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Abstract

Pre-training large transformer models with in-
domain data improves domain adaptation and
helps gain performance on the domain-specific
downstream tasks. However, sharing mo-
dels pre-trained on potentially sensitive data
is prone to adversarial privacy attacks. In
this paper, we asked to which extent we can
guarantee privacy of pre-training data and, at
the same time, achieve better downstream per-
formance on legal tasks without the need of
additional labeled data. We extensively ex-
periment with scalable self-supervised learn-
ing of transformer models under the formal
paradigm of differential privacy and show that
under specific training configurations we can
improve downstream performance without sac-
rifying privacy protection for the in-domain
data. Our main contribution is utilizing dif-
ferential privacy for large-scale pre-training of
transformer language models in the legal NLP
domain, which, to the best of our knowledge,
has not been addressed before.1

1 Introduction

Transformer-based models (Vaswani et al., 2017;
Devlin et al., 2019) trained in a self-supervised
fashion on a huge collection of freely accessible
Web texts belong to the currently most success-
ful techniques for almost any downstream NLP
task across languages or domains. Their ability to
‘learn’ certain language properties (Rogers et al.,
2020) and the need of having only a small amount
of labeled data in the target domain for fine-tuning
makes them superior to other approaches (Brown
et al., 2020). Moreover, additional pre-training
with unlabeled target-domain data typically boosts
their performance further (Chalkidis et al., 2020).

However, when it comes to preserving private in-
formation contained in the original large unlabeled
text data, transformer models tend ‘remember’ way

1https://github.com/trusthlt/
privacy-legal-nlp-lm

too much. Carlini et al. (2020) show that it is possi-
ble to extract verbatim sensitive information from
transformer models, such as names and addresses,
even when such a piece of information had been
‘seen’ by the model during pre-training only once.
Current transformer models thus represent a threat
to privacy protection, which can have harmful con-
sequences if such models trained on very sensitive
data are published, as is the current trend in sharing
pre-trained models.

In the legal domain, sensitive information, in-
cluding names, addresses, dates of birth, are im-
portant part of many documents, such as court de-
cisions. Especially in countries with the case-law
system, court decisions make the largest fraction
of legal texts. However, transformer models pre-
trained on such corpora do not protect personal
information by design, and ad-hoc solutions, e.g.
whitening names in the original texts, are prone to
errors and potential reconstruction attacks (Lison
et al., 2021; Pilán et al., 2022).

Existing approaches to privacy-preserving deep
learning have adapted differential privacy (DP)
(Dwork and Roth, 2013), a rigorous mathemati-
cal treatment of privacy protection and loss. In
particular, stochastic gradient descent with DP (DP-
SGD) has been successfully applied to various
NLP problems (Senge et al., 2022; Igamberdiev
and Habernal, 2022), including transformer pre-
training (Hoory et al., 2021; Anil et al., 2021).
However, how well DP-regimes perform in the le-
gal domain, pre-trained and fine-tuned across vari-
ous downstream legal-NLP tasks, remains an open
question.

This paper addresses the following three re-
search questions. First, what are the best strategies
for pre-training transformer models to be applied
in the legal domain? Second, does DP-SGD train-
ing scale up to tens of gigabytes of pre-training
data without ending up with an extremely big
privacy budget? Finally, can large-scale privacy-
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preserving transformers compete to their small-
scale non-private alternatives?

2 Related work

Transformer models in legal NLP Large con-
textual LMs based on transformer architecture
(Vaswani et al., 2017) are the state of the art in
numerous NLP tasks. Domain adaptation aims
to improve the model performance on downstream
tasks in a specialized domain. A common approach
is to pre-train BERT (Devlin et al., 2019) with a
large collection of unlabeled in-domain texts. In
the legal domain, Chalkidis et al. (2020) provide
a systematic investigation of possible strategies
for BERT adaptation and published their model as
LEGAL-BERT. Their work shows that both training
BERT form scratch or further pre-training the exist-
ing general BERT-BASE2 model with legal corpora
achieve comparable performance gains. Besides,
broader hyper-parameter search has large impact on
the downstream performance. Zheng et al. (2021)
point out that despite the uniqueness of legal lan-
guage, domain pre-training in the legal field rarely
show significant performance gains probably due
to the lack of appropriate benchmarks that are dif-
ficult enough to benefit from pre-training on law
corpora. To address this issue, they release a new
benchmark called CaseHOLD that gains up to 6.7%
improvement on macro F1 by additional domain
pre-training. In the legal field, the vast majority of
benchmarks exhibit small performance gains after
further pre-training BERT on law datasets (Elwany
et al., 2019; Chalkidis et al., 2020). However, ex-
isting research on legal language models has not
considered privacy of the textual datasets.

