
Proceedings of the Natural Legal Language Processing Workshop 2022, pages 184 - 193
December 8, 2022 ©2022 Association for Computational Linguistics

Named Entity Recognition in Indian court judgments

Prathamesh Kalamkar1,2,∗, Astha Agarwal1,2,∗, Aman Tiwari1,2,∗, Smita Gupta3,∗,
Saurabh Karn3,∗, Vivek Raghavan1

1EkStep Foundation, 2Thoughtworks Technologies India Pvt Ltd., 3Agami
{prathamk, aman.tiwari, astha.agarwal}@thoughtworks.com,

{smita, saurabh}@agami.in, vivek@ekstep.org

Abstract

Identification of named entities from legal texts
is an essential building block for developing
other legal Artificial Intelligence applications.
Named Entities in legal texts are slightly dif-
ferent and more fine-grained than commonly
used named entities like Person, Organization,
Location etc. In this paper, we introduce a new
corpus of 46545 annotated legal named entities
mapped to 14 legal entity types. The Base-
line model for extracting legal named entities
from judgment text is also developed. We pub-
lish the training, dev data and trained baseline
model https://github.com/Legal-NLP-EkStep/
legal_NER.

1 Introduction

Artificial Intelligence has the potential to increase
access to justice and make various legal processes
more efficient (Zhong et al., 2020). Populous coun-
tries such as India have a problem with high case
pendency. As of March 2022, over 47 million cases
are pending in Indian courts1. Hence, it becomes
imperative to use AI to reduce the strain on the
judicial system and reduce pendency. For develop-
ing legal AI applications, it is essential to have ac-
cess to judicial data and open-source foundational
AI building blocks like Named Entity Recognition
(NER). A lot of Indian legal data is publicly avail-
able thanks to open data initiatives like National
Judicial Data Grid (NJDG) and the Crime and Crim-
inal Tracking Network and System (CCTNS).

NJDG provides non-exhaustive metadata of In-
dian court judgements like the names of petitioners,
respondents, lawyers, judges, date, court etc. Ex-
tracting these entities from judgment text makes the
information extraction exhaustive and reduces er-
rors like misspellings compared to NJDG metadata.
Helpful information like precedents and statutes
are also not written in the NJDG metadata. Hence

∗* Authors contributed equally
1https://www.livelaw.in/pdf_upload/au595-426886.pdf

it is essential to extract from court judgment texts
rather than just relying on the published NJDG
metadata. Extracting named entities from the text
also paves the foundation for more tasks like rela-
tion extraction, coreference resolution, knowledge
graph creation etc.

In this paper, we have created a corpus of anno-
tated judgment texts with 14 legal entities (details
in §3). An example of annotated entities is shown
in Figure 1.

We make the following contributions in this pa-
per

• We create a corpus of 14444 Indian court judg-
ment sentences and 2126 judgment preambles
annotated with 14 legal named entities.

• We develop a transformer-based legal NER
baseline model

• We create rule-based post-processing, which
captures the document level context and coref-
erence resolution for certain entities

• A representative sample of Indian high court
and supreme court judgments having 11970
judgments across 29 Indian courts

2 Related Work

Named Entity Recognition (NER) is widely studied
in literature ranging from statistical models (Borth-
wick et al., 1998),(Bikel et al., 1999),(McCallum
and Li, 2003) to state-of-the-art deep neural nets (Li
et al., 2020). The task complexity is also evolved
over time from flat named entities to nested entities,
from monolingual to multilingual NER.

Legal domain-specific entities are often used for
more meaningful information extraction from legal
texts. Pioneering work in legal NER by (Dozier
et al., 2010) developed named entity recognition
& resolution system on US legal texts using 5 le-
gal named entities (judges, attorneys, companies,

184

https://github.com/Legal-NLP-EkStep/legal_NER
https://github.com/Legal-NLP-EkStep/legal_NER
https://www.livelaw.in/pdf_upload/au595-426886.pdf

Supreme Court of India

Criminal Appeal Jurisdiction

[Arising out of Special Leave Petition (Crl.) No. 7999/2010

State of Kerala

COURT

PETITIONER ... Appellant

-versus-

Raneef RESPONDENT ... Respondent

Judgement

Markandey Katju JUDGE

1. Leave granted

2. Heard Learned counsel for the parties

3. The appellant has filled this appeal challenging the impugned order of the Kerala high court

dated 17.09.2010 granting bail to the respondent Dr. Raneef , who is a

medical practitioner (dentist) in Ernakulam district in Kerala , and is accused in crime no.

704 of 2010 of P.S. Muvattupuzha for offences under various provisions of the I.P.C. ,the

Explosive Substances Act , and the Unlawful Activities (Prevention) Act .

