
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics
Human Language Technologies: Tutorial Abstracts, pages 39 - 47

July 10-15, 2022 ©2022 Association for Computational Linguistics

Contrastive Data and Learning for Natural Language Processing

Rui Zhang
Penn State University
rmz5227@psu.edu

Yangfeng Ji
University of Virginia

yangfeng@virginia.edu

Yue Zhang
Westlake University

yue.zhang@wias.org.cn

Rebecca J. Passonneau
Penn State University
rjp49@psu.edu

1 Brief Description

Current NLP models heavily rely on effective repre-
sentation learning algorithms. Contrastive learning
is one such technique to learn an embedding space
such that similar data sample pairs have close rep-
resentations while dissimilar samples stay far apart
from each other. It can be used in supervised or un-
supervised settings using different loss functions to
produce task-specific or general-purpose represen-
tations. While it has originally enabled the success
for vision tasks, recent years have seen a grow-
ing number of publications in contrastive NLP as
shown in Figure 1. This first line of works not only
delivers promising performance improvements in
various NLP tasks, but also provides desired charac-
teristics such as task-agnostic sentence representa-
tion, faithful text generation, data-efficient learning
in zero-shot and few-shot settings, interpretability
and explainability.

In this tutorial, we aim to provide a gentle intro-
duction to the fundamentals of contrastive learn-
ing approaches and the theory behind them. We
then survey the benefits and the best practices of
contrastive learning for various downstream NLP
applications including Text Classification, Ques-
tion Answering, Summarization, Text Generation,
Interpretability and Explainability, Commonsense
Knowledge and Reasoning, Vision-and-Language.
This tutorial intends to help researchers in the NLP
and computational linguistics community to un-
derstand this emerging topic and promote future
research directions of using contrastive learning for
NLP applications.1

Type of Tutorial: Cutting-edge As an emerg-
ing approach, recent years have seen a growing
number of NLP papers using contrastive learning
(Figure 1). Contrastive learning still has a huge
potential in other applications and challenges, and

1Tutorial materials are available at https:
//contrastive-nlp-tutorial.github.io/

Figure 1: The number of papers in recent *ACL con-
ferences with "contrastive learning" in the title. We
anticipate there will be even more papers in 2022.

we anticipate there will be even more papers in the
next year before this tutorial. However, there is
no tutorial yet that systematically introduces con-
trastive learning and its application to NLP.

Target Audience and Expected Background
This tutorial is targeted at a broad and general au-
dience who is interested using contrastive learning
for NLP tasks. The tutorial will be self-contained.
The expected prerequisite only includes basic a un-
derstanding of machine learning concepts such as
classification, loss functions, and gradient-based
optimization. We also expect the audience to be
familiar with the definition of different NLP tasks.

2 Tutorial Structure and Content

This tutorial first gives an introduction to the foun-
dation of contrastive learning and then reviews the
NLP application of contrastive learning. Our tuto-
rial covers both contrastive data augmentation
for NLP and contrastive representation learn-
ing for NLP. The former focuses on the data side:
how we can create contrastive data examples. This
is useful not only for contrastive learning signals,
but also for many other reasons such as evaluating
model behaviors, augmenting data for low-resource
training, producing contrastive explanation, pro-
moting faithful text generation. The latter focuses
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on the learning algorithm side: how we can use
contrastive learning broadly in different NLP tasks.
Here is the outline with an estimated schedule.

Part 1: Foundations of Contrastive Learning
(60 min)

• Contrastive Learning Objectives (15 min)

• Contrastive Data Sampling and Augmentation
Strategies (15 min)

• Successful Applications (15 min)

• Analysis of Contrastive Learning (15 min)

Part 2: Contrastive Learning for NLP (90 min)

• Contrastive Learning in NLP Tasks (30 min)

• Task-agnostics Representation (15 min)

• Faithful Text Generation (15 min)

• Data-efficient Learning (15 min)

• Interpretability and Explainability (15 min)

Part 3: Lessons Learned, Practical Advice, and
Future Directions (30 min)

• Lessons Learned (10 min)

• Practical Advice (10 min)

• Future Directions (10 min)

The following subsections give more details with
reference papers for each part.

