@inproceedings{xu-etal-2022-emrel,
title = "{E}m{R}el: Joint Representation of Entities and Embedded Relations for Multi-triple Extraction",
author = "Xu, Benfeng and
Wang, Quan and
Lyu, Yajuan and
Shi, Yabing and
Zhu, Yong and
Gao, Jie and
Mao, Zhendong",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.48",
doi = "10.18653/v1/2022.naacl-main.48",
pages = "659--665",
abstract = "Multi-triple extraction is a challenging task due to the existence of informative inter-triple correlations, and consequently rich interactions across the constituent entities and relations. While existing works only explore entity representations, we propose to explicitly introduce \textit{relation} representation, jointly represent it with entities, and novelly align them to identify valid triples.We perform comprehensive experiments on document-level relation extraction and joint entity and relation extraction along with ablations to demonstrate the advantage of the proposed method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2022-emrel">
<titleInfo>
<title>EmRel: Joint Representation of Entities and Embedded Relations for Multi-triple Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benfeng</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yajuan</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yabing</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhendong</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-triple extraction is a challenging task due to the existence of informative inter-triple correlations, and consequently rich interactions across the constituent entities and relations. While existing works only explore entity representations, we propose to explicitly introduce relation representation, jointly represent it with entities, and novelly align them to identify valid triples.We perform comprehensive experiments on document-level relation extraction and joint entity and relation extraction along with ablations to demonstrate the advantage of the proposed method.</abstract>
<identifier type="citekey">xu-etal-2022-emrel</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.48</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.48</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>659</start>
<end>665</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmRel: Joint Representation of Entities and Embedded Relations for Multi-triple Extraction
%A Xu, Benfeng
%A Wang, Quan
%A Lyu, Yajuan
%A Shi, Yabing
%A Zhu, Yong
%A Gao, Jie
%A Mao, Zhendong
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F xu-etal-2022-emrel
%X Multi-triple extraction is a challenging task due to the existence of informative inter-triple correlations, and consequently rich interactions across the constituent entities and relations. While existing works only explore entity representations, we propose to explicitly introduce relation representation, jointly represent it with entities, and novelly align them to identify valid triples.We perform comprehensive experiments on document-level relation extraction and joint entity and relation extraction along with ablations to demonstrate the advantage of the proposed method.
%R 10.18653/v1/2022.naacl-main.48
%U https://aclanthology.org/2022.naacl-main.48
%U https://doi.org/10.18653/v1/2022.naacl-main.48
%P 659-665
Markdown (Informal)
[EmRel: Joint Representation of Entities and Embedded Relations for Multi-triple Extraction](https://aclanthology.org/2022.naacl-main.48) (Xu et al., NAACL 2022)
ACL