The

Raneef OTHER_PERSON

Kerala GPE

P.S. Muvattupuzha ORG I.P.C. Statute

Explosive Substances Act Statute Unlawful Activities (Prevention) Act Statute

Kerala High Court

Ernakulam GPE

COURT

17.09.2010 DATE

Pr
ea

m
b

le
Ju

d
g

em
en

t
Te

xt

Figure 1: Legal Named Entities in a court judgment

jurisdictions, and courts). (Cardellino et al., 2017)
created Named Entity Recognizer, Classifier and
Linker by mapping LKIF ontology to YAGO on-
tology using Wikipedia data and various levels of
abstraction of the legal ontology. Since the legal
vocabulary and style of writing of legal text varies
by language and geography, it is often necessary
to create separate datasets and models. (Glaser
et al., 2018) compared GermaNER (Benikova et al.,
2015) and DBpedia Spotlight (Mendes et al., 2011;
Daiber et al., 2013) NER systems on German legal
contracts. (Leitner et al., 2020) created a German
NER dataset with 19 fine-grained semantic classes.
(Păis, et al., 2021) created a Romanian legal cor-
pus called Legal NERo, which has 370 documents
annotated with five entity classes and used legal
domain word embeddings to build the NER sys-
tem. (Luz de Araujo et al., 2018) created a corpus
of legal documents from several Brazilian Courts
called LeNER-Br, which is annotated with six en-
tity classes. (Angelidis et al., 2018) created Named
Entity Recognizer and Linker for Greek legislation
with 254 annotated pieces of legislation. (Chalkidis
et al., 2021) extracted contract elements extraction
using LSTM encoders. NER using contextual dic-
tionaries was applied to the French legal corpus

of 94 court judgments with four entity classes by
(Barriere and Fouret, 2019). As a part of Lynx,
project (Schneider et al., 2020), a set of services,
including NER, were developed to help create a
legal domain knowledge graph and its use for the
semantic analysis of legal documents.

Transition-based parsing for NER was proposed
by (Lample et al., 2016) using stacked LSTM. NER
task can be treated as graph-based dependency pars-
ing (Yu et al., 2020) to provide a global view of
the input using biaffine model. Recent advances in
span representation have shown promising results
for Named Entity Recognition (Ouchi et al., 2020).
Span pretraining methods (Joshi et al., 2020) im-
prove the span representation for pre-trained lan-
guage models via span-level pretraining tasks. In-
fusing external knowledge for entity representation
and linking (Yamada et al., 2020), (Wang et al.,
2021) helps to better represent the knowledge in le-
gal texts. (Ye et al., 2022) considered interrelation
between spans by considering the neighbouring
spans integrally to better model the entity boundary
information.

Recently a lot of work has been done in the legal
AI field in the Indian context. Structuring the court
judgments (Kalamkar et al., 2022), legal statute

185

identification (Paul et al., 2022a), judgment out-
come prediction (Malik et al., 2021), judgment
summarization (Shukla et al., 2022) provide AI
building blocks. (Paul et al., 2022b) created In-
LegalBERT and InCaseLawBERT, which are fur-
ther pre-trained versions of LegalBERT (Chalkidis
et al., 2020) and CaseLawBERT (Zheng et al.,
2021) respectively on Indian legal text.

3 Legal Named Entity Recognition
Corpus

3.1 Legal Named Entities
A typical Indian court judgment can be split into
two parts viz., preamble and judgment. The pream-
ble of a judgment contains formatted metadata like
names of parties, judges, lawyers, date, court etc.
The text following the preamble till the end of the
judgment is called "judgment". An example show-
ing the preamble and judgment of a court judgment
along with entities is shown in Figure 1. The pream-
ble typically ends with keywords like JUDGMENT
or ORDER etc. In case these keywords are not
found, we treat the first occurrence of 2 consecu-
tive sentences with a verb as the start of the judg-
ment part. This is because the preamble typically
contains formatted metadata and not grammatically
complete sentences.

After discussion with legal experts about the
useful information to be extracted from court judg-
ments, we came up with a list of legal named enti-
ties which are described in Table 1. Some entities
are extracted from the preamble, and some from
the judgment text. Some entities are extracted from
both the preamble and judgment, and their defi-
nitions may change depending on where they are
extracted from.

Flat entities were considered for annotation i.e.,
"Bank of China" should be considered as an ORG
entity and "China" should not be marked as GPE
inside this entity. The detailed definitions with
correctly and incorrectly marked examples can be
found here2.

3.2 Representative Sample of Indian High
Court & Supreme Court judgments

Selecting a representative sample of court judg-
ments text is vital to cover varieties of styles of writ-
ing judgments. Most cited judgements are likely
to be more important for applying the NER model.

