
an MLP layer to do classification. Specifically, we
are interested in the following questions:

• Q1 [Comment tree]: Does incorporating
BERT to analyse the relation between parent
and child posts help modelling the comment
network, and what is the best way to aggre-
gate comment-pair encodings to represent the
comment graph?

• Q2 [Comment chain]: Does incorporating
more comments help rumour detection when
modelling them as a stream of posts?

• Q3 [User tree]: Can social relations help mod-
elling the user network?

• Q4 [Overall performance]: Do the three differ-
ent components complement each other and
how does a combined approach compared to
existing rumour detection systems?

For the first three questions, we present develop-
ment performance using Twitter16 and CoAID as
the representative datasets (as the trends are largely
the same for the other datasets), while for the fi-
nal question we report the test performance for all
datasets. In terms of evaluation metrics, we present
F1 scores for each class and macro-averaged F1
scores as the aggregate performance. All results are
an average over 5 runs (5-fold cross-validation for
Twitter15/16 and 5 independent runs with different
random seeds for WEIBO and CoAID following
Ma et al. (2016, 2017); Cui and Lee (2020)).

5.2.1 Comment Tree
To understand the impact of using BERT for pro-
cessing a pair of parent-child posts, we present
an alternative method (“unpaired”) where we use
BERT to process each post independently before
feeding their [CLS] representation to the GAT.
That is, Equation 1 is now modified to:

hp = BERT(emb([CLS], cp))

Variants
Twitter16 CoAID

F1 FR TR NR UR F1 T F

unpaired 0.83 0.92 0.87 0.73 0.82 0.83 0.98 0.67

root 0.86 0.85 0.92 0.85 0.83 0.85 0.98 0.71
¬root 0.80 0.82 0.91 0.77 0.79 0.80 0.97 0.64

N 0.87 0.89 0.95 0.74 0.88 0.86 0.99 0.74
all 0.88 0.89 0.94 0.79 0.90 0.87 0.98 0.75

Table 3: Results for the comment tree. “FR”, “TR”,
“NR” and “UR” in Twitter16 denote false, true, non-
and unverified rumours respectively; and “T” and “F”
in CoAID means true and fake classes.
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(a) Twitter16
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Figure 3: Results (macro-F1) for the comment chain
over increasing number of comments.

where h will be used as the initial node representa-
tion (h(0)) in the GAT (Equation 2). We report
the performance of this alternative model (“un-
paired”)7 and the different aggregation methods
(“root”, “¬root”, “N” and “all”; equations 3, 4, 5
and 6 respectively) in Table 3.

Comparing the aggregation methods, “all” per-
forms the best, followed by “N” and “root” (0.88 vs.
0.87 vs. 0.86 in Twitter16; 0.87 vs. 0.86 vs. 0.85 in
CoAID in terms of Macro-F1). We can see that the
root and its immediate neighbours contain most of
the information, and not including the root node im-
pacts the performance severely (both Twitter16 and
CoAID drops to 0.80 with ¬root). Does processing
the parent-child posts together with BERT help?
The answer is evidently yes, as we see a substantial
drop in performance when we process the posts
independently: “unpaired” produces a macro-F1
of only 0.83 in both Twitter16 and CoAID. Given
these results, our full model (DUCK) will be using
“all” as the aggregation method for computing the
comment graph representation.

5.2.2 Comment Chain
Recall that we explore using transformer models –
one-tier transformer, longformer and two-tier trans-

7The “unpaired” approach uses “all” as the aggregation
method.
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Variants
Twitter16 CoAID

F1 FR TR NR UR F1 T F

GATrnd 0.47 0.57 0.38 0.48 0.47 0.61 0.59 0.46
GATprf 0.63 0.64 0.67 0.56 0.60 0.80 0.97 0.62

GATprf+rel 0.69 0.74 0.72 0.64 0.68 0.85 0.98 0.71

Table 4: Results for the user tree.

former – for modelling the comments of a story
as a sequence. Fig. 3 plots the results where we
vary the number of included comments to answer
Q2.8 Note that for longformer we always use all
the comments, since it is designed to process long
sequences.