Privacy-preserving NLP with differential pri-
vacy Large machine learning models including
transformer-based LMs can be prone to privacy at-
tacks such as membership inference attack (Shokri
et al., 2017; Hayes et al., 2019; Carlini et al., 2020),
which means it is possible to predict whether or
not a data record exists in the model’s training
dataset given only black-box query access to the
model. It hinders the application of such models
on numerous real-word tasks involving private user
information. To mitigate this limitation, many re-
cent studies devote to privacy-preserving algorithm
for large NLP models.

2BERT-BASE stands for ‘bert-base-uncased’ from https:
//huggingface.co/bert-base-uncased.

Differential Privacy (DP) (Dwork et al., 2006;
Dwork and Roth, 2013) has been taken as the gold-
standard approach to ensure privacy for sensitive
dataset. The main goal of privacy-preserving data
analysis is to enable meaningful statistical analysis
about the database while preventing leakage of indi-
vidual information. The intuition behind DP is that
an individual’s data can’t be revealed by a statisti-
cal release of the database regardless of whether or
not the individual is present in the database, thus
any individual shouldn’t have significant influence
on the statistical release. We formally introduce
DP in Section 3.

Unlike works focusing of privatization of indi-
vidual texts (Habernal, 2021, 2022; Igamberdiev
et al., 2022), applying DP to training neural net-
works is typically done through differentially-
private stochastic gradient descent (DP-SGD)
(Abadi et al., 2016); see also (Yu et al., 2019) for
a great explanation. Although DP pre-training of
BERT has been shown to gain performance on a
Medical Entity Extraction task (Hoory et al., 2021),
how well it performs in the legal area still remains
an open question.

2.1 Off-the-shelf strategies for training with
differential privacy

DP-SGD training often suffers from big running
time overhead that comes from the per-sample gra-
dient clipping. Mainstream DL frameworks such as
PyTorch and TensorFlow are designed to produce
the reduced gradients over a batch that is sufficient
for SGD but are unable to compute the per-sample
gradients efficiently. A naive way to achieve this
is to compute and clip the gradient of each sample
in the batch one by one through a for-loop, which
is implemented in PyVacy.3 This approach com-
pletely loses parallelism and hence dramatically
slows down the training speed. A more advanced
method is to derive the per-sample gradient for-
mula and compute it in a vectorized form. Opacus4

implements this by replacing the matrix multipli-
cation between the back-propagated gradients and
the activations from the previous layer in the origi-
nal PyTorch back-propagation with outer products
via einsum function (Yousefpour et al., 2021). The
activations and back-propagated gradients are cap-
tured through forward and backward hooks. A
disadvantage of this method is that it cannot cur-

3https://github.com/ChrisWaites/pyvacy
4https://github.com/pytorch/opacus

173

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/ChrisWaites/pyvacy
https://github.com/pytorch/opacus


rently support all kinds of neural network modules.
In addition, it is restricted by quadratic memory
consumption (Subramani et al., 2021).

3 Learning with differential privacy

This section formally introduces differential pri-
vacy and can be skipped by readers familiar with
that topic.

3.1 Pure Differential Privacy (9-DP)
Definition of 9-DP Given a real number Y > 0, a
randomized mechanism (or algorithm)M : � ↦→
' satisfies Y-DP if for any two neighboring input
datasets 3, 3 ′ ∈ � that differs in a single element
and for any subset of outputs ( ⊆ ' it holds that

Pr[M(3) ∈ (]
Pr[M(3 ′) ∈ (] ≤ exp(Y), (1)

where Pr stands for the probability distribution
taken from the randomness of the mechanism, and
Y refers to the privacy budget.

The value of Y upper-bounds the amount of in-
fluence any individual data has on the mechanism’s
outputs. Smaller Y value means stronger privacy
guarantee. However, there is no conclusive answer
to how small we should set Y to prevent informa-
tion leakage in practice. The general consensus is
that Y ≤ 1 would indicate strong privacy protection,
while Y ≥ 10 possibly doesn’t guarantee much pri-
vacy, although the value is application-specific.5

The above definition implies that the outputs of
the mechanism should not differ much, with or
without any specific data record. In this case, an
adversary can’t infer whether or not a record exists
in the input dataset from the outputs of the mecha-
nism, which prevents the extraction of individual
training data from a pre-trained model.