2https://storage.googleapis.com/indianlegalbert/OPEN_
SOURCED_FILES/NER/NER_Definitions.pdf

But just taking the most cited judgments from a
given court would produce bias in certain types
of cases. Hence it is necessary to control case
types as well. We created the following 8 types of
cases (Tax, Criminal, Civil, Motor Vehicles, Land
& Property, Industrial & Labour, Constitution and
Financial) which cover most of the cases in Indian
courts. Classification of each judgment into one of
these 8 types is a complex task. We have used a
naive approach to use keywords based on act names
for assigning a judgment to a case type. E.g., If the
judgment mentions the "income tax act" then most
probably it belongs to the "Tax" category. We use
IndianKanoon search engine3 to get the most cited
court judgments matching the key act names. The
key act names for each of the case types are given
in Table 2.

One IndianKanoon search query was created for
each of the 8 case types and 29 courts (supreme
court, 23 high courts, three tribunals and 2 dis-
trict courts). The Topmost cited results from each
query were combined and de-duplicated to produce
the final corpus of judgments. We consider judg-
ments in the English language only. Judgments
obtained by this method from 1950 to 2017 were
used for training data annotations, and judgments
from 2018 to March 2022 were used for the test
and dev data annotations. The representative sam-
ple dataset of 11970 judgments, along with search
queries, the full text of the judgments and descrip-
tive statistics, are published in our git repository4.
We believe these representative judgments can be
used for other future studies as well.

3.3 Data Annotation Process

The annotations for judgment text were done at a
sentence level, i.e. separate individual judgment
sentences were presented for annotation without
the document-level context. However, annotators
had the freedom to access the entire judgment text
by clicking on the Indiankanoon URL shown below
the text in case they needed more context. Com-
plete preambles were presented for annotation.

3.3.1 Selecting Raw Text to Annotate
Legal named entities in a judgment text tend to
be sparse, i.e., many of the sentences in a court
judgment may not have any legal named enti-
ties. Hence is essential to identify entity-rich sen-

3https://indiankanoon.org/
4https://github.com/Legal-NLP-EkStep/legal_NER/tree/

main/representative_judgments_sample

186

https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_Definitions.pdf
https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_Definitions.pdf
https://indiankanoon.org/
https://github.com/Legal-NLP-EkStep/legal_NER/tree/main/representative_judgments_sample
https://github.com/Legal-NLP-EkStep/legal_NER/tree/main/representative_judgments_sample

Named Entity Extract
From Description

COURT
Preamble,
Judgment

Name of the court which has delivered the current judgement if ex-
tracted from the preamble. Name of any court mentioned if extracted
from judgment sentences.

PETITIONER
Preamble,
Judgment

Name of the petitioners/appellants/revisionist from current case

RESPONDENT
Preamble,
Judgment

Name of the respondents/defendants/opposition from current case

JUDGE
Preamble,
Judgment

Name of the judges from the current case if extracted from the
preamble. Name of the judges of the current as well as previous
cases if extracted from judgment sentences.

LAWYER Preamble Name of the lawyers from both the parties
DATE Judgment Any date mentioned in the judgment
ORG Judgment Name of organizations mentioned in text apart from the court.
GPE Judgment Geopolitical locations which include names of states, cities, villages
STATUTE Judgment Name of the act or law mentioned in the judgement
PROVISION Judgment Sections, sub-sections, articles, orders, rules under a statute

PRECEDENT Judgment
All the past court cases referred to in the judgement as precedent.
Precedent consists of party names + citation(optional) or case num-
ber (optional)

CASE_NUMBER Judgment
All the other case numbers mentioned in the judgment (apart from
precedent) where party names and citation is not provided

WITNESS Judgment Name of witnesses in current judgment

OTHER_PERSON Judgment
Name of all the persons that are not included in petitioner, respon-
dent, judge and witness

Table 1: Legal Named Entities Definitions

Case Type Key Act keywords

Tax
tax act, excise act, customs act,
goods and services act etc.

Criminal
IPC, penal code, criminal proce-
dure etc.

Civil
civil procedure, family courts,
marriage act, wakf act etc.

Motor Vehi-
cles

motor vehicles act, mv act, imv
act etc.

Land &
Property

land acquisition act, succession
act, rent control act etc.

Industrial &
Labour

companies act, industrial dis-
putes act, compensation act etc.

Constitution constitution

Financial
negotiable instruments act, sar-
faesi act, foreign exchange regu-
lation act etc.