Both one-tier and two-tier transformers see a
performance gain when the number of comments
increases and a drop when there are too many com-
ments (noting that the trend is flatter in CoAID).
However, due to one-tier transformer’s sequence
length limit, it can take no more than 60 comments
on average. Two-tier transformer is able to pro-
cess more comments, and produces the best perfor-
mance. Interestingly, even though longformer is
able to include most of the comments, it performs
worse than both one-tier and two-tier transformer,
suggesting that the sparser attention pattern that
longformer introduces has a negative impact. With
these results, we will use the two-tier transformer
to model the comment chain in DUCK.

5.2.3 User Tree

Recall that we use GAT to represent the reply
and repost user network, and we investigate differ-
ent node encodings to initialise GAT: (1) random
initialisation (GATrnd); (2) user profile metadata
(GATprf); and (3) user profile metadata and social
relations (GATprf+rel). Results are shown in Table 4.
Unsurprisingly, random initialisation performs the
worst, and we see a substantial improvement when
user profile information is incorporated, and again
an improvement when we incorporate user social
relations (6% and 5% increase in macro-F1 for
Twitter16 and CoAID). Our results highlight the
importance of incorporating social relations, and
DUCK therefore uses GATprf+rel for modelling the

8For one-tier and two-tier transformers, if the number of
comments is set to 10, that means we will concatenate 10
comments (with the source post) into a long string, and any
text that exceeds BERT’s maximum sequence length will be
truncated (and so for some stories the models may use less
than 10 comments, if earlier comments are very long).

reply and retweet user network.9

5.2.4 Overall Rumour Detection
Performance

We next compare the rumour detection perfor-
mance of DUCK that combines comment tree, com-
ment chain and user tree models (Figure 1) to the
following state-of-the-art methods: (1) RvNN (Ma
et al., 2018)10: uses a GRU to process text content
and recursive networks to model the comment net-
work; (2) RNN+CNN (Liu and Wu, 2018): uses
CNN and RNN to model the retweet user net-
work where user representations are initialised with
user profile features; (3) stance-BERT (Tian et al.,
2020): fine-tunes a BERT pretrained with stance
annotations for rumour detection and comments are
modelled as a chain (similar to our one-tier trans-
former model); (4) Bi-GCN (Bian et al., 2020)11:
uses a bidirectional graph convolutional network
to model the comment network in a top-down (i.e.
nodes are combined starting from the leaf com-
ments) and bottom-up manner (i.e. nodes are com-
bined starting from the root); and (5) GCAN (Lu
and Li, 2020)12: uses graph networks to model
the retweet user network and a CNN to model the
source post with co-attention between the two net-
works. For a summary of the different features
used by these benchmark systems and our model,
see Table 1.

All benchmark results are produced using
the author-provided code, with the exception of
RNN+CNN and stance-BERT where we imple-
ment ourselves. Note that we only have English re-
sults (Twitter15, Twitter16 and CoAID) for stance-
BERT as it uses stance annotations from SemEval-
2016 (Mohammad et al., 2016), and GCAN and
RNN+CNN do not have results for CoAID as it
does not contain retweets.

We present the results in Table 5. DUCK (our
model) performs very strongly, outperforming all
benchmark systems consistently over all datasets,
creating a new state-of-the-art for rumour detec-
tion. In terms of datasets, WEIBO appears to be
the “easier” dataset, where most systems produce
a macro-F1 over 90%. We also observe that mod-
els that use the comment texts (stance-BERT and
Bi-GCN) tend to do better than those that only

9With the exception of WEIBO where we can’t crawl users’
followers, and so it uses GATprf.

10https://github.com/majingCUHK/Rumor_R
vNN

11https://github.com/TianBian95/BiGCN
12https://github.com/l852888/GCAN
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Twitter15 Twitter16 CoAID WEIBO

Model F1 FR TR NR UR F1 FR TR NR UR F1 T F F1 NR R

RvNN 0.72 0.76 0.82 0.68 0.65 0.74 0.74 0.84 0.66 0.71 0.78 0.98 0.57 0.91 0.91 0.91
RNN+CNN 0.53 0.51 0.30 0.36 0.64 0.56 0.54 0.40 0.59 0.67 – – – 0.92 0.91 0.92
stance-BERT 0.82 0.82 0.85 0.87 0.71 0.83 0.82 0.88 0.83 0.77 0.90 0.99 0.81 – – –
Bi-GCN 0.86 0.85 0.91 0.84 0.82 0.86 0.86 0.93 0.79 0.86 0.83 0.99 0.68 0.96 0.96 0.96
GCAN 0.69 0.75 0.75 0.63 0.68 0.72 0.73 0.78 0.67 0.72 – – – 0.92 0.92 0.92