The sensitivity of a mechanismM is the upper
bound of the amount of output difference when it’s
input changes by one entry. Formally, the Global
Sensitivity (�() ofM is given by

�((M) = max
3,3′: |3 |= |3′ |±1

|M(3) −M(3 ′) |, (2)

where d and d’ are neighboring datasets. The
"global" means this holds for any pair of neighbor-
ing datasets, as opposed to the "local" sensitivity
with one of the datasets fixed. For example, sen-
sitivity of the counting query that computes how
many entries in a database is 1.

5https://programming-dp.com/

There are two important properties of DP: Se-
quential composition and post-processing.

• Sequential Composition For mechanisms
M1(3) satisfies Y1-DP and M2(3) sat-
isfies Y2-DP, the mechanism M(3) =
(M1(3),M2(3)) that releases both results
satisfies (Y1 + Y2)-DP.

• Post Processing If a mechanismM(�) satis-
fies Y-DP, then after performing arbitrary func-
tion f on M(�), the mechanism 5 (M(�))
still satisfies Y-DP.

These properties facilitate the design and analy-
sis of a DP algorithm. The composability enables
the track of privacy loss for algorithms that traverse
the dataset multiple times, and the post processing
property ensures that a DP algorithm is robust to
privacy attack with auxiliary information. More-
over, advanced composition exists for approximate
DP that provides tighter upper bound of privacy.

3.2 Appropriate Differential Privacy
((9, %)-DP)

Definition of (9, %)-DP Approximate DP relaxes
the pure Y-DP requirement by introducing a "failure
probability" X. Similar to the definition of Y-DP,
given real numbers Y > 0 and X > 0, we say a
mechanismM : � → ' satisfies (Y, X)-DP if for
all adjacent inputs 3, 3 ′ ∈ � and all ( ⊆ ', we
have

Pr[M(3) ∈ (] ≤ 4Y Pr[M(3 ′) ∈ (] + X (3)

The pure Y-DP is equivalent to (Y, 0)-DP. A non-
zero item X allows the mechanism fails to be Y-DP
with probability X. This sounds a bit scary, since
under certain probability we get no guarantee of
privacy at all and there is a risk of compromising
the whole dataset. Therefore, the value of Xmust be
small enough, preferably less than one over the size
of dataset (i.e. 1

|� | ) in order to deliver meaningful
results. One of the biggest advantage of (Y, X)-DP
is that even with negligible X, it can significantly
reduce the sample complexity compared to the pure
DP (Beimel et al., 2013; Steinke and Ullman, 2015;
Bun et al., 2014). Roughly speaking, given the
same size of dataset, (Y, X)-DP can achieve higher
statistical accuracy than Y-DP while preserving the
privacy. Additionally, the (Y, X)-DP mechanisms
in practice usually don’t fail catastrophically and
release the whole dataset. Instead, they fail grace-
fully and still satisfy 2Y-DP for some value 2 in
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the case of failure probability. For these reasons,
approximate DP becomes popular in real applica-
tions.

The Gaussian Mechanism A Gaussian mech-
anism that satisfies (Y, X)-DP can be obtained by
injecting Gaussian noise as follows

M� (G, 5 , Y, X) = 5 (G) +N (0, 2(2 ln( 1.25
X )

Y2 ). (4)

3.3 Deep Learning with DP

In general, the goal of deep learning is to opti-
mize the model parameters so that the output of
the loss function is minimized. This optimization
is usually achieved by Gradient Descent and its
variants. Basically, the model are learned from the
gradient of the loss outputs w.r.t. the model pa-
rameters. Take the mini-batch Stochastic Gradient
Descent (SGD) as example, at each step C, a cer-
tain number of randomly selected training samples
{x8 |8 ∈ HC , HC ⊆ {1, ..., #}}6 are fed into the loss
functionL and the average of their output gradients
are calculated as an estimate of the loss gradient
w.r.t the model weights ) , which is then multiplied
by the learning rate [ for Gradient Descent. This
can be formulated as follows: A DP algorithm has
certain guarantee that it doesn’t leak individual
training examples. In the Gradient Descent algo-
rithm, the only access to the training examples is
occurred in the computation of the gradient. There-
fore, one way to achieve DP is through introducing
noise into the gradient before the update of model
weights. If the access to the gradient calculated via
training data remains DP, then the resulting model
is DP according to the post-processing property.
Based on this, Abadi et al. (2016) propose a so-
phisticated method that turns the mini-batch SGD
algorithm into DP, named DP-SGD, which has be-
come a dominant approach to privacy-preserving
deep learning.