Table 2: Key Act Names for Each Case Type

tences for annotation rather than taking a random
sample. We used the spacy pre-trained model
(en_core_web_trf) (Montani et al., 2022) with cus-
tom rules to predict the legal named entities. Cus-
tom rules were used to map the Spacy-defined
named entities to the legal named entities defined
in this paper. E.g., An entity predicted by spacy
as PERSON with the keyword "petitioner" nearby
was marked as PETITIONER etc. We passed the
representative sample judgment texts through this
Spacy model with custom rules to get predicted
noisy legal entities. Using these predicted legal en-
tities, we selected the sentences that are entity-rich
and that reduce the class imbalance across different
entity types. We also added sentences without any
predicted entities. Very short sentences and sen-
tences with non-English characters were discarded.
Preambles, where party names are written side by
side on the same line, were also discarded.

187

3.3.2 Pre-annotations

The data annotation was done in 4 cycles. The
preambles and sentences were pre-annotated in
each cycle to reduce annotation effort.

For the first annotation cycle, the predicted le-
gal entities obtained during the raw text selection
process, as mentioned in 3.3.1, were reviewed and
corrected. At the end of cycle 1, a machine learn-
ing model using Roberta+ transition-based parser
architecture (explained in detail in §4) was trained
using the labelled data obtained in cycle 1. This
machine learning model was used to pre-annotate
the cycle 2 data. Similarly, the machine learning
model trained using cycle 1 and 2 data was used to
pre-annotate cycle 3 data and so on.

3.3.3 Manual Reviews & Corrections

In each cycle, all of the pre-annotated preambles
and sentences were carefully reviewed and cor-
rected by humans. Roughly the same amount of
preamble and sentences were annotated in each
cycle. The team of 4 legal experts and 4 data scien-
tists at OpenNyAI did the data annotation. Legal
experts were law students from various law uni-
versities across India. We did not do duplicate
annotations to maximize the number of annotated
data. We used the Prodigy tool5 for the annotations.

The corrected data obtained from the four anno-
tation cycles was split into the train, dev and test
datasets as per the time ranges mentioned in Table
3. We tried to keep the dev data distribution simi-
lar to the test data distribution. Test and dev data
was carefully cross-reviewed twice to ensure data
quality. The total count of entities, total number
of preambles and judgment sentences in train, dev
and test data are shown in Table 3. The counts of

Train Dev Test

Time Range
1950 to
2017

2018 to
2022

2018 to
2022

Preambles 1560 125 441
Judgment
sentences

9435 949 4060

Entities 29964 3216 13365

Table 3: Train & Test data counts

each legal named entity in training data are shown
in Table 4.

5https://prodi.gy/

Entity Judgment
Count

Preamble
Count

COURT 1293 1074
PETITIONER 464 2604
RESPONDENT 324 3538
JUDGE 567 1758
LAWYER NA 3505
DATE 1885 NA
ORG 1441 NA
GPE 1398 NA
STATUTE 1804 NA
PROVISION 2384 NA
PRECEDENT 1351 NA
CASE_NUMBER 1040 NA
WITNESS 881 NA
OTHER_PERSON 2653 NA
Total 17485 12479

Table 4: Counts of Legal Entities for Training data in
Preamble & Judgment

4 NER Baseline Model

The end goal behind this work is to enable the de-
velopment of other legal AI applications that con-
sume automatically detected legal named entities
from judgment texts. Towards this goal, we exper-
imented with some famous NER model architec-
tures. A single model was trained to predict entities
from both judgment sentences and the preamble.
As transformer-based architectures have shown a
lot of success in NER tasks (Li et al., 2020), we
mainly experimented with them. We compared
the performance of 2 NER architecture types when
trained on our legal NER dataset. The first architec-
ture type uses a transition-based dependency parser
(Honnibal and Johnson, 2015) on top of the trans-
former model. The second architecture type uses
a fine-tuning based approach which adds a single
linear layer to the transformer model and fine-tunes
the entire architecture on the NER task. Figure 2
shows the 2 NER architecture types.

We experimented with multiple transformer
models for each of the architecture types. For
transition-based parser architecture we experi-
mented with the Roberta-base model (Liu et al.,
2019), InLegalBERT (Paul et al., 2022b) using
Spacy library. For the fine-tuning approach we
experimented with Roberta-base, InLegalBERT,
legalBERT (Chalkidis et al., 2020) using TNER
library (Ushio and Camacho-Collados, 2021).