DUCK¬CT 0.82 0.72 0.91 0.82 0.85 0.84 0.88 0.81 0.88 0.79 0.91 0.99 0.82 0.93 0.93 0.93
DUCK¬CC 0.85 0.91 0.86 0.81 0.82 0.85 0.84 0.91 0.78 0.87 0.87 0.98 0.75 0.94 0.94 0.94
DUCK¬UT 0.88 0.92 0.84 0.91 0.85 0.89 0.91 0.91 0.87 0.88 0.91 0.99 0.83 0.97 0.97 0.97
DUCK 0.90 0.91 0.93 0.88 0.88 0.91 0.89 0.93 0.93 0.91 0.92 0.99 0.85 0.98 0.98 0.98

Table 5: Overall rumour detection results. “CT”, “CC” and “UT” denote comment tree, comment chain and user
tree respectively, and “R” and “NR” in WEIBO denote rumour and non-rumour.

use the user network (RNN+CNN and GCAN), al-
though the strong performance of DUCK indicates
that combining both types of information works
best, suggesting that they complement each other.
Another thing of note is CoAID, the only dataset
where the class distribution is heavily imbalanced.
Here we see that most systems struggle with the
minority class (“F”), but our combined approach
appears to handle this well.

To understand the impact of each module in
DUCK, we present variants where we remove one
module, e.g. DUCK¬CT means comment tree re-
moved. Results suggest that comment tree has
the largest impact, followed by comment chain as
they produce the largest performance drop when
removed. This finding is similar to what we saw
earlier, where systems like stance-BERT and Bi-
GCN that use comments tend to perform better.

6 Conclusion

We presented DUCK, a social media rumour de-
tection approach that models both the network of
users who interact with a story as well as their com-
ments/opinions. Our approach is unique in how
we model the comment as a graph (with BERT
and GAT) and also as a stream (with transform-
ers) and the user networks together with their peer
relations (with GAT and GAE). We conduct exten-
sive experiments over four popular rumour bench-
mark datasets to evaluate DUCK. We found that
the comment network contains the strongest sig-
nal for predicting rumours, and social relations are
important for modelling the user network. DUCK
substantially outperforms all benchmark methods
consistently, creating a new state-of-the-art.

Ethical Considerations

We contend that while automatic rumour detection
systems can benefit combating the spread of mis-
information, there are potential risks to them. If
these systems are deployed on social media to mon-
itor user posts without human oversight, there are
implications when these systems misclassify (par-
ticularly in the false positive cases) and users are
wrongfully accused for posting misinformation. As
such, we recommend these tools to be used as an
aid, e.g. by filtering the enormous volume of data
and help human analysts to narrow down and detect
harmful stories on social media.
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A Implementation Details

Our models are implemented in PyTorch using
the HuggingFace library13 and their pretrained

13https://github.com/huggingface

BERT14 and Chinese-BERT15. Graph neural net-
works are implemented with the Geometric16 pack-
age.

For the comment tree, we set maximum token
length=40 and dropout rate = [0.5, 0.6] for GAT
and 0.2 for BERT embeddings. Learning rate
is tuned in the range [1e−5, 5e−5] for BERT and
[1e−4, 5e−4] for GAT based on the development set.
For the comment chain, the learning rate for two-
tier transformer (comment chain) is tuned in the
range [2e−5, 5e−5] with the maximum token length
of 40. For the user tree, we set the dimension of
each node hidden features as 256. All models use
the Adam optimiser (Kingma and Ba, 2015), and
our experiments are run using 4×A100 GPU with
40GB Memory.

14https://huggingface.co/bert-base-cas
ed

15https://huggingface.co/bert-base-chi
nese

16https://pytorch-geometric.readthedocs.
io/en/latest/.
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