DP-SGD primarily modifies two places of the
original SGD algorithm to ensure DP. One is to clip
the per-example gradients so that the Euclidean-
norm (L2-norm) of each individual gradient does
not exceed a pre-defined upper bound �, which
corresponds to a constraint for the sensitivity of
gradient. The other one is to add scale-specific
Gaussian noise N into the aggregated clipping gra-

6N is the total number of training examples.

dient:

) C ← ) C−1 − [

|HC |

( ∑
∀8∈HC

clip(O)C−1L() C−1, x8), �)

+ N (0, f2�2O)
)
,

(5)
where f refers to the a constant called "noise mul-
tiplier", higher f produce stronger privacy guar-
antee. According to the definition of 4, the mod-
ified SGD is a Gaussian mechanism that satisfies
(Y, X)-DP. The choice of Gaussian noise is due to
the high-dimensionality of the gradient. L2-norm
can be applied to measure the sensitivity of a high-
dimensional vector-valued function for Gaussian
mechanism, which yields much lower sensitivity
than Laplace mechanism that only allows the use of
L1-Norm, thus much less noise needs to be added
to the gradient. Moreover, Abadi et al. (2016) in-
troduce the Moments Accountant for tighter esti-
mation of the privacy cost. Despite its simplicity,
DP-SGD brings successes in many deep learning
fields.

4 Experimental setup and data

Our experiments aim to find a strategy where BERT

can benefit from additional domain-specific DP
pre-training. Moreover, we explore the trade-off
between the privacy budget and model utility under
the best setup we obtain.

Privacy-protecting scenario In our scenario,
we assume that we publish a pre-trained or fine-
tuned model, to which an adversary has a full
access (Yu et al., 2019). The model can be pre-
trained on (a) a public general dataset and (b) in-
domain, potentially sensitive legal documents, and
fine-tuned on (c) a public down-stream task. Our
aim is to protect (b) from the adversary.

4.1 Pre-training BERT from scratch

BERT pre-training is a very expensive task, espe-
cially with DP. While further pre-training the exist-
ing BERT-BASE can take advantage of the already
learned language features and greatly reduce the
convergence time, the original generic vocabulary
remains unchanged. A generic vocabulary might
not match the specialized legal terminology and
could lead to drastic splitting into sub-word units
and reducing semantic expressiveness (Zheng et al.,
2021; Habernal et al., 2022). To address this prob-
lem, pre-train BERT from scratch with a custom
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legal tokenizer built on the legal corpus using the
WordPiece algorithm (Wu et al., 2016).

In order to investigate the effect of domain vo-
cabulary on model performance and also follow the
setup in Hoory et al. (2021) that successfully intro-
duce DP to the pre-training of medical BERT our
pre-training from scratch can be roughly divided
into three steps:

1. Generating a domain-specific tokenizer and
vocabulary set based on the legal corpus.7

2. Pre-training BERT from scratch on the generic
BookCorpus and Wikipedia dataset using the
domain-specific tokenizer.

3. Further pre-training BERT with DP on the le-
gal corpus.

In spite of that the first step also involves access to
the legal corpus and may cause information leak-
age, there is no good solution to convert the Word-
Piece algorithm into DP with tight privacy bound.
We leave this problem to future work. Currently,
we only ensure privacy during the pre-training on
the legal corpus. The second step only uses the
general corpora and thereby has no privacy issue.
We don’t use the legal corpora at the beginning of
the pre-training because the overhead to train DP
BERT from scratch is too expensive. We call the
model trained with the first two steps BERT-SC.

4.2 Further pre-training BERT-BASE

Continuing the pre-training of BERT-BASE with
legal-domain corpora is an economical and effec-
tive way for domain transfer. We start with a small-
scale pre-experimental corpus to quickly investi-
gate the effectiveness of additional domain pre-
training with different hyper-parameter settings.
Afterward, we scale up the training on the full legal
corpus and focus on the batch size and learning rate
tuning. In order to avoid overfitting, 5% of the pre-
training data is kept as a validation set, on which
the sum loss of the MLM (masked language model-
ing) and NSP (next sentence prediction) objectives
and their accuracy is evaluated at each checkpoint.

5 Downstream tasks and datasets

We experiment with two downstream benchmark
datasets, Overrruling and CaseHOLD, on which

7Here we use BertWordPieceTokenizer
from https://github.com/huggingface/
tokenizers, we set the vocabulary size to 30,522
which is the same as with BERT-BASE.

we fine-tune our pre-trained models.8 Note that for
the downstream tasks, we do not use differential
private training.