2.1 Foundations of Contrastive Learning
In the first part, we will provide a brief overview
of contrastive learning foundations and intro-
duce the most well-known contrastive learn-
ing approaches. We start with different con-
trastive learning objectives including Contrastive
Loss (Chopra et al., 2005), Triplet Loss (Schroff
et al., 2015), Lifted Structured Loss (Oh Song
et al., 2016), N-pair Loss (Sohn, 2016), Noise Con-
trastive Estimation (NCE) (Gutmann and Hyväri-
nen, 2010), InfoNCE (van den Oord et al., 2018),
and Soft-Nearest Neighbors Loss (Salakhutdinov
and Hinton, 2007; Frosst et al., 2019). We then
overview different sampling strategies to create
contrastive pairs including debiased constrastive
learning (Chuang et al., 2020), hard negative sam-
ples (Robinson et al., 2020), supervised contrastive
learning (Khosla et al., 2020), and adversarial con-
trastive learning (Kim et al., 2020). We will also
talk about contrastive learning with deep neural net-
works that have shown great successes in vision and

language applications such as word2vec (Mikolov
et al., 2013), SimCLR (Chen et al., 2020), Sim-
CSE (Gao et al., 2021b), and CLIP (Radford et al.,
2021). We will also discuss work on intriguing
analyses of contrastive learning (Tian et al., 2020;
Purushwalkam and Gupta, 2020; Xiao et al., 2021).

2.2 Contrastive Learning for NLP

In this part, we will first survey the usage of con-
trastive learning in different NLP tasks. Later, we
will also highlight four characteristics that con-
trastive learning has demonstrated in addition to
the promising performance improvement.

Contrastive learning has shown success in many
NLP tasks. We plan cover the following: Con-
trastive Data Augmentation for NLP (Shen
et al., 2020; Ye et al., 2021; Qu et al., 2021);
Text Classification (Fang et al., 2020; Kachuee
et al., 2020; Suresh and Ong, 2021; Du et al.,
2021; Carlsson et al., 2021; Xiong et al., 2021;
Qiu et al., 2021; Xu et al., 2021b; Klein and
Nabi, 2021); Sentence Embeddings (Kim et al.,
2021; Zhang et al., 2021a; Sedghamiz et al., 2021)
including Quick-Thought (Logeswaran and Lee,
2018),Sentence-BERT (Reimers and Gurevych,
2019), Info-Sentence BERT (Zhang et al., 2020a),
SimCSE (Gao et al., 2021b), DeCLUTR (Giorgi
et al., 2020), ConSERT (Yan et al., 2021b), Di-
alogueCSE (Liu et al., 2021a). We will also
cover discourse analysis (Iter et al., 2020; Kiy-
omaru and Kurohashi, 2021); Information Extrac-
tion (Qin et al., 2020; Chen et al., 2021b; Wang
et al., 2021d) Machine Translation (Pan et al.,
2021; Vamvas and Sennrich, 2021); Question An-
swering (Karpukhin et al., 2020; You et al., 2021;
Yang et al., 2021b; Yue et al., 2021); Summariza-
tion (Duan et al., 2019; Liu and Liu, 2021) includ-
ing faithfulness (Cao and Wang, 2021), summary
evaluation (Wu et al., 2020a), multilingual summa-
rization (Wang et al., 2021a), and dialogue summa-
rization (Liu et al., 2021d); Text Generation (Chai
et al., 2021; Lee et al., 2021b) including logic-
consistent text generation (Shu et al., 2021), para-
phrase generation (Yang et al., 2021a), grammatical
error correction (Cao et al., 2021), dialogue genera-
tion (Cai et al., 2020), x-ray report generation (Liu
et al., 2021b; Yan et al., 2021a), data-to-text gen-
eration (Uehara et al., 2020); Few-shot Learn-
ing (Liu et al., 2021c; Zhang et al., 2021c; Wang
et al., 2021c; Luo et al., 2021; Das et al., 2021);
Language Model Contrastive Pretraining (Wu