188

https://prodi.gy/

Roberta Base

w1 w2 wn

e1 e2 en

Input Sentence

Contextual
Embeddings

Transition-Based Parser

y1 yny2

Labelled Sequence

Roberta Base

w1 w2 wn

e1 e2 en

Input Sentence

Linear Output Layer

y1 yny2

Labelled Sequence

Transformer +
 Transition-based Parser Fine-tune Transformer

Contextual
Embeddings

Figure 2: NER Architectures

Architecture
Type

Trans.
Model P R F1

Transformer +
Transition
Based Parser

Roberta-
base 92.0 90.2 91.1

InLegal
BERT

87.3 85.8 86.5

Fine Tune
Transformer

Roberta-
base

77.6 80.0 78.8

InLegal
BERT

77.7 84.6 81.0

Legal
BERT

75.4 79.5 77.5

Table 5: Model Performance on test data

The models are evaluated by using recall, preci-
sion and strict F1 scores on combined preamble and
judgment sentences. The named entity is consid-
ered correct when both boundary and entity class
are predicted correctly. Table 5 shows the perfor-
mance of these experiments on the test data.

Performance of the best performing model
(Roberta+ transition-based parser) on each of the
entity classes on test data along with average char-
acter length is shown in Table 6. It also shows
the Type match F1 score which was proposed in
(Segura-Bedmar et al., 2013). Under the Type
match evaluation scheme, some overlap between
the tagged entity and the gold entity is required
along with entity type match. In strict f1 calcu-
lation, the entities with correct entity type match
and partial span overlap are considered incorrect.
But in the Type match evaluation, such entities
are considered the correct entity. Hence the Type
match F1 score gives an indication of how much
overlap exists between ground truth and prediction

Entity Count Avg.
Len. F1

Type
match
F1

COURT 1231 25 95.4 97.2
PETITIONER 835 20 89.8 92.6
RESPONDENT 1125 34 83.0 91.8
JUDGE 580 15 95.4 96.5
LAWYER 1813 16 94.1 95.5
DATE 1111 11 91.9 98.7
ORG 920 18 86.4 90.2
GPE 711 8 85.7 90.9
STATUTE 971 17 96.0 97.6
PROVISION 1220 14 95.7 98.6
PRECEDENT 634 62 80.1 96.2
CASE_NUMBER 683 23 89.1 92.4
WITNESS 446 12 89.7 89.7
OTHER_PERSON 1085 12 93.8 95.2
Overall 13365 20 91.1 94.9

Table 6: Entity-wise performance of Roberta +
Transition-based Parser model on test data

Parameter Value
Transformer Roberta-base

Optimizer

Adam with beta1 = 0.9,
beta2 = 0.999, L2 =
0.01, initial learning rate
= 0.00005

max training steps 40000
training batch size 256

Table 7: Key training procedure parameters

considering partial matches.

The trained Roberta+Transition-based Parser is
made available as a Spacy pipeline in our git repos-
itory and hugging face model repository6.

4.1 Training Procedure

Early stopping using dev data was used during train-
ing to select the best epoch for all the experiments.
The details about the training procedure for Roberta
+ Transition-based parser using Spacy are available
in the GitHub repository. NVIDIA Tesla V100
GPU was used to train the model and the training
time was 12 hours. The key parameters used are
mentioned in Table 7.

6https://huggingface.co/opennyaiorg/en_legal_ner_trf

189

https://huggingface.co/opennyaiorg/en_legal_ner_trf

4.2 Results Discussion

Adding a transition-based parser to the transformer
architecture significantly improves the model’s ac-
curacy for this NER task, as seen in Table 5.

As seen from Table 6, the Roberta-base +
transition-based parser NER model can extract
shorter entities like WITNESS, PROVISION,
STATUTE, LAWYER, COURT and JUDGE with
excellent performance.

PRECEDENT has degraded performance as
compared to other entities because the precedent
names are usually very long (average entity length
is 62 characters) and missing out on even a few
characters makes the entire entity to be marked as
incorrect. Because of this reason, there is a signifi-
cant difference between strict F1 and Type match
F1 for PRECEDENT. Manual inspection of errors
in PRECEDENT prediction reveals that many a
time, the prefixes of party names like "Mr.", "M/S",
etc. are missed in the prediction while gold entities
have them. E.g., the gold entity type is PRECE-
DENT with the text "Mr Amit Kumar Vs State
of Maharashtra," and the predicted entity type is
PRECEDENT with the text "Amit Kumar Vs State
of Maharashtra". In strict F1 evaluation, this ex-
ample is considered incorrect, while in Type match
evaluation, this example is considered correct. One
possible reason for the model not to include the
prefixes in the PRECEDENT prediction could be
that prefixes are not considered as a part of other
entities like PETITIONER, RESPONDENT and
ORG. So possibly, the model has also learned to
omit the prefixes in PRECEDENT.

The average character length of RESPONDENT
entities is considerably higher than that of PETI-
TIONER entities. This difference is because, often,
the respondents are posts or authorities rather than a
person. E.g. "The Chief Engineer, Water Resource
Organization, Chepauk, Chennai-5". In such cases,
gold data marks the authority or post names along
with the address as the corresponding entity, mak-
ing them longer. The difference between strict F1
and Type match F1 for RESPONDENT shows that
the model is missing in predicting a few characters
in such long entities.