The Overruling dataset (Zheng et al., 2021) cor-
responds to a binary classification task that predicts
if a sentence has the meaning of voiding a legal de-
cision made in a previous case, which is important
to ensure the correctness and validity of legal agree-
ments. The sentences in the dataset are sampled
from the Casetext law corpus, where positive over-
ruling examples are manually annotated by lawyers,
and negative examples are automatically generated
by randomly sampling the Casetext sentences be-
cause over 99% of them are non-overruling. The
complete dataset contains 2400 items and the two
classes are balanced. It is a relatively simple task
that has already achieved state-of-the-art perfor-
mance on BERT-BASE model, since the positive
examples explicitly contain ‘overrule’ or words
with similar meaning such as disapprove, decline,
reject, etc., which makes them highly distinguish-
able from the negative ones.

The CaseHOLD (Case Holdings on Legal De-
cisions) is a multiple-choice QA task to select a
correct holding statement among 5 potential an-
swers that matches the given citing context from
a judicial decision. Zheng et al. (2021) construct
the dataset by extracting the legal citations and the
accompanying holding statements from the corpus
of U.S. CaseLaw and using them as questions and
answers respectively. Here the cases contained in
the CaseHOlD are removed from our legal pre-
training corpus according to the case IDs they pro-
vide. Moreover, they search for propositions that
are semantically similar to the corresponding an-
swer from other extracted holding statements as
the wrong answers according to the TF-IDF simi-
larity between them, which makes the CaseHOLD
a multiple-choice QA task. The labels of the cor-
rect answers are uniformly distributed within the 5
indices 0-4. Excluding some samples containing
invalid labels, the full dataset we use has a total of
52,978 items. It is a challenging task and yields
only a macro F1 of around 0.613 using the general
BERT-BASE (Zheng et al., 2021). We use it to in-
vestigate whether a sufficiently difficult legal task
benefits from additional domain pre-training in the
private preserving scenario.

8Hyperparameters for the downstream tasks are discussed
in Appendix A.
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6 Our approach to pre-training legal
transformer models with DP

6.1 Datasets for pre-training
For the in-domain pre-training with differential pri-
vacy, we prepare a legal corpus consisting of 14GB
legal texts that are collected from three different
resources (see Table 1). Although these are public
datasets, we treat them as if they were private, con-
taining sensitive data whose leakage from the pre-
trained models should be prevented. For compiling
and caching the large-scale pre-training corpora,
we leverage the HuggingFace Datasets library9

based on Arrow, which allows fast lookup for big
datasets by building a memory-mapped cache on
disk.

Source Documents Size (GB)

Sigma Law10 39,155 1.2
LEDGAR11 ≈ 300,000 0.2
Case Law12 ≈ 28,300,000 12.6

Table 1: Details of the legal corpora for pre-training.

6.2 Scalable pre-training with DP

In section 2.1 we discussed the shortcomings of off-
the-shelf DP-SGD implementations in mainstream
frameworks. We carried out preliminary experi-
ments and found that these shortcomings make DP-
SGD pre-training infeasible due to 12 to 28-times
longer runtime per epoch.

The training speed of DP-SGD can be signifi-
cantly improved by vectorization, just-in-time (JIT)
compilation and static graph optimization using
JAX framework,13 which is defined by JIT com-
pilation and automatic differentiation built up on
the XLA compiler (Subramani et al., 2021). The
core transformation methods of main interest in
JAX includes grad, vmap, jit, and it allows
us to arbitrarily compose these operations. In the
DP-SGD scenario, grad can automatically com-
pute the gradients of the loss objective w.r.t. the
model parameters, and combing vmap enables ef-
ficient computation of per-example gradients by
vectorizing the gradient calculation along the batch
dimension.

9https://huggingface.co/docs/datasets/
10https://osf.io/qvg8s/
11Tuggener et al. (2020)
12https://case.law
13https://github.com/google/jax

Furthermore, the DP-SGD step can be deco-
rated by jit to leverage XLA compiler that has
proven acceleration in BERT MLPerf submission.
Although JAX shows great advantages over other
mainstream DP frameworks and libraries on a wide
variety of networks such as Convolutional Neural
Network (CNN) and Long-Short Term Memory
network (LSTM) in Subramani et al. (2021), how
much speedup it can produce on large transformer-
based LMs remains unknown.

To investigate this, we implementat a JAX ver-
sion of DP BERT based on FlaxBert models,14

which provides transformers with JAX/FLAX back-
end including BERT. We adapt its training step
into DP by adding the per-sample gradients clip-
ping before aggregation and introducing randomly
sampled Gaussian noise to the reduced gradients.
Moreover, we use the strategy of gradient accu-
mulation to enable DP pre-training with arbitrar-
ily large batch sizes. Specifically, a training step
is split into many iterations such that each itera-
tion handles a shard of examples that the GPU15

memory can maximally hold, and the clipped per-
example gradients are accumulated over iterations
within a batch.