40



et al., 2020b; Gunel et al., 2020; Clark et al., 2020;
Yu et al., 2020; Rethmeier and Augenstein, 2020,
2021; Meng et al., 2021; Li et al., 2021b); In-
terpretability and Explainability (Gardner et al.,
2020; Liang et al., 2020; Ross et al., 2020; Chen
et al., 2021a; Jacovi et al., 2021); Commonsense
Knowledge and Reasoning (Klein and Nabi, 2020;
Paranjape et al., 2021; Li et al., 2021a); Vision-and-
Language (Zhang et al., 2020b; Li et al., 2020;
Dharur et al., 2020; Cui et al., 2020; Radford et al.,
2021; Xu et al., 2021a; Jia et al., 2021; Lee et al.,
2021a). We will also briefly talk about other ap-
plications such as distillation and model compres-
sion (Sun et al., 2020), debiasing (Cheng et al.,
2021), fact verification (Schuster et al., 2021), short
text clustering (Zhang et al., 2021b), out-of-domain
detection (Zeng et al., 2021; Zhou and Chen, 2021),
robustness (Ma et al., 2021), code representation
learning (Jain et al., 2020), active learning (Mar-
gatina et al., 2021), knowledge representation learn-
ing (Ouyang et al., 2021), adversarial learning (Rim
et al., 2021).

In addition to the performance benefit, we high-
light that contrastive learning is particularly inter-
esting for NLP because it offers four advantages:

Task-agnostic Sentence Representation As a
representation learning approach, contrastive learn-
ing has demonstrated its effectiveness to learn task-
agnostic sentence embeddings that can be applied
across different tasks. Such progress enables effi-
cient encoding of sentences to support large-scale
semantic similarity comparison, clustering, and in-
formation retrieval via semantic search. The most
successful framework is Sentence-BERT (Reimers
and Gurevych, 2019) that uses siamese networks
with triplet loss to learn sentence embeddings
based on cosine similarity. Another example is
CERT (Fang et al., 2020) that employs contrastive
self-supervised learning at the sentence level with
back-translation data augmentation. It outperforms
BERT on 7 out of 11 natural language understand-
ing tasks on the GLUE benchmark. Later, Sim-
CSE (Gao et al., 2021b) uses both unsupervised de-
noising objective and supervised natural language
inference signals to learn sentence embeddings. It
achieves substantial improvements on several stan-
dard semantic textual similarity benchmarks.

Faithful and Factual Consistent Text Genera-
tion Contrastive learning is also used to improve
faithfulness and factuality of data-to-text genera-

tion and abstractive summarization, which has been
shown a very challenging issue with the pretrained
language models that often hallucinate (Kryscin-
ski et al., 2019; Parikh et al., 2020; Maynez et al.,
2020). Shu et al. (2021) propose to improve logic-
to-text generation models by designing rule-based
data augmentation to create contrastive examples
to cover variations of logic forms paired with di-
verse natural language expressions to improve the
generalizability. CLIFF (Cao and Wang, 2021) pro-
pose to improve faithful and factual consistency for
abstractive summarization by contrasting reference
summaries as positive training data and automati-
cally generated erroneous summaries as negative
training data. Wu et al. (2020a) also propose to
use contrastive learning for unsupervised reference-
free summary quality evaluation.

Data-efficient Learning Another advantage of
contrastive learning is to facilitate data-efficient
learning when training data is not abundantly avail-
able such as in zero-shot and few-shot settings.
CoDA (Qu et al., 2021) is a data augmentation
framework that synthesizes contrast-enhanced and
diverse examples by integrating multiple transfor-
mations over text. CLESS (Rethmeier and Au-
genstein, 2020) analyze data-efficient pretraining
via contrastive self-supervision through pretraining
data efficiency, zero to few-shot label efficiency,
and long-tail generalization. CONTaiNER (Das
et al., 2021) improves few-shot named entity recog-
nition by performing contrastive learning over
Gaussian distributions of token embeddings. Video-
CLIP (Xu et al., 2021a) uses contrastive pretraining
for zero-shot video-text understanding.