The overall accuracy of this model makes it very
useful in practical legal AI applications.

5 Post-Processing of Named Entities

Since the annotators were asked to annotate indi-
vidual sentences without document-level context,

any trained NER model on this data will also fo-
cus only on the sentence-level information. While
inferring the NER model on a complete judgment
text, it is important to perform post-processing of
extracted entities to capture document-level con-
text. In particular, we create rules to perform the
following tasks

• Reconciliation of the entities extracted from
individual sentences of a judgment

• Coreference resolution of precedents

• Coreference resolution of statutes

• Assign statute to every provision

5.1 Reconciliation of the Extracted Entities

The same entity text can be tagged with different le-
gal entity classes in separate sentences of the same
judgment. E.g., In the preamble of a judgment, it
is written that "Amit Kumar" is a petitioner. In the
same judgement text, the judge later writes, "Four
unidentified persons attacked Amit Kumar". NER
model would mark "Amit Kumar" in the second
mention as OTHER_PERSON because there is no
information about Amit Kumar being a petitioner
in this sentence. Marking this person’s name as
PETITIONER is more valuable than marking it as
an OTHER_PERSON.

As part of entity reconciliation, entities predicted
as OTHER_PERSON or ORG are matched with
all the PETITIONER, RESPONDENT, JUDGE,
LAWYER and WITNESS entities. If an exact
match is found, then the entity type is overwrit-
ten with the matching entity type. In the previous
example, all the extracted entities that match "Amit
Kumar" would be overwritten with entity type PE-
TITIONER.

5.2 Coreference Resolution of Precedents

The names of precedent cases are usually very long.
Hence judges typically mention the complete name
of a precedent case for the first mention and later
use the name of the first party as a reference. E.g.,
"The constitution bench of this court in Gurbaksh
Singh Sibbia and others Vs State of Punjab (1980)
2 SCC 565 dealt with the scope and ambit of an-
ticipatory bail". Then, later on, the judge uses a
reference to this case, like "The learned counsel
for the petitioner placed reliance on Sibbia’s case
(supra)." The NER model identifies "Sibbia" as
OTHER_PERSON in the second sentence. But

190

here, "Sibbia" is a reference to the earlier extracted
PRECEDENT entity "Gurbaksh Singh Sibbia and
others Vs State of Punjab (1980) 2 SCC 565".

We first cluster all the extracted precedent enti-
ties within a judgment by matching the party names
and citations. A precedent cluster contains all the
precedent entities with matching party names or
citations. Then we identify potential precedent
referents as ORG or OTHER_PERSON entity fol-
lowed by keywords "supra" or "’s case". We then
search such referent entities in the extracted prece-
dents’ party names and find the closest matching
preceding precedent. If the match is found, then
we change the referent entity type to PRECEDENT.
Referent entities are also added to the precedent
cluster where the closest matching precedent be-
longs. Once all the matching precedent referents
are assigned to precedent clusters, the longest en-
tity in each cluster is marked as the cluster head.
So in the example before, the entity type for "Sib-
bia" in the second sentence would be changed from
OTHER_PERSON to PRECEDENT, and a prece-
dent cluster would be created with the head as "Gur-
baksh Singh Sibbia and others Vs State of Punjab
(1980) 2 SCC 565" and the member as "Sibbia".

The information about precedents coreference
can be accessed through output Spacy doc object
property doc.user_data[’precedent_clusters’].

5.3 Coreference Resolution of Statutes

Statute names can be long and are frequently men-
tioned in judgment text. Hence judges typically
write the complete statute name at the beginning
of the judgment and specify the referent for this
statute for the remaining judgement. E.g., "The
complaint was filed under the Companies Act, 1956
(for brevity, ’the Act’) ...". Later on in the same
judgment, the judge writes ", Section 5 of the Act
defines ...". We write rules to identify such statute
referents by searching for a STATUTE entity fol-
lowed by keywords in parenthesis. Such statute
referents are added to the statute cluster with its
head as the complete statute name. All entities in
a statute cluster refer to the same statute, which is
the head of the cluster. Extracted statutes are also
looked up against a list of famous acronyms (IPC,
CrPC etc.), and if a match is found, then the corre-
sponding full form is added to the statutes cluster.
The information about statute coreference can be
accessed through output Spacy doc object property
doc.user_data[’statute_clusters’].

5.4 Assign Statute to Every Provision

Every extracted provision should be associated
with an extracted statute. Sometimes a provision
and its corresponding statute are explicitly men-
tioned in the same sentence. E.g., "Section 420
of Indian Penal Code says ...". Sometimes, the
provision-statute mapping is implicit where only
the provision is mentioned, and the corresponding
statute is understood from the context. E.g., "The
section 420 says ...".