6.2.1 Finding optimal hyper-parameters
Our starting point to further pre-training with dif-
ferential privacy is the uncased BERT-BASE model
that contains 110M parameters. For the optimiza-
tion, we use Adam with weight decay (AdamW,
(Loshchilov and Hutter, 2019)) and a linear learn-
ing rate schedule, which consists of a warm-up
phrase followed by a linear decay. The warm-up
steps are set to roughly 5% of the total training
steps with a lower bound of 25. In addition, we use
the TensorFlow privacy library16 based on Rényi
DP (RDP) (Mironov, 2017; Mironov et al., 2019)
for the track of privacy, which can be converted to
a standard (Y, X)-DP but provides a tighter compo-
sition for Gaussian mechanism than directly using
(Y, X)-DP. The method takes the noise multiplier
f as input and calculates the privacy budget Y for
each step. Conversely, we obtain the desired Y by
the binary search for an optimal noise multiplier
that leads to a privacy budget close enough to the
target Y in a proper range.

14https://huggingface.co/docs/
transformers/model_doc/bert

15All the experiments are carried out on an NVIDIA A100
40GB.

16https://github.com/tensorflow/privacy
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Model Overruling CaseHOLD

BERT-BASE 0.971 0.617
BERT-SC 0.975 0.618

Table 2: Baseline Macro-�1 scores without any domain
pre-training.

f Y Overruling CaseHOLD

BERT-BASE

– – 0.975 0.652
1e-5 ∞ 0.967 0.648

0.1 4e+5 0.971 0.616
0.5 3.726 0.969 0.613

BERT-SC

– – 0.969 0.647
1e-5 ∞ 0.967 0.645

0.1 4e+5 0.967 0.618
0.5 3.726 0.964 0.616

Table 3: Macro-�1 scores for further small-scale pre-
training of BERT-BASE and BERT-SC. f="–" corre-
sponds to the training without DP.

In our experiments, the gradient clipping norm
and the weight decay are less significant factors,
and we fix them to 1.0 and 0.5 accordingly. To
study the influence of the batch size, we keep the
privacy Y to 5, which is considered as a sweet point
between a very strong privacy guarantee 1 and a
weak guarantee 10. In order to avoid overfitting,
5% of the pre-training data is kept as a validation
set, on which the sum loss of the MLM and NSP
objectives and their accuracy is evaluated at each
checkpoint.

7 Results and analysis

Baselines Our baseline results (Table 2) are re-
ported from BERT-BASE and BERT-SC with tuned
hyper-parameters with no privacy gurantees. BERT

trained from scratch with a custom legal vocabu-
lary (BERT-SC) slightly outperforms vanilla BERT-
BASE.

Small-scale pre-training with DP We experi-
mented with further pre-training of two baseline
models on a small-scale 2.3GB legal sub-corpus.
The goal was to efficiently explore the effect of
several key hyper-parameters on DP training with
a small amount of data. We trained for 29k steps at
batch size 256.

Table 3 shows that while both baseline models
after further pre-training without privacy achieve ∼
3% substantial performance gains on CaseHOLD,
the results of DP pre-training is disappointing. The
benefits of domain training for CaseHOLD task
seem to disappear after adding even a small amount
of noise (f = 0.1). The results from f = 0.1 and
f = 0.5 don’t outperform the baseline or are even
marginally worse than it. In addition, the legal
tokenizer doesn’t indicate an advantage over the
general one. We conclude that small-scale DP pre-
training barely brings any improvement and even
hurts the performance. We decide to scale up the
training and explore larger batch sizes.

7.1 Large-scale domain pre-training with DP

As the batch size is one of the most important pa-
rameter in DP training, we fix the target privacy
budget Y as 5 and further pre-train BERT-BASE on
the large-scale full legal corpus starting with the
default parameters (see Table 4 in the Appendix).
Then we explore the parameter space by gradually
increasing the batch size up to ∼ 1M and roughly
tune the learning rate at the same time. Although
we have significantly accelerated the DP training
by JAX framework, large-scale DP pre-training is
still quite expensive. Due to resource and time con-
straints, we do not perform a complete grid search
but only experiment with the likely best learning
rates at each batch size in our experience.