Interpretability and Explainability Contrastive
learning provides a new way for promoting
model interpretability and explainability. Contrast
Sets (Gardner et al., 2020) evaluate local decision
boundaries of models by manually perturbing the
test instances in small but meaningful ways. Ja-
covi et al. (2021) propose to produce contrastive
explanations for classification models by modify-
ing model representation and model behavior based
on contrastive reasoning. Paranjape et al. (2021)
leverage prompt engineering over pretrained lan-
guage models to create contrastive explanations for
commonsense reasoning tasks.
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2.3 Lessons Learned, Practical Advice, and
Future Directions

In this part, we will summarize our discussions of
existing work with lessons learned and practical ad-
vice. We will also envision the future directions of
contrastive learning for NLP such as data augmen-
tation quality and efficiency (Wang et al., 2021b),
hard negative examples (Zhang and Stratos, 2021),
under-explored NLP applications (Li et al., 2021b),
large batch size (Gao et al., 2021a).

3 Reading List

We compile the a light reading list for the audience
learning before coming to the tutorial:

• SimCLR (Chen et al., 2020)

• CLIP (Radford et al., 2021)

• SimCSE (Gao et al., 2021b)

• Contrast Sets (Gardner et al., 2020)

4 Diversity

Our presenters come from 3 institutions based in
the U.S. and China including 3 male and 1 fe-
male researchers on different levels of academic
seniority. As contrastive learning can be applied
broadly, our tutorial spans many different NLP
tasks and domains covering Text Classification
and Sentence Embeddings, Information Extraction,
Machine Translation, Question Answering, Sum-
marization, Text Generation, Few-shot Learning,
Interpretability and Explainability, Commonsense
Knowledge and Reasoning, Vision-and-Language,
Distillation and Model Compression. Therefore,
the audience will come from diverse backgrounds.

5 Presenters

Rui Zhang is an Assistant Professor in the Com-
puter Science and Engineering Department of
Penn State University and a co-director of the
PSU NLP Lab. He is one of the recipients of
2020 Amazon Research Awards. He serves as
an Area Chair at NAACL 2021, EMNLP 2021,
and NLPCC 2021. He co-organizes the Interac-
tive and Executable Semantic Parsing workshop
at EMNLP 2020 which attracted an international
audience with 100+ researchers from diverse aca-
demic and demographic backgrounds. He has
been working on contrastive learning for few-
shot named entity recognition (Das et al., 2021)

and text generation (Shu et al., 2021). https:
//ryanzhumich.github.io/

Yangfeng Ji is the William Wulf Assistant Pro-
fessor in the Department of Computer Science at
the University of Virginia, where he leads the Nat-
ural Language Processing group. His research
interests include building machine learning mod-
els for text understanding and generation. His
work on entity-driven story generation won an Out-
standing Paper Award at NAACL 2018. He is
a co-author of an EMNLP 2020 tutorial on The
Amazing World of Neural Language Generation.
https://yangfengji.net/

Yue Zhang is an Associate Professor at West-
lake University. His research interests include
NLP and its underlying machine learning algo-
rithms and downstream applications. He was
the area chairs of ACL (2017/18/19/20/21), COL-
ING (2014/18), NAACL (2015/19/21), EMNLP
(2015/17/19/20), EACL (2021) and IJCAI (2021).
He won the best paper awards of IALP (2017),
COLING (2018) and best paper honorable men-
tion of SemEval (2020). He is the author of
EMNLP 2018 tutorial on Joint models for NLP.
https://frcchang.github.io/

Rebecca J. Passonneau is a Professor in the
Computer Science and Engineering Department
of Penn State University and a co-director of the
PSU NLP Lab. Her area of research is natural
language processing, with a focus on semantics
and pragmatics. Her work is reported in over 130
journal and refereed conference publications. She
won a Best Paper Runner Up at NAACL 2010. She
is a tutorial co-chair for NAACL 2018. https:
//sites.psu.edu/becky/

6 Ethics Statement

As contrastive learning often involves data augmen-
tation and manipulation, our ethical consideration
mainly focuses on properly dealing with bias in the
dataset. As bias and fairness created by contrastive
learning algorithms are still under-explored, we
will also discuss such relevant topics in the section
on future directions.
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