In case of explicit mentions, we assign the statute
to the immediately preceding provision in the same
sentence. All the remaining provisions are consid-
ered implicit provisions. We first search for all the
implicit provisions if a unique explicit mapping ex-
ists in another sentence. E.g., if the judge writes an
explicit mention like "Section 420 of Indian Penal
Code" and there is no other explicit mention of Sec-
tion 420 for any other statute in the entire judgment
text, then all the implicit mentions of Section 420
are mapped to "Indian Penal Code". Suppose no
explicit mention for a provision is found, or mul-
tiple explicit mentions are found for a provision.
In that case, the statute extracted from the closest
preceding sentence is assigned.

The assignment of the statute to provisions can
be accessed via output Spacy doc object property
doc.user_data[’provision_statute_pairs’]

6 Conclusion & Future Directions

In this paper, we proposed a new corpus of legal
named entities using 14 legal entity types. We also
proposed baseline models trained using this corpus
along with post-processing of the extracted enti-
ties to capture document-level information. We
have also released a representative sample of In-
dian court judgments which could be used in fur-
ther studies. We believe this corpus will lay the
foundation for further NLP tasks like relationship
extraction, knowledge graph population etc. using
Indian court judgments.

Acknowledgements

This work is part of the OpenNyAI mission, which
is funded by EkStep and Agami. We thank all the
law experts, student volunteers for contributing to
data annotation.

191

References
Iosif Angelidis, Ilias Chalkidis, and Manolis Koubarakis.

2018. Named entity recognition, linking and genera-
tion for greek legislation. In JURIX, pages 1–10.

Valentin Barriere and Amaury Fouret. 2019. May i
check again?—a simple but efficient way to gener-
ate and use contextual dictionaries for named entity
recognition. application to french legal texts. In Pro-
ceedings of the 22nd Nordic Conference on Compu-
tational Linguistics, pages 327–332.

Darina Benikova, Seid Muhie, Yimam Prabhakaran,
and Santhanam Chris Biemann. 2015. C.: Germaner:
Free open german named entity recognition tool. In
In: Proc. GSCL-2015. Citeseer.

Daniel M Bikel, Richard Schwartz, and Ralph M
Weischedel. 1999. An algorithm that learns what’s
in a name. Machine learning, 34(1):211–231.

Andrew Borthwick, John Sterling, Eugene Agichtein,
and Ralph Grishman. 1998. Nyu: Description of
the mene named entity system as used in muc-7. In
Seventh Message Understanding Conference (MUC-
7): Proceedings of a Conference Held in Fairfax,
Virginia, April 29-May 1, 1998.

Cristian Cardellino, Milagro Teruel, Laura Alonso Ale-
many, and Serena Villata. 2017. A low-cost, high-
coverage legal named entity recognizer, classifier and
linker. In Proceedings of the 16th edition of the In-
ternational Conference on Articial Intelligence and
Law, pages 9–18.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. LEGAL-BERT: The muppets straight out of
law school. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2898–
2904, Online. Association for Computational Lin-
guistics.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2021. Neural
contract element extraction revisited: Letters from
sesame street. arXiv preprint arXiv:2101.04355.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th international conference on se-
mantic systems, pages 121–124.

Christopher Dozier, Ravikumar Kondadadi, Marc
Light, Arun Vachher, Sriharsha Veeramachaneni, and
Ramdev Wudali. 2010. Named entity recognition
and resolution in legal text. In Semantic Processing
of Legal Texts, pages 27–43. Springer.

Ingo Glaser, Bernhard Waltl, and Florian Matthes. 2018.
Named entity recognition, extraction, and linking
in german legal contracts. In IRIS: Internationales
Rechtsinformatik Symposium, pages 325–334.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 confer-
ence on empirical methods in natural language pro-
cessing, pages 1373–1378.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Prathamesh Kalamkar, Aman Tiwari, Astha Agarwal,
Saurabh Karn, Smita Gupta, Vivek Raghavan, and
Ashutosh Modi. 2022. Corpus for automatic structur-
ing of legal documents. In Proceedings of the Lan-
guage Resources and Evaluation Conference, pages
4420–4429, Marseille, France. European Language
Resources Association.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Elena Leitner, Georg Rehm, and Julian Moreno Schnei-
der. 2020. A dataset of german legal documents
for named entity recognition. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 4478–4485.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering, 34(1):50–70.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Pedro Henrique Luz de Araujo, Teófilo E de Campos,
Renato RR de Oliveira, Matheus Stauffer, Samuel
Couto, and Paulo Bermejo. 2018. Lener-br: a dataset
for named entity recognition in brazilian legal text.
In International Conference on Computational Pro-
cessing of the Portuguese Language, pages 313–323.
Springer.

