@inproceedings{huang-2022-easy,
title = "Easy Adaptation to Mitigate Gender Bias in Multilingual Text Classification",
author = "Huang, Xiaolei",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.52",
doi = "10.18653/v1/2022.naacl-main.52",
pages = "717--723",
abstract = "Existing approaches to mitigate demographic biases evaluate on monolingual data, however, multilingual data has not been examined. In this work, we treat the gender as domains (e.g., male vs. female) and present a standard domain adaptation model to reduce the gender bias and improve performance of text classifiers under multilingual settings. We evaluate our approach on two text classification tasks, hate speech detection and rating prediction, and demonstrate the effectiveness of our approach with three fair-aware baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-2022-easy">
<titleInfo>
<title>Easy Adaptation to Mitigate Gender Bias in Multilingual Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaolei</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing approaches to mitigate demographic biases evaluate on monolingual data, however, multilingual data has not been examined. In this work, we treat the gender as domains (e.g., male vs. female) and present a standard domain adaptation model to reduce the gender bias and improve performance of text classifiers under multilingual settings. We evaluate our approach on two text classification tasks, hate speech detection and rating prediction, and demonstrate the effectiveness of our approach with three fair-aware baselines.</abstract>
<identifier type="citekey">huang-2022-easy</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.52</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.52</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>717</start>
<end>723</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Easy Adaptation to Mitigate Gender Bias in Multilingual Text Classification
%A Huang, Xiaolei
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F huang-2022-easy
%X Existing approaches to mitigate demographic biases evaluate on monolingual data, however, multilingual data has not been examined. In this work, we treat the gender as domains (e.g., male vs. female) and present a standard domain adaptation model to reduce the gender bias and improve performance of text classifiers under multilingual settings. We evaluate our approach on two text classification tasks, hate speech detection and rating prediction, and demonstrate the effectiveness of our approach with three fair-aware baselines.
%R 10.18653/v1/2022.naacl-main.52
%U https://aclanthology.org/2022.naacl-main.52
%U https://doi.org/10.18653/v1/2022.naacl-main.52
%P 717-723
Markdown (Informal)
[Easy Adaptation to Mitigate Gender Bias in Multilingual Text Classification](https://aclanthology.org/2022.naacl-main.52) (Huang, NAACL 2022)
ACL