Gradient-SNR Following the work in Anil et al.
(2021), we keep track of the gradient signal-to-
noise ratio at each step during the DP pre-training
of BERT. Figure 1 shows the impact of batch size
and learning rate on the Gradient-SNR. In general,
the SNR decreases with training and eventually
converges to a small value. This is probably due
to the fact that the magnitude of the gradient de-
creases constantly during the learning, whereas the
magnitude of the noise remains basically the same,
so the ratio of the two keeps shrinking until the
gradients become stable. From the left subplot 1(a)
we can see that a larger batch size leads to higher
Gradient-SNRs. Moreover, the right subfigure (b)
shows that an appropriate learning rate can also
improve the Gradient-SNR for a certain batch size.
However, a too large learning rate leads to dramatic
oscillation of Gradient SNR, and the model may
move away from the local optima and thus increase
the training loss.
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Figure 1: Gradient-SNR over steps for DP pre-training with same privacy budget and fixed epochs while varying
the batch size (bs) or learning rate (lr). The left plot shows the trends of SNR at four different batch sizes. For
smaller batch sizes, the SNRs after 800 steps are not presented, but they’ve basically converged to a small value as
seen in the figure. Their initial learning rates are uniformly set as 5e-4. The right-hand figure draws the changes
on SNR at batch size 524,288 using two different learning rates.
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Figure 2: Downstream results obtained by tuning the batch size and learning rate of large-scale domain pre-training
when fixing both the target privacy Y and training epochs to 5.

Results on downstream tasks In our experi-
ments with fixed training epochs, the batch size
and learning rate jointly influence the performance
on CaseHOLD. As can be seen from the bottom
subplot of Figure 2, training with unusually large
batch sizes and high learning rates (upper right
area) produces significantly better Macro F1 scores
than using small batch sizes and low learning rates
(bottom left area). By scaling up the batch size and
tuning the learning rate accordingly, we achieve the
best Macro F1 of 0.636 at batch size 524,288 and
learning rate 1e-3. This outperforms the baseline
by almost 2%.

As a summary, for a fixed training epoch setting,
enlarging the batch size is not always beneficial and
tuning the learning rate is crucial as well. However,
according to our experiments, DP pre-training of

BERT with a regular small batch size performs over-
all very poorly, and it starts to make performance
gains on CaseHOLD when the batch size is stepped
up to 4,096. We obtain a significant boost when
increasing the batch size to 130K+. We conclude
that scaling up the batch size and in-domain corpus
is necessary to obtain good performance for DP
pre-training of BERT in the legal field.

8 Discussion

Here we clarify some questions and comments
raised by the reviewers.

Is the 2% improvement worth the effort? We
believe so. Let’s put our result into a broader con-
text by having a closer look at results achieved by
LEGAL-BERT (Chalkidis et al., 2020). On three
downstream tasks, they gained similar improve-
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Figure 3: Runtimes (in seconds) per epoch for fine-
tuning BERT on the Overruling binary classification
task with different batch sizes and frameworks.

ments. First, “in ECHR-CASES, we [...] observe
small differences [...] in the performance on the
binary classification task (0.8% improvement)."
Second, on NER they observed an “increase in F1
on the contract header (1.8%) and dispute resolu-
tion (1.6%) subsets. In the lease details subset, we
also observe an improvement (1.1%)." Finally, on
EURLEX57k, they observed “a more substantial
improvement in the more difficult multi-label task
(2.5%) indicating that the LEGAL-BERT variations
benefit from in-domain knowledge." Moreover, our
approach achieves similar gains under differential
privacy guarantees.

How expensive is DP training? We experimen-
tally evaluate the running performance of different
frameworks on a binary classification task (Overrul-
ing) in both private and non-private cases. Figure
3 show the runtimes per epoch taken from the me-
dian over 20 epochs of training. In our experiments,
Opacus is unable to support BERT’s Embedding
layer, although we use its official tutorial for train-
ing. This also prevents us to use it for the DP pre-
training. We freeze its Embedding layer for the fine-
tuning, which reduces nearly 22% training parame-
ters compared to other methods. By doubling the
batch size each time, 64 is the maximum batch size
that the current GPU can support for JAX frame-
work. Opacus uses a BatchMemoryManager to
eliminate the limit of batch size similar to gradient
accumulation, but the physical batch size it can
achieve is actually much smaller than 64. This indi-

cates that JAX has higher memory-efficiency than
Opacus. The runtime of all the methods decreases
significantly as the batch size grows except for Py-
Vacy. In summary, due to the performance of JAX
in the DP training, the ‘extra costs’ are negligible
and allows us to upscale DP pre-training.