Vijit Malik, Rishabh Sanjay, Shubham Kumar Nigam,
Kripabandhu Ghosh, Shouvik Kumar Guha, Arnab
Bhattacharya, and Ashutosh Modi. 2021. Ildc for
cjpe: Indian legal documents corpus for court judg-
ment prediction and explanation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4046–4062.

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random

192

https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://aclanthology.org/2022.lrec-1.470
https://aclanthology.org/2022.lrec-1.470

fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 188–191.

Pablo N Mendes, Max Jakob, Andrés García-Silva, and
Christian Bizer. 2011. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of
the 7th international conference on semantic systems,
pages 1–8.

Ines Montani, Matthew Honnibal, Matthew Honni-
bal, Sofie Van Landeghem, Adriane Boyd, Hen-
ning Peters, Paul O’leary McCann, Maxim Sam-
sonov, Jim Geovedi, Jim O’Regan, Duygu Altinok,
György Orosz, Søren Lind Kristiansen, Roman, Ex-
plosion Bot, Lj Miranda, Leander Fiedler, Daniël
de Kok, Grégory Howard, Edward, Wannaphong
Phatthiyaphaibun, Yohei Tamura, Sam Bozek, murat,
Mark Amery, Ryn Daniels, Björn Böing, Pradeep Ku-
mar Tippa, and Peter Baumgartner. 2022. explo-
sion/spacy: v3.2.4: Workaround for Click/Typer is-
sues.

Hiroki Ouchi, Jun Suzuki, Sosuke Kobayashi, Sho
Yokoi, Tatsuki Kuribayashi, Ryuto Konno, and Ken-
taro Inui. 2020. Instance-based learning of span
representations: A case study through named entity
recognition. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6452–6459.

Vasile Păis, , Maria Mitrofan, Carol Luca Gasan, Vlad
Coneschi, and Alexandru Ianov. 2021. Named entity
recognition in the romanian legal domain. In Pro-
ceedings of the Natural Legal Language Processing
Workshop 2021, pages 9–18.

Shounak Paul, Pawan Goyal, and Saptarshi Ghosh.
2022a. Lesicin: A heterogeneous graph-based ap-
proach for automatic legal statute identification from
indian legal documents. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 11139–11146.

Shounak Paul, Arpan Mandal, Pawan Goyal, and Sap-
tarshi Ghosh. 2022b. Pre-training transformers on
indian legal text.

Julian Moreno Schneider, Georg Rehm, Elena Montiel-
Ponsoda, Víctor Rodríguez Doncel, Artem Revenko,
Sotirios Karampatakis, Maria Khvalchik, Christian
Sageder, Jorge Gracia, and Filippo Maganza. 2020.
Orchestrating nlp services for the legal domain. In
Proceedings of the 12th Language Resources and
Evaluation Conference, pages 2332–2340.

Isabel Segura-Bedmar, Paloma Martínez, and María
Herrero-Zazo. 2013. SemEval-2013 task 9 : Extrac-
tion of drug-drug interactions from biomedical texts
(DDIExtraction 2013). In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 341–350, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Abhay Shukla, Paheli Bhattacharya, Soham Poddar, Ra-
jdeep Mukherjee, Kripabandhu Ghosh, Pawan Goyal,
and Saptarshi Ghosh. 2022. Legal case document
summarization: Extractive and abstractive methods
and their evaluation. In The 2nd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 12th International Joint
Conference on Natural Language Processing.

Asahi Ushio and Jose Camacho-Collados. 2021. T-
NER: An all-round python library for transformer-
based named entity recognition. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 53–62, Online. Association
for Computational Linguistics.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176–194.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: Deep con-
textualized entity representations with entity-aware
self-attention. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 6442–6454.

Deming Ye, Yankai Lin, Peng Li, and Maosong Sun.
2022. Packed levitated marker for entity and relation
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4904–4917.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476.

Lucia Zheng, Neel Guha, Brandon R Anderson, Peter
Henderson, and Daniel E Ho. 2021. When does pre-
training help? assessing self-supervised learning for
law and the casehold dataset of 53,000+ legal hold-
ings. In Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Law, pages
159–168.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2020. How
does nlp benefit legal system: A summary of legal
artificial intelligence. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5218–5230.

193

https://doi.org/10.48550/ARXIV.2209.06049
https://doi.org/10.48550/ARXIV.2209.06049
https://aclanthology.org/S13-2056
https://aclanthology.org/S13-2056
https://aclanthology.org/S13-2056
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7

