@inproceedings{talat-etal-2022-machine,
title = "On the Machine Learning of Ethical Judgments from Natural Language",
author = "Talat, Zeerak and
Blix, Hagen and
Valvoda, Josef and
Ganesh, Maya Indira and
Cotterell, Ryan and
Williams, Adina",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.56",
doi = "10.18653/v1/2022.naacl-main.56",
pages = "769--779",
abstract = "Ethics is one of the longest standing intellectual endeavors of humanity. In recent years, the fields of AI and NLP have attempted to address issues of harmful outcomes in machine learning systems that are made to interface with humans. One recent approach in this vein is the construction of NLP morality models that can take in arbitrary text and output a moral judgment about the situation described. In this work, we offer a critique of such NLP methods for automating ethical decision-making. Through an audit of recent work on computational approaches for predicting morality, we examine the broader issues that arise from such efforts. We conclude with a discussion of how machine ethics could usefully proceed in NLP, by focusing on current and near-future uses of technology, in a way that centers around transparency, democratic values, and allows for straightforward accountability.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="talat-etal-2022-machine">
<titleInfo>
<title>On the Machine Learning of Ethical Judgments from Natural Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Talat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hagen</namePart>
<namePart type="family">Blix</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Valvoda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maya</namePart>
<namePart type="given">Indira</namePart>
<namePart type="family">Ganesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adina</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Ethics is one of the longest standing intellectual endeavors of humanity. In recent years, the fields of AI and NLP have attempted to address issues of harmful outcomes in machine learning systems that are made to interface with humans. One recent approach in this vein is the construction of NLP morality models that can take in arbitrary text and output a moral judgment about the situation described. In this work, we offer a critique of such NLP methods for automating ethical decision-making. Through an audit of recent work on computational approaches for predicting morality, we examine the broader issues that arise from such efforts. We conclude with a discussion of how machine ethics could usefully proceed in NLP, by focusing on current and near-future uses of technology, in a way that centers around transparency, democratic values, and allows for straightforward accountability.</abstract>
<identifier type="citekey">talat-etal-2022-machine</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.56</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.56</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>769</start>
<end>779</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Machine Learning of Ethical Judgments from Natural Language
%A Talat, Zeerak
%A Blix, Hagen
%A Valvoda, Josef
%A Ganesh, Maya Indira
%A Cotterell, Ryan
%A Williams, Adina
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F talat-etal-2022-machine
%X Ethics is one of the longest standing intellectual endeavors of humanity. In recent years, the fields of AI and NLP have attempted to address issues of harmful outcomes in machine learning systems that are made to interface with humans. One recent approach in this vein is the construction of NLP morality models that can take in arbitrary text and output a moral judgment about the situation described. In this work, we offer a critique of such NLP methods for automating ethical decision-making. Through an audit of recent work on computational approaches for predicting morality, we examine the broader issues that arise from such efforts. We conclude with a discussion of how machine ethics could usefully proceed in NLP, by focusing on current and near-future uses of technology, in a way that centers around transparency, democratic values, and allows for straightforward accountability.
%R 10.18653/v1/2022.naacl-main.56
%U https://aclanthology.org/2022.naacl-main.56
%U https://doi.org/10.18653/v1/2022.naacl-main.56
%P 769-779
Markdown (Informal)
[On the Machine Learning of Ethical Judgments from Natural Language](https://aclanthology.org/2022.naacl-main.56) (Talat et al., NAACL 2022)
ACL
- Zeerak Talat, Hagen Blix, Josef Valvoda, Maya Indira Ganesh, Ryan Cotterell, and Adina Williams. 2022. On the Machine Learning of Ethical Judgments from Natural Language. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 769–779, Seattle, United States. Association for Computational Linguistics.