The title is misleading, the authors do not pro-
pose a privacy-preserving legal NLP model. If
we take the definition of privacy through the lenses
of differential privacy, then our pre-trained model
is privacy-preserving; see, e.g., Yu et al. (2019) for
a terminology clarification, or parallel works with
the T5 language model (Ponomareva et al., 2022).

Why even do this? The scenario in which we
want to protect privacy is the following. Say a
company has huge amounts of in-house sensitive
legal texts (e.g., contracts) which are valuable for
pre-training a LM. This model is likely to be better
performing on similar domains, so the company
wants to offer an API or provide the model to other
parties for further fine-tuning. Without DP, privacy
of the pre-training data can be compromised (Pan
et al., 2020; Carlini et al., 2020; Yu et al., 2019).

9 Conclusion

This paper shows that we can combine large-scale
in-domain pretraining for a better downstream per-
formance while protecting privacy of the entire
pre-training corpus using formal guarantees of dif-
ferential privacy. In particular, we implemented
highly-scalable training of the BERT model with
differentially-private stochastic gradient descent
and pre-trained the model on ≈ 13 GB legal texts,
using a decent Y = 5 privacy budget. The down-
stream results on the CaseHOLD benchmark show
up to 2% improvements over baseline models with
tuned hyper-parameters and models trained from
scratch with a custom legal vocabulary. Our main
contribution is utilizing differentially-private large-
scale pre-training in the legal NLP domain. We
believe that adapting formal privacy guarantees for
training models might help overcome the difficul-
ties of using large but potentially sensitive datasets
in the legal domain.
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Learning Rate Batch Size Epochs
Devlin et al. (2019) 2e-5, 3e-5, 4e-5, 5e-5 16, 32 3, 4
First round 5e-6, 1e-5, 5e-5, 1e-4 8, 16, 32, 64, 128 max 10, early stop
Second round 7e-6, 2e-5, 3e-5, 7e-5 16 Overruling; 128 CaseHOLD max 10, early stop
Final setup 1e-5, 3e-5, 5e-5, 7e-5 16 Overruling; 128 CaseHOLD max 5, early stop

Table 4: Summary of the hyper-parameter search

l FP eval loss MLM acc NSP acc F1 on Overruling F1 on CaseHOLD
0.1 1.706 0.682 0.947 0.973 0.636
0.5 1.701 0.681 0.947 0.973 0.636
1.0 1.695 0.681 0.948 0.969 0.636

Table 5: Evaluation results for tuning the weight decay l on the best setup (bs=524,288, lr=1e-3).

et al. (2019), we perform a broader search through
two rounds of coarse- to fine-grained grid search.
The details of the searched hyper-parameters are
shown in Table 4. In the final setup, we fix the batch
size as 16 for Overruling and 128 for CaseHOLD,
and train for a maximum of 5 epochs. Furthermore,
the downstream performances are relatively sensi-
tive to the learning rate, we do a search over {1e-5,
3e-5, 5e-5, 7e-5} and the best macro-f1 scores are
reported for each pre-trained model.

B Additional experiments with limited
impact

B.1 Weight Decay 8

BERT uses layer normalization (Ba et al., 2016)
that makes the output of a layer independent of
the scale of its weights. As explained in Anil et al.
(2021), the Frobenius norm of the layer weights
tends to grow due to the noise introduced in the
DP training, which reduces the norm of the gradi-
ents and thereby slows down the learning process
under the layer normalization. To address this prob-
lem, they suggest using a much larger weight decay
for Adam optimizer compared to the non-private
training. Therefore, we experiment with several dif-
ferent weight decays on the best setup of batch size
and learning rate. The results are outlined in Table
5. Different from the results in Anil et al. (2021),
changing the weight decay causes almost no impact
on the downstream performance and accuracy of
MLM and NSP. One can only observe a negligible
decline in loss as the weight decay increases. This
is probably because our training starts from a well
pre-trained base model, the weight update is more
stable than training from scratch.

B.2 L2 Clipping Norm I

Recall that the two critical steps in DP-SGD are to
clip the L2 norms of per-example gradients to �
and to introduce randomly sampled Gaussian noise
with standard deviation f�. Both steps involve the
clipping norm �, thus it is likely to be an important
hyper-parameter for DP training. We experiment
with different values of � in {0.01, 0.1, 1.0, 10}
at batch size 1024 and f 0.5. However, the MLM
and NSP accuracy and downstream performance
are almost unchanged when we drastically vary �.
Hence, we consider that the L2 clipping norm may
not be a key factor to DP pre-training and fix it
to 1.0 in future experiments based on the common
best results of two end tasks.
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