@inproceedings{bhattacharya-etal-2022-lchqa,
title = "{LCHQA}-Summ: Multi-perspective Summarization of Publicly Sourced Consumer Health Answers",
author = "Bhattacharya, Abari and
Chaturvedi, Rochana and
Yadav, Shweta",
editor = "Krahmer, Emiel and
McCoy, Kathy and
Reiter, Ehud",
booktitle = "Proceedings of the First Workshop on Natural Language Generation in Healthcare",
month = jul,
year = "2022",
address = "Waterville, Maine, USA and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nlg4health-1.3",
pages = "23--26",
abstract = "Community question answering forums provide a convenient platform for people to source answers to their questions including those related to healthcare from the general public. The answers to user queries are generally long and contain multiple different perspectives, redundancy or irrelevant answers. This presents a novel challenge for domain-specific concise and correct multi-answer summarization which we propose in this paper.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhattacharya-etal-2022-lchqa">
<titleInfo>
<title>LCHQA-Summ: Multi-perspective Summarization of Publicly Sourced Consumer Health Answers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abari</namePart>
<namePart type="family">Bhattacharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rochana</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shweta</namePart>
<namePart type="family">Yadav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Natural Language Generation in Healthcare</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathy</namePart>
<namePart type="family">McCoy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Waterville, Maine, USA and virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Community question answering forums provide a convenient platform for people to source answers to their questions including those related to healthcare from the general public. The answers to user queries are generally long and contain multiple different perspectives, redundancy or irrelevant answers. This presents a novel challenge for domain-specific concise and correct multi-answer summarization which we propose in this paper.</abstract>
<identifier type="citekey">bhattacharya-etal-2022-lchqa</identifier>
<location>
<url>https://aclanthology.org/2022.nlg4health-1.3</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>23</start>
<end>26</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LCHQA-Summ: Multi-perspective Summarization of Publicly Sourced Consumer Health Answers
%A Bhattacharya, Abari
%A Chaturvedi, Rochana
%A Yadav, Shweta
%Y Krahmer, Emiel
%Y McCoy, Kathy
%Y Reiter, Ehud
%S Proceedings of the First Workshop on Natural Language Generation in Healthcare
%D 2022
%8 July
%I Association for Computational Linguistics
%C Waterville, Maine, USA and virtual meeting
%F bhattacharya-etal-2022-lchqa
%X Community question answering forums provide a convenient platform for people to source answers to their questions including those related to healthcare from the general public. The answers to user queries are generally long and contain multiple different perspectives, redundancy or irrelevant answers. This presents a novel challenge for domain-specific concise and correct multi-answer summarization which we propose in this paper.
%U https://aclanthology.org/2022.nlg4health-1.3
%P 23-26
Markdown (Informal)
[LCHQA-Summ: Multi-perspective Summarization of Publicly Sourced Consumer Health Answers](https://aclanthology.org/2022.nlg4health-1.3) (Bhattacharya et al., NLG4Health 2022